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Multithreading

> Multithreading

" several instruction streams (threads), related to a single process

* multithreading concerns mutiple threads managed by a single
instance of an operating system and having access to a shared
address space (shared memory)

* threads execution can be concurrent only: or parallel:
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= parallel execution requires hardware support

* there are two main types of hardware for multithreading:
> multi-core microprocessors

> multi-socket motherboards

> (multi-processor designs with many motherboards connected
using fast communication links are much less common)
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Threads versus processes (recall)

> Processes
" independently managed by the operating system
* process state data are separate for different processes
" having single thread (single instruction sequence) or several threads
" having own address space separated from spaces of other processes
" communicating with other processes using system mechanisms

> Threads

" belong to owning processes
* private thread state data are subsets of their process state data
* other state data shared with the other threads (owned by the same process)

" have no own address space, its address space is within the owning
process address space (all the threads share the same code segment)

* have private stack and some other parts of the address space
* most of owning process address space shared with the other threads
> communication with the other threads using shared memory
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Multithreading

> Multithreading

" threads can be viewed from different perspectives
* hardware threads — threads managed by a single core
* system threads — threads managed by an operating system

* software threads — threads managed by programmers or virtual
machines (interpreters) — mapped to system and hardware threads

> Threads share processor (hardware) resources

" register file — rewritten during context switch; processors (cores)
can have several register sets for simultaneous multithreading

" execution units — for simultaneous multithreading

" caches and memory — private thread data may be in the same
cache line as private data of another thread

* files, network devices, etc.

> Context switch between threads is faster than context switch
between processes (e.g. there is no TLB flush)
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Simultaneous multithreading
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> Hardware management of multithreading (by a single core)
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Simultaneous multithreading, SMT
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Moore's law (1965)
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Microprocessor trends

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp
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Multi-core microprocessors

> The increasing CPU heat dissipation, due to the increased
frequency of operation, forced microprocessor manufacturers
to introduce multi-core designs

> The first general purpose multi-core microprocessor was IBM
Power 4 in 2001

> Multi-core designs have to deal with the problem of safe and
efficient memory access by different cores

Figure 1. POWER4 Chip Logical View Figure 2: POWER4 Core
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Typical multi-core processor designs
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Typical multi-core processor designs
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On-chip interconnections

> On-chip interconnections
= bus, segmented bus with bridges, ring, bidirectional ring
= crossbar switch, multistage switching network
= network-on-chip: mesh, torus, tree, hypercube, etc.
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Many-core miCroprocessors
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SMP, UMA, NUMA, etc.

> Multiprocessor systems with shared . M
Memory: — .

CPU

* UMA — uniform memory access ->
" NUMA — non-uniform memory
access

* ccNUMA — NUMA with cache
coherence
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Memory layout

CPU: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz Intel Core Haswell processor
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Hardware Thread Topology:
Sockets: 1 Cores per socket: 4 Threads per core: 2

HWThread Thread Core Socket
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Socket 0: (04152637) topology
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Cache Topology: tool

Level: 1 Size: 32 kB

Cache groups: (04)(15)(26)(37)

Level: 2 Size: 256 kB

Cache groups: (04)(15)(26)(37)

Level: 3 Size: 8 MB

Cache groups: (04152637)
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NUMA Topology:

Domain: 0

Processors: (04152637)
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Thread CPU affinity

> Standard operating system scheduling assigns threads to
different cores (or logical processors in case of SMT cores)
based on a complex algorithm that tries to balance the load of
cores while retaining the fast context switches for each core

" Linux in standard form (not real time) uses the value of parameter
nice to specity scheduling priorities of different threads/processes

> Sometimes standard system scheduling can lead to not optimal
performance, when some temporary situation causes the system
to assign in a not optimal way

= process and thread affinity often decides on how memory is used

* in Linux, assignment of physical frames to virtual pages for
dynamically allocated memory is often done on the basis of first
write to a memory cell (lazy page allocation)

" when process or thread resumes execution after preemption from
one core (i.e. context switch) it can be scheduled to some other

core that forces cache reloading

Krzysztof Banas Computational Performance 17



Thread CPU affinity

> There are several utilities for manual process and thread pinning
(assigning to a given set of cores or logical processors)
" system commands (e.g. Linux taskset) and functions

* e.g. Linux system function sched_setaffinity — using specific form for
specifying the set of CPUs to assign the process to

" external utilities
 popular Linux utility numactl, more complex tool likwid

" environment variables for compilers — specifying also the
scheduling policies

* icc — KMP_AFFINITY
* KMP_AFFINITY="granularity=fine,proclist=[<proc_list>],explicit"
* gcc — GOMP_AFFINITY
* GOMP_CPU_AFFINITY=<proc_list> , np. [0,1,2,3,4,....]
* function calls for parallel programming environments
* pthread_setdaffinity_np, pthread_attr_setaffinity_np — syntax similar
to sched_setaffinity for POSIX threads
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Thread CPU affinity

> OpenMP 4.0 introduces a portable form of controlling thread
affinity to sockets/cores/logical processors (places for OpenMP)
with the environment variable OMP_PROC_BIND

" there are three affinity policies with detailed assignment rules, that
can be described in a simplified way as:

* master — all the threads executing on the same place as the master
thread

* close — the threads are assigned to subsequent places, starting with
the master thread place (with wrap around for large threads numbers)

> e.g. for 2 threads and num_proc places, with master thread on the
place 0 — assignment to places 0 and 1

* spread — attempting to spread evenly threads across all the places
(with wrap around for too large number of threads)

> e.g. in the situation as above - assignment to 0 and num_proc/2

" there are also several functions to get information on available
sockets, cores and logical processors (hardware threads)
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The influence of thread affinity

> An example of memory throughput benchmark STREAM
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