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Multithreading

➔ Multithreading
 several instruction streams (threads), related to a single process

• multithreading concerns mutiple threads managed by a single 
instance of an operating system and having access to a shared 
address space (shared memory)

• threads execution can be concurrent only:          or parallel:

 parallel execution requires hardware support
• there are two main types of hardware for multithreading:

➢ multi-core microprocessors
➢ multi-socket motherboards
➢ (multi-processor designs with many motherboards connected 

using fast communication links are much less common)
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Threads versus processes (recall)

➔ Processes
 independently managed by the operating system

• process state data are separate for different processes
 having single thread (single instruction sequence) or several threads
 having own address space separated from spaces of other processes
 communicating with other processes using system mechanisms

➔ Threads
 belong to owning processes 

• private thread state data are subsets of their process state data
• other state data shared with the other threads (owned by the same process)

 have no own address space, its address space is within the owning 
process address space (all the threads share the same code segment)

• have private stack and some other parts of the address space
• most of owning process address space shared with the other threads

➢ communication with the other threads using shared memory
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Multithreading

➔ Multithreading
 threads can be viewed from different perspectives

• hardware threads – threads managed by a single core
• system threads – threads managed by an operating system
• software threads – threads managed by programmers or virtual 

machines (interpreters) – mapped to system and hardware threads
➔ Threads share processor (hardware) resources

 register file – rewritten during context switch; processors (cores) 
can have several register sets for simultaneous multithreading

 execution units – for simultaneous multithreading
 caches and memory – private thread data may be in the same 

cache line as private data of another thread
 files, network devices, etc.

➔ Context switch between threads is faster than context switch 
between processes (e.g. there is no TLB flush) 
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Simultaneous multithreading

➔ Hardware management of multithreading (by a single core)
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Simultaneous multithreading, SMT
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Moore's law (1965)
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Microprocessor trends
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Multi-core microprocessors

➔ The increasing CPU heat dissipation, due to the increased 
frequency of operation, forced microprocessor manufacturers 
to introduce multi-core designs

➔ The first general purpose multi-core microprocessor was IBM 
Power 4 in 2001

➔ Multi-core designs have to deal with the problem of safe and 
efficient memory access by different cores
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Typical multi-core processor designs
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Typical multi-core processor designs
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On-chip interconnections

 On-chip interconnections
 bus, segmented bus with bridges, ring, bidirectional ring
 crossbar switch, multistage switching network 
 network-on-chip: mesh, torus, tree, hypercube, etc. 

  multistage switching network
 p inputs, p outputs, log

2
p stages

 each stage contains p/2 switches 2x2 
 stages connected in a perfect shuffle 

pattern (output=2*input  with round-
robin)

 with bit encoded input and output 
positions perfect shuffle corresponds 
to bit rotation, while switches allow 
for the last bit change
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Many-core microprocessors
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SMP, UMA, NUMA, etc.

➔ Multiprocessor systems with shared 
memory:
 UMA – uniform memory access -> 
 NUMA – non-uniform memory 

access
• ccNUMA – NUMA with cache 

coherence
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Memory layout

CPU: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz Intel Core Haswell processor
********************************************************************************
Hardware Thread Topology:
Sockets: 1 Cores per socket:4 Threads per core: 2
--------------------------------------------------------------------------------
HWThread Thread Core Socket
0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
4 1 0 0
5 1 1 0
6 1 2 0
7 1 3 0
Socket 0: ( 0 4 1 5 2 6 3 7 )
********************************************************************************
Cache Topology:
Level: 1 Size: 32 kB
Cache groups: ( 0 4 ) ( 1 5 ) ( 2 6 ) ( 3 7 )
--------------------------------------------------------------------------------
Level: 2 Size: 256 kB
Cache groups: ( 0 4 ) ( 1 5 ) ( 2 6 ) ( 3 7 )
--------------------------------------------------------------------------------
Level: 3 Size: 8 MB
Cache groups: ( 0 4 1 5 2 6 3 7 )
********************************************************************************
NUMA Topology:
Domain: 0
Processors: ( 0 4 1 5 2 6 3 7 )

➔ Example 
output from 
likwid-
topology 
tool
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Thread CPU affinity

➔ Standard operating system scheduling assigns threads to 
different cores (or logical processors in case of SMT cores) 
based on a complex algorithm that tries to balance the load of 
cores while retaining the fast context switches for each core
 Linux in standard form (not real time) uses the value of parameter 

nice to specify scheduling priorities of different threads/processes 
➔ Sometimes standard system scheduling can lead to not optimal 

performance, when some temporary situation causes the system 
to assign in a not optimal way
 process and thread affinity often decides on how memory is used

• in Linux, assignment of physical frames to virtual pages for 
dynamically allocated memory is often done on the basis of first 
write to a memory cell (lazy page allocation) 

 when process or thread resumes execution after preemption from 
one core (i.e. context switch) it can be scheduled to some other 
core that forces cache reloading
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Thread CPU affinity

➔ There are several utilities for manual process and thread pinning 
(assigning to a given set of cores or logical processors)
 system commands (e.g. Linux taskset) and functions

• e.g. Linux system function sched_setaffinity – using specific form for 
specifying the set of CPUs to assign the process to

 external utilities 
• popular Linux utility numactl, more complex tool likwid

 environment variables for compilers – specifying also the 
scheduling policies

• icc – KMP_AFFINITY
 KMP_AFFINITY="granularity=fine,proclist=[<proc_list>],explicit"

• gcc – GOMP_AFFINITY
 GOMP_CPU_AFFINITY=<proc_list> , np. [0,1,2,3,4,....]

 function calls for parallel programming environments
• pthread_setaffinity_np, pthread_attr_setaffinity_np – syntax similar 

to sched_setaffinity for POSIX threads
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Thread CPU affinity

➔ OpenMP 4.0 introduces a portable form of controlling thread 
affinity to sockets/cores/logical processors (places for OpenMP)  
with the environment variable OMP_PROC_BIND
 there are three affinity policies with detailed assignment rules, that 

can be described in a simplified way as:
• master – all the threads executing on the same place as the master 

thread
• close – the threads are assigned to subsequent places, starting with 

the master thread place (with wrap around for large threads numbers)
➢ e.g. for 2 threads and num_proc places, with master thread on the 

place 0 – assignment to places 0 and 1 
• spread – attempting to spread evenly threads across all the places 

(with wrap around for too large number of threads)
➢ e.g. in the situation as above - assignment to 0 and num_proc/2

 there are also several functions to get information on available 
sockets, cores and logical processors (hardware threads)
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The influence of thread affinity

➔ An example of memory throughput benchmark STREAM
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