Analysis and modeling of

Computational Performance

Krzysztof Banas Computational Performance

Multithreading

> Multithreading

" several instruction streams (threads), related to a single process

* multithreading concerns mutiple threads managed by a single
instance of an operating system and having access to a shared
address space (shared memory)

* threads execution can be concurrent only: or parallel:

i cPu,
. CPU;

—
—
D o (ol Baks RECCCCREEERTE R
—>

t.

= parallel execution requires hardware support

* there are two main types of hardware for multithreading:
> multi-core microprocessors

> multi-socket motherboards

> (multi-processor designs with many motherboards connected
using fast communication links are much less common)

Krzysztof Banas

Time

£

Computational Performance 2

Threads versus processes (recall)

> Processes
" independently managed by the operating system
* process state data are separate for different processes
" having single thread (single instruction sequence) or several threads
" having own address space separated from spaces of other processes
" communicating with other processes using system mechanisms

> Threads

" belong to owning processes
* private thread state data are subsets of their process state data
* other state data shared with the other threads (owned by the same process)

" have no own address space, its address space is within the owning
process address space (all the threads share the same code segment)

* have private stack and some other parts of the address space
* most of owning process address space shared with the other threads
> communication with the other threads using shared memory

Krzysztof Banas Computational Performance 3

Multithreading

> Multithreading

" threads can be viewed from different perspectives
* hardware threads — threads managed by a single core
* system threads — threads managed by an operating system

* software threads — threads managed by programmers or virtual
machines (interpreters) — mapped to system and hardware threads

> Threads share processor (hardware) resources

" register file — rewritten during context switch; processors (cores)
can have several register sets for simultaneous multithreading

" execution units — for simultaneous multithreading

" caches and memory — private thread data may be in the same
cache line as private data of another thread

* files, network devices, etc.

> Context switch between threads is faster than context switch
between processes (e.g. there is no TLB flush)

Krzysztof Banas Computational Performance 4

Simultaneous multithreading

+— Time (processor cycle)

Superscalar

] |mn
_jmEn
| |mn
11 m
HEEn
HEEN
| |mn
_jmmn
11
HNnN
HEEN
| [Hn

I Thread 1

Krzysztof Banas

Thread 2

Fine-Grained

| |nie
NN
| Imin
H

Coarse-Grained

] |[mn
_jmnn
| |

AL NN
IIIIL\K‘

NN
Bl]
HNN
G e o

EENL] b

[]

Muitiprcicessing

NN
NN
TN
NI
IQDD
LUNN
DD.D
..I..
BN
]
N IN
Dﬂﬁﬁ

Thread4 [Thread5

Computational Performance

> Hardware management of multithreading (by a single core)

simultansous Multithreading

NIl
_|n
N TEE
BN

AN
1 NIl
BENN[]

[]| Idleslot

Simultaneous multithreading, SMT

Instruction | | Instruction
stream A stream B
add a, b, c fadd a, b, c e
mul d, b, e frul d, a, e Instruction
Fetch
mul f, a, e mulf, d, f e Instruction dependencies A Instruction dependencies B
adda,d, g adda, b, d
fmulh, a, f frmul f, a, f addwb,e fadd a, b, c
: fmul d, a, e
Instruction mul f, 3, e add g, d, g
Decode W ;\
mul f, d, f adda, b, d
|
jfmulh,a,f il foa. f
fmul f, a, f

mul f, d, f add a, b, d fmul h, a, f

mul f, a, e adda,d, g fmuld, a, e

adda, b, c muld, b, e fadda, b, ¢ Schedule

Integer Integer Floating point
ALL ALU ALU
Wrrite
reordering
Krzysztof Banas Computational Performance 6

Moore's law (1965)

10, 0O, DOD, D00
000, OO0, D)

CRE LT Y
SR, R0, 000

VOO0, 000
S0, 00D, 0]

LA
S DK, N

Trangiahor cownl

10K,]
5o, 0000

100,000
S, 0000

10, 0080)
300D

1.00:0

FPL PP PP TP SIS TSI

Krzysztof Banas

L,
Il
B e By Plecaine
ey e A
[y oy B |.- - ‘ k-
i L Fresder I 1E
g e [i
-.--\J...-:.r.-‘ L1

'III 7 LI A
e 1 WA E e

Computational Performance

T orey ke e T B

'\-..H'\-
LA roi) Siewrmom Toordrolias "'\-\.\.:-\.
N ik B il |) H"\'\.

b T s Sl
Ve Ei’r"s FTn

l'

‘.:l_l- T '|.l'..

g ke
AART] ELPE em PR LA
Earaum 3 bliaciaer SLHDF [Sy} F

Cown O e

Pardie= d e |'-': .ﬂ'.?'

! "-’-I. T
.'l" o
8 .-'I en
v SbaE e

& Ly oot o L Soia)

=
s
ﬁEl*fﬁ'

.-‘- Lk

.:3:-

.|"-
_II.\.-I .-\.:._l_r-|_.| By

Microprocessor trends

42 Years of Microprocessor Trend Data

T T T T Y
7L _
10 “ Transistors
D S SN R S Yy S (thousands)
10° _ ____________________________ _________ Asatr Single-Thread
| | : Performance 3
104 | (SpecINT x 107)
Frequency (MHz)
103 I S AA
A Typical Power
10° | B (Watts)
1 “ - "a" Number of
100 F o Y YT , , Logical Cores
T v v TvY | snnes”
100 —-s---q ------------ * > & LA R Bt S 4 SRR o -
i | | !
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Krzysztof Banas Computational Performance 8

Multi-core microprocessors

> The increasing CPU heat dissipation, due to the increased
frequency of operation, forced microprocessor manufacturers
to introduce multi-core designs

> The first general purpose multi-core microprocessor was IBM
Power 4 in 2001

> Multi-core designs have to deal with the problem of safe and
efficient memory access by different cores

Figure 1. POWER4 Chip Logical View Figure 2: POWER4 Core

= ——
MCM.MCM | iy — 1 MCM MCM
1 . (E1)

(Z1

1
3 i1 -

GXBus | A. _ L2 q= | L3mwem Bus

JlE'li: 1) 1 =.= QL Control M Diractany e oridre —_—t | (1)

Krzysztof Banas Computational Performance 9

Typical multi-core processor designs

Core 1 Core 2 Core 3

Core 4
A TM Y e e Cache Cache Cache Cache
AMD Phenom™ X4 Quad-Core Processor Control Bty T A

T

p | O b
gord

-7
""Tﬁ: P
I?{!ﬁ

B L2 gaah®

Integrated Memory Controller
17.1G8/s @ DOR2-1058

HuperTransport™ technology links provica
up o BEEE paak bandwidth

Krzysztof Banas Computational Performance 10

Typical multi-core processor designs

| e S

Krzysztof Banas Computational Performance 11

On-chip interconnections

> On-chip interconnections
= bus, segmented bus with bridges, ring, bidirectional ring
= crossbar switch, multistage switching network
= network-on-chip: mesh, torus, tree, hypercube, etc.

> Q mUItiStage SWitChing network 0000
= P Inputs, p outputs, logzp stages 0001

:[:: 0000
0001
:[—_-: 0010
0011
:[:: 0100
G101

== (110

0010

= each stage contains p/2 switches 2x2 0011

{0100

= stages connected 1n a perfect shuffle b
pattern (output=2*input with round- 0110
robin) 0111

1000

= with bit encoded input and output 1001
positions perfect shuffle corresponds Wil

1011

to bit rotation, while switches allow 1100
for the last bit change 1101

1110

3 5 e

== (}]11]

= 1000

= [0(H

== 1010

= 1011

= 1100

== 110}

1110
1111

Krzysztof Banas Computational Performance 12

Xeon E5-2600 Block Diagra)
83 zznzn

Bi-Directional Full Ring oI Agent e | e | e -
no UBox g PCU
e 32B/clk/agent 4
e 8 Core/LLC slices

La St LEVEI CaChe Core |Core CacheBo| LLC Core |Core CacheBo| LLC
AN

2 [xaom

SAD SAD

o 32B/clk/slice % |

e Dual QPI Agent
SE CacheBo 2= CacheBo
e Integrated I/0 : e | B) e
e Home Agent : S S
¢ Integerated I Core |Core LLC Core |Core LLC
Memory Controller! ﬁ — ﬁ —
SAD SAD
— Connected to HA !___ S S — S S ——\
* PCU Core Cg;e CacheBo| LLC Core Ca;e CacheBo| LLC
e "Ubox”
N
Block Diagram Illustrative only. Number of processor cores will l r, |
vary with different processor models based on the Sandy Bridge

Microarchitecture. Represents server processor implementation.

DDR3
Home | Mem

Agent | ctir r Embargo Until March 6, 2012 9amPST

Many-core miCroprocessors

e

A% A%

PCle
Gen 3

EmQODQ
= m O

36 Tiles
connected by
2D Mesh
Interconnect

WrmEPERT M
wrErmETETEIMN

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW

DDR4: &6 channels @ 2400 up to 384GB
10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
Node: 1-5ocket only

Fabric: Omni-Path on-package (not shown)

Vector Peak Perf; 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

Soueie e & Fakety Gt aryieen e i Bouh ioecded i
g MR h“ﬂlﬂh_

Krzysztof Banas

Computational Performance 14

SMP, UMA, NUMA, etc.

> Multiprocessor systems with shared . M
Memory: — .

CPU

* UMA — uniform memory access ->
" NUMA — non-uniform memory
access

* ccNUMA — NUMA with cache
coherence

Krzysztof Banas Computational Performance 15

Memory layout

CPU: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz Intel Core Haswell processor

Sk 3k 3k 3k ok 2k 3k ok ok 3k Sk ok Sk Sk ok 2k sk ok Sk 3k Sl ok 3k Sk ok Sk Sk ok Sk Sk Sk ok Sk Sk ok ke 3k ok Sk Sk Sk ok 3k Sk ok Sk Sk ok Sk Sk Sk Sk 3k Sk ok Sk Sk ok Sk 3k ok Sk Sk Sk ok Sk Sk ok Sk sk ok ok Sk ok ok Sk Sk sk Sk Sk

Hardware Thread Topology:
Sockets: 1 Cores per socket: 4 Threads per core: 2

HWThread Thread Core Socket

0 0 0 0

1 0 1 0 > Example
2 0 2 0

3 0 3 0

3 ; 3 0 output from
5 1 1 0 . .

6 1 2 0 llkWId_

7 1 3 0

Socket 0: (04152637) topology
K 316 3k 336 3k 3 2k 3k 3¢ 3k 3l ok 316 Bk 3 k¢ K B¢ 3k 36 ok 36 ke 3k B¢ 3k B¢ 3k Al 3k 36 ke 36 ke 3k B¢ K B¢ 3k Bl ok 316 ke 3k ke 3k B¢ ke 3l 3k Bl ke 36 Bl 3 B¢ 3k 2l 3K Bl ok 36 ke 3 ke K Bl Sk Bl ok B ke S e ke e Sk e sk Bk

Cache Topology: tool

Level: 1 Size: 32 kB

Cache groups: (04)(15)(26)(37)

Level: 2 Size: 256 kB

Cache groups: (04)(15)(26)(37)

Level: 3 Size: 8 MB

Cache groups: (04152637)

K 316 3k 336 3k 3 3¢ 3k 3¢ 3k 3l ok 316 Bl 36 ke K B¢ 3k 36 ok 316 ke 3k ke 3 B¢ 3k B¢ 3k 36 ke 3k ke 3k Bk 3k B¢ 3k Bl ok 316 ke 3k ke 3k B¢ 3k Bl 3k Bl ke 36 B¢ 3 B¢ 3k 2l 3K Bl ok 36 B¢ 3 ke Sk Bl ok Bl ok B ke S ke Sk ke Sk B Sk Bk

NUMA Topology:

Domain: 0

Processors: (04152637)

Krzysztof Banas Computational Performance 16

Thread CPU affinity

> Standard operating system scheduling assigns threads to
different cores (or logical processors in case of SMT cores)
based on a complex algorithm that tries to balance the load of
cores while retaining the fast context switches for each core

" Linux in standard form (not real time) uses the value of parameter
nice to specity scheduling priorities of different threads/processes

> Sometimes standard system scheduling can lead to not optimal
performance, when some temporary situation causes the system
to assign in a not optimal way

= process and thread affinity often decides on how memory is used

* in Linux, assignment of physical frames to virtual pages for
dynamically allocated memory is often done on the basis of first
write to a memory cell (lazy page allocation)

" when process or thread resumes execution after preemption from
one core (i.e. context switch) it can be scheduled to some other

core that forces cache reloading

Krzysztof Banas Computational Performance 17

Thread CPU affinity

> There are several utilities for manual process and thread pinning
(assigning to a given set of cores or logical processors)
" system commands (e.g. Linux taskset) and functions

* e.g. Linux system function sched_setaffinity — using specific form for
specifying the set of CPUs to assign the process to

" external utilities
 popular Linux utility numactl, more complex tool likwid

" environment variables for compilers — specifying also the
scheduling policies

* icc — KMP_AFFINITY
* KMP_AFFINITY="granularity=fine,proclist=[<proc_list>],explicit"
* gcc — GOMP_AFFINITY
* GOMP_CPU_AFFINITY=<proc_list> , np. [0,1,2,3,4,....]
* function calls for parallel programming environments
* pthread_setdaffinity_np, pthread_attr_setaffinity_np — syntax similar
to sched_setaffinity for POSIX threads

Krzysztof Banas Computational Performance 18

Thread CPU affinity

> OpenMP 4.0 introduces a portable form of controlling thread
affinity to sockets/cores/logical processors (places for OpenMP)
with the environment variable OMP_PROC_BIND

" there are three affinity policies with detailed assignment rules, that
can be described in a simplified way as:

* master — all the threads executing on the same place as the master
thread

* close — the threads are assigned to subsequent places, starting with
the master thread place (with wrap around for large threads numbers)

> e.g. for 2 threads and num_proc places, with master thread on the
place 0 — assignment to places 0 and 1

* spread — attempting to spread evenly threads across all the places
(with wrap around for too large number of threads)

> e.g. in the situation as above - assignment to 0 and num_proc/2

" there are also several functions to get information on available
sockets, cores and logical processors (hardware threads)

Krzysztof Banas Computational Performance 19

The influence of thread affinity

> An example of memory throughput benchmark STREAM

——

r T r I T I T I T I ' T ' T ’ 1 1°||1= 1°||1= r1|1= 'r'||1= 1°1|'r: 1°||1= 1'1|1= 1'1|12: :ﬁlﬂ 1°||1= r1|1= 'n|1= 'r'||1': ﬁln 'r'||1= 1-||1=

T 20 30 20020 30 2000 0 A [e

I_ (|10 |[an || tao |[wap ([a0 |[140 |[0 |[wap |, 1| L0 |[14D || L0 |[LD || L4 |[LD |[L4D || LD |,

70 = E ﬁ‘HL ﬁ???%ﬂ?i I L2 L2 Lz L2 [F] 12 L2 L2 : I L2 L2 L2 L2 L2 L2 2|

- ! ".3 1 | l'_3 :

60 I I ‘ﬁt ? ﬁ??? | i| Memory Interface H: Memory Interface K
50 R

Iﬂ _: [—— | s]

30— -

20+ E]

No pinning

Bandwidth [GB/s]

- - awol- I I I =| 1]

1 1 1 = --

. -ll I :lc I ||2 Ilh 3|n 3|4 "_Jlx .'ilz 0 = - T

threads = - -

60 = S - -

g 50 -- =

There are several reasons for caring 24*'- o 7
about affinity: =y =

y ol Pinning (physical cores first,

Eliminating performance variation w- = first socket first) R

Making use of architectural features 10 R

Avoiding resource contention ol— — _"3_

threads

Krzysztof Banas Computational Performance 20

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20

