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Derivation of fundamental equations in mechanics and
thermodynamics

The setting for the derivation of fundamental equations in mechanics
and thermodynamics in 2D and 3D
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The conservation of mass principle – mass balance
Mass is neither created nor destroyed

the rate of change of mass inside any domain must be equal to
the mass flux through the boundary of the domain:

d
dt

∫
Ω
ρdV = −

∫
∂Ω
ρvinidS

where:
ρ(x, t) – density at time t and point x ∈ Ω ,
v(x, t) – velocity,
n – the unit outward normal to ∂Ω

After applying the divergence theorem and taking into account that the
equation holds for any domain Ω we arrive at the differential equation

The continuity equation (mass balance)

∂ρ

∂t
+ (ρvi),i = 0



Fundamental equations in fluid mechanics Modelling of fluid flow Incompressible flows and the Navier-Stokes equations

Krzysztof Banaś, Mathematical modelling in science and engineering 4/26

The conservation of momentum principle
Newton’s second law of mechanics

the rate of change of momentum of a group of particles is equal
to the sum of all forces exerted on this group

d
dt

∫
Ωt

ρvjdV =

∫
∂Ωt

σjinidS +

∫
Ωt

bjdV

where
Ωt – portion of space occupied by the group of particles

Ωt may vary in time

σ – stress tensor, bj – body forces

The transport theorem

d
dt

∫
Ωt

fdV =

∫
Ωt

(
∂f
∂t

+ (fvi),i

)
dV

valid for any smooth function f (x, t)
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The transport theorem and the momentum balance

Material assumptions (constitutive equations):
stress tensor σji symmetric due to the conservation of angular momentum
stresses split according to the formula (δji – Kronecker’s delta):

σji = −pδji + τji

p – thermodynamic pressure as isotropic normal stresses p = − 1
3σii

τji – viscous stresses
isotropic Newtonian fluid, viscous stresses proportional to the rate of change of

deformation tensor (gradient of velocity tensor), τji = µ(vi,j + vj,i) + λδjivk,k

no volume viscosity (Stokes hypothesis, τii = 0), τji ≈ µ(vi,j + vj,i − 2
3δjivk,k)

Assuming the above constitutive equations and applying the transport theorem
together with the divergence theorem to the momentum balance leads to:

Momentum equation

∂(ρvj)

∂t
+ (ρvjvi),i +p,i−τji,i = bj



Fundamental equations in fluid mechanics Modelling of fluid flow Incompressible flows and the Navier-Stokes equations
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Thermodynamic considerations

Basic principles
the principle of energy conservation, energy balance:

specific total energy (energy per unit volume): e = eI + eK + ep

specific internal energy, eI , expressed in specific forms for different
materials and processes
specific kinetic energy, eK = 1

2 vivi

specific potential energy, eP, possible for external force fields (further
neglected)

the first law of thermodynamics (general statement): ∆U = Q−W
the change in internal energy ∆U of a system
the amount of heat supplied to the system Q
the work done by the system W

the first law of thermodynamics (in practical calculations):
the expression for specific internal energy: deI = Tds− pdV

T – temperature, s – entropy, p – pressure, V = 1
ρ

– volume
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Thermodynamic considerations

Constitutive equations

ideal gas law: pV
T = const

for practical calculations: eI = p
(γ−1)ρ = cVT

heat capacity ratio γ =
cp

cV

specific heat capacities:
at constant volume, cV =

(
∂Q
∂T

)
V=const

at constant pressure, cp =
(
∂Q
∂T

)
p=const

the speed of sound c, c2 = γp
ρ

heat flux qi

Fourier’s law: qi = −κT,i
κ - the coefficient of thermal conductivity

µ = 1.45 T
3
2

T+110 · 10−6 – Sutherland’s law for viscosity as function of
temperature
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The conservation of energy principle
The energy balance

the rate of change of the total energy for a group of particles is
equal to the rate at which work is done by the external forces
plus an explicit inflow of energy through the boundary

d
dt

∫
Ωt

(ρe)dV = −
∫
∂Ωt

vj(pδji − τji)nidS−
∫
∂Ωt

qinidS

Additional terms possible for e.g.
heat sources
body forces

The standard procedure comprised of applying the transport and the
divergence theorems leads to :

Energy balance equation

∂(ρe)

∂t
+ ((ρe + p)vi − τjivj + qi),i = 0
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Compressible fluid flow equations in conservative form

The equations for the three conservation principles in vector form ρ
ρvj

ρe


,t

+

 ρvi

ρvivj + pδij − τij

(ρe + p)vi − τijvj + qi


,i

= 0

Defining:
U = (ρ, ρvj, ρe)T - vector of conservation variables
f E

i = (ρvi, ρvivj + pδij, (ρe + p)vi)
T – vector of Eulerian

(inviscid) fluxes
fµi = (0, τij, τijvj − qi)

T - vector of viscous and heat fluxes
leads to:

The Navier-Stokes equations of compressible fluid flow

U(x, t),t + f E
i (U),i = fµi (U,∇U),i
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Compressible fluid flow equations

Nondimensional form of the compressible Navier-Stokes equations and the
similarity of flows

definitions of non-dimensional quantities (based on constant reference
quantities with ∞ subscript)

ρ′ =
ρ

ρ∞
, p′ =

p
p∞

, v′i =
vi

v∞

reference length L characterizing the problem (e.g. the length of
airplane, the width of channel, etc.)
the change of variables:

x′i =
xi

L
implying (·),i =

∂(·)
∂xi

=
∂(·)
∂x′i

1
L

=
1
L

(·),i′

and

t′ =
v∞
L

t − a new time scale implying (·),t =
v∞
L

(·),t′
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Compressible fluid flow equations

Nondimensional form of the compressible Navier-Stokes equations and the
similarity of flows

After a few transformations the Navier-Stokes equations expressed in
terms of the new nondimensional variables look as follows:

ρ′,t′ + (ρ′v′i),i′ = 0

(ρ′v′j),t′+(ρ′v′iv
′
j+

p∞
ρ∞v2

∞
p′δij),i′ =

1
Lρ∞v∞

(
µ(v′i,j′ + v′j,i′) + λδijv′k,k′

)
,i′

p∞
ρ∞v2

∞

1
γ − 1

p′,t′ + (ρ′e′K),t′ +

(
(

p∞
ρ∞v2

∞

γ

γ − 1
p′ + ρ′e′K)v′i

)
,i′

=

1
Lρ∞v∞

(
µv′k(v′i,k′ + v′k,i′) + λv′iv

′
k,k′ +

1
γ − 1

κ

cV

p∞
ρ∞v2

∞
(

p′

ρ′
),i′

)
,i′
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Compressible fluid flow equations

Nondimensional form of the compressible Navier-Stokes equations and
the similarity of flows

there are only four coefficients in the nondimensional compressible
Navier-Stokes equations, all defined in terms of reference quantities
the coefficients can be expressed using special numbers used in
fluid dynamics:

Mach number
M2
∞ =

v2
∞

c2
∞

=
ρ∞v2

∞
γp∞

Reynolds number
Re∞ =

Lρ∞v∞
µ

Prandtl number
Pr =

γcVµ

κ

the special numbers are usually defined using the values on the
inflow part of the boundary (so called ”free stream” values)
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Compressible fluid flow equations
Nondimensional form of the compressible Navier-Stokes equations and the
similarity of flows

after substituting the relations for coefficients, the final form of the
nondimensional Navier-Stokes equations is obtained:

ρ,t + (ρvi),i = 0

(ρvj),t +

(
ρvivj +

1
γM2
∞

pδij

)
,i

=
1

Re∞

(
vi,j + vj,i −

2
3
δijvk,k

)
,i

1
γM2
∞

(ρeI),t + (ρeK),t +

(
(

1
γM2
∞
ρeI + ρeK +

1
γM2
∞

p)vi

)
,i

=

1
Re∞

(
vk(vi,k + vk,i)−

2
3

vivk,k +
1

PrM2
∞

(
p
ρ

),i

)
,i
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Compressible fluid flow equations
Nondimensional form of the compressible Navier-Stokes equations and
the similarity of flows

the same change of variables applied to an initial and boundary
conditions leads to an initial condition and boundary conditions for
the nondimensional variables.
a solution to the non-dimensional equations, satisfying also the
nondimensional initial and boundary conditions, is similar (i.e. can
be obtained by the simple scalings defined previously) to any flow
which:

has the same shape of its domain as the nondimensional flow
has the same parameters γ, M∞, Re∞ and Pr
its initial and boundary conditions can be obtained by the scaling
from the initial and boundary conditions of the nondimensional flow
has the same time scale as the nondimensional flow (if not,
additional scaling in time has to be performed)

two flows similar to the same nondimensional flow are similar to
each other.
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Different models for fluid flow
Compressible Navier-Stokes equations are the most general model of fluid
flow
For many flows, especially for liquids but also for gases at relatively low
speeds, the equations become difficult to solve due to the terms with the
coefficient 1

M2
∞

= c2
∞

v2
∞

, that becomes very large
it is possible for such cases to develop a set of approximate equations, so
called incompressible Navier-Stokes equations

Compressible Navier-Stokes equations describe the fluids as continuum
objects (without going to atomic level), but still the range of length scales
is very large

for applications in aerodynamics the length of an object (e.g. aircraft) can be
of order 101 meters, while the sizes of flow features (e.g. the width of shock
waves) may be as small as several hundreds nanometers (order 10−7m)
with today’s computing power it is impossible in most of practical
applications to discretize the compressible Navier-Stokes equations on
meshes that would guarantee the full resolution of all flow features

the size of grid cells or elements would have to be smaller than flow features sizes
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Different models for fluid flow
The full set of compressible (or incompressible) Navier-Stokes equations
on meshes that guarantee the resolution of all flow features can be solved
only in special situations
In order to determine large scale flow features (such as the position of
shock waves) the viscous effects can be neglected leading to the Euler
equations of inviscid fluid flow (with Mach number as the only parameter)

Euler equations neglect e.g. the effect of boundary layers and their impact on
flow features
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Different models for fluid flow
In order to take into account the effects of small, unresolved flow scales
(e.g. turbulent, chaotic motion of fluid particles) the unknowns in the
Navier-Stokes equations (compressible or incompressible) can be
represented as the sum of (resolved) averaged values and (unresolved)
fluctuations, that lead to the standard Navier-Stokes equations for the
averaged quantities coupled with special equations for fluctuations

the turbulent effects are important for high Reynolds number flows
the equations for fluctuations of unknowns are usually discretized using sets
of additional assumptions that lead to different turbulence models



Fundamental equations in fluid mechanics Modelling of fluid flow Incompressible flows and the Navier-Stokes equations
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Different models for fluid flow

The Mach number measures the importance of compressibility for the
character of the flow

for low Mach number inviscid flows (compressible and incompressible) the
character of the flow can be approximately determined by the solution of the
equation formulated for the velocity potential (potential flow, below left)

The Reynolds number measures the ratio of inertial forces to viscous forces
for low Reynolds number flows the effects of inertia forces can be neglected,
leading to the Stokes flow (creeping flow, below right)

etc., etc., etc. - there are many models in CFD (Computational Fluid
Dynamics) developed for specific types of flows and specific fluids
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Finite volume method
Finite volume method (FVM) is a method for finding approximate solutions to
partial differential equations, especially PDEs formulated as conservation laws

The idea of the finite volume method for compressible Euler equations:

U(x, t),t + f E
i (U),i = 0

discretization of the computational domain into cells (control volumes) –
the cells can be either simple (as finite elements) or can be constructed as
Voronoi diagrams based on standard meshes
integration of the PDEs over the computational domain, splitting the global
integral into the sum of integrals over each cell, the application of the
Green-Gauss-Ostrogradski theorem for fluxes – the exchange of volume
integrals to surface integrals∫

Vc

U(x, t),tdV = −
∫
∂Vc

f E
i (U)nidS

the application of special techniques for calculating approximations to
integrals of fluxes based on discrete values and for updating these values
based on calculated fluxes



Fundamental equations in fluid mechanics Modelling of fluid flow Incompressible flows and the Navier-Stokes equations
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Finite volume method
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Finite volume method
Based on suitable extensions of the basic scheme, the FVM can be applied to
inviscid and viscous, compressible and incompressible flows, as well as
different than fluid dynamics application areas
The main advantage of the finite volume method is its conservative character,
related to the direct application of conservative principles for each cell
Moreover, due to special methods for constructing flux approximations, the
FVM, for many problems, can eliminate oscillations of solutions in the
regions of rapid gradient changes (such as e.g. shocks)
The FVM does not introduce higher order cells – the values are associated
either with cells or mesh vertices
h-adaptivity and remeshing (usually called Adaptive Mesh Refinement
(AMR) techiques) are often applied to locally increase accuracy of solutions
The FVM method for time dependent problems can use explicit or implicit
time integration schemes
In practical applications FVM is today the most popular discretization
technique in computational fluid dynamics (CFD)



Fundamental equations in fluid mechanics Modelling of fluid flow Incompressible flows and the Navier-Stokes equations
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Incompressible fluid flow – the Navier-Stokes equations

Derivation of the Navier-Stokes equations for incompressible fluid flow:
due to incompressibility density is assumed to be constant

ρ = ρ0 = const, the volume for a group of particles remains the same
the terms in the fluid flow equations with the gradient of density vanish
the analysis of the thermodynamic relations indicates that the speed of
sound is infinite for incompressible media
therefore the changes in the pressure field propagate immediately
throughout the whole computational domain
although the model of incompressible flow is purely theoretical (there are
no fully incompressible materials) the approximations to the real flows
based on the model can be relatively easily computed and have great
practical importance

Mass balance (the continuity equation) for incompressible fluid flow

∂ρ

∂t
+ ∇(ρv) = 0 ⇔ ∇ · v = 0
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Incompressible fluid flow – the Navier-Stokes equations

Derivation of the Navier-Stokes equations for incompressible fluid flow:
since the density is constant, the pressure becomes the function of
velocity field only, not the thermodynamic quantity
the continuity and momentum equations decouple from the energy
equation (the pressure and velocity fields do not depend on the
temperature field)

Momentum balance for incompressible fluid flow

ρ0(
∂v
∂t

+ (v ·∇)v)− µ∇2v + ∇p = f

Historically, the Navier-Stokes equations denoted the equations for fluid velocities,
derived form the momentum balance. The name is also used for the whole system
that must solved to find the velocity field in fluid flow and, hence, denotes the
coupled equations for mass, momentum and energy balance for compressible flows
and coupled equations for mass and momentum balance for incompressible flows
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Incompressible fluid flow – the Navier-Stokes equations

Derivation of the Navier-Stokes equations for incompressible fluid flow:
the Navier-Stokes equations assume the viscous stress tensor for
the Newtonian incompressible fluid in the form:

τij = µ(vi,j + vj,i)

usually the system is closed with the typical boundary conditions

Boundary conditions for incompressible fluid flow

v = v̂0 on ΓD

(µ∇v)n− pn = g on ΓN

in the so called Boussinesq approximation for the buoyancy driven
flows, the density in the momentum balance may be treated as
linear function of the temperature

e.g. ρ = ρ0 + ∆ρ(T) = ρ0 − αρ0(T − T0)
this approximation is used for modifying the body force due to
gravity: f = ρ0g (1− α(T − T0))
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Energy equation for incompressible fluid flow

the energy balance equation formulated for the total energy e = eI + eK(
ρ(eI +

1
2

vjvj)

)
,t

+

(
(ρ(eI +

1
2

vjvj) + p)vi − τijvj + qi

)
,i

= 0

can be transformed to the equation for the internal energy alone (by using
the momentum balance to eliminate the mechanical energy eK = 1

2 vjvj

from the equation):

(ρeI),t + (ρeIvi),i + pvi,i − τijvi,j + qi,i = 0

the assumption of incompressibility leads to further simplifications of the
model:

ρcp

(
∂T
∂t

+ T,ivi

)
− (κT,i),i = 0

due to the fact that: vi,i = 0, cp = cV = const, eI = cVT , qi = −κT,i and
τijvi,j (heat produced by fluid viscosity) is small and can be neglected
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Energy equation for incompressible fluid flow

Convective heat transfer equation

ρc
(
∂T
∂t

+ v ·∇T
)
−∇ · (κ∇T) = s

temperature distribution depends on the velocity field
velocity and pressure fields do not depend on the temperature field

the exception is the Bussinesq approximation with gravity causing hotter
fluid to move up and the cooler fluid to move down
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