Analysis and modeling of

Computational Performance

Execution time

for distributed memory programs

Krzysztof Banas Computational Performance

Execution time for parallel programs

> Execution time T for i-th thread/process

* simplified model with explicitly indicated times for computations
(including memory accesses), communication, system overhead and
idle time

- "[‘i < Ticomp + Ticomm + Tisyst + Tiidle

> The actual execution time depends on the component times, as well
as the degree to which component times overlap
= one of optimization goals is to maximize the overlap between
computation and communication times, as well as minimizing and
hiding system overhead
> Total execution time
* from the beginning of the first thread, till the end of the last thread
= after suitably complementing with idle time:
- T, = max.(T)
. T =T /p

Krzysztof Banas Computational Performance 2

Execution time for parallel programs

> Time for computations - T <

> In the general context of parallel computations, that include
also distributed memory processing, T.©™ concerns

operations performed by processors and memory accesses
> The total computations time for all threads/processes can be
compared with the time of sequential (i.e. single thread)
execution
_ pT” — ZiTicomp — Tsed + Tovh = T”(l) + Tovh
T°'" — the overhead introduced by the parallel execution of the program
> The notions of parallel speed-up and parallel efficiency can

be associated with the parallel overhead
« S(p)=T,()/T,(p) = pT,(D)/ (T,(1) +T") <p
= Ep)=SEp=T1)/(T@Q) +T")<1
* the larger overhead time the lower parallel performance

Krzysztof Banas Computational Performance 3

Execution time for parallel programs

> Time for communication - T ©m"

> Communication time can be modelled using assumptions
concerning the technology of message passing and the

topology of interconnection network
* the simplest model for store-and-forward switching technology
gives the time for sending m bytes from one computational
node to another node, separated by | hops:

o TO™ =t +]*(m*t_+t)
- with: t_— startup time, t_— time for sending a single byte,
t — time for single hop switching
* for cut-through technology, the simple model gives:
o Tomm =t +m*t_+1*t
= for networks with cut-through technology and small single hop

times a still more simplified model can be used:
. Ticomm — t5+m*tw

Krzysztof Banas Computational Performance 4

Execution time for parallel programs

> Time for communication - T cm

> Parameters for modelling communication time can be taken
from technical specifications or measured for example
configurations

> For today's complex hardware environments simple models of
communication time may give inaccurate results

Network Int.

vommunication network

Krzysztof Banas Computational Performance 5

Interconnection network topologies

GO o gj
. z

LCHEDHBN

| GG
S GCHCHL
RGN

3-D Torus

LTI,

Krzysztof Banas Computational Performance

Interconnection network topologies

+
[

"

fod
(!

va

ta) Hypemubes, dimension L-4.

PN, RS g T
\NSOKEL T

Ny oze s /g
¥ ._..,_H..“__J. » L ..__ﬁ\c ____ i 7 e

e
W H e
A
g T e e, i
RIS

: . A =
il .l-ahwh._ o

3 '
; o T e L T
W ﬂiw.,ﬁ.__.,
i wm#ﬁr :
A et R

7 A0 e
£ ﬁ’ﬂﬂrfﬂ%; ;

\ all
- L, S Bt A .."?:"
L S SONNGAN

. 1 _.. ¥"
R i ity L o T
wpﬂw,‘y’ﬁfnfrﬂﬁwﬂ N
o AN R R _

(b) & LZ28-way far tcee.

Computational Performance

Krzysztof Banas

Interconnection network topologies

Eight 2"9—stage switches

Extra 2"9—stage switch
ports allow expansion up
to 24 CUs

12 uplinks per
CU to each
2nd_stage
switch provide
half-bandwidth

Smaller systems

(e.g. 4 CUs) by disabling
links to other CUs for 192 192 192
improved robustness S
during standup &

stabilization

Krzysztof Banas Computational Performance 8

The role of network parameters

> Loosely coupled versus tightly coupled computations

SONY

PlayStation. ’

QC‘I'HF'UE‘

Google

the giobus project \} e
wwwmicbus.ong - |

Special Purpose "“Grids” Clusters Highly
“SETI / Google” Parallel

Krzysztof Banas Computational Performance 9

Interconnection network topologies

| I 1] \Y,
fully connected newtork 1 p-1 | (p™2)/4| p(p-1)/2
ring p/2 2 2 P
2D mesh 2(Vp - 1) 2 Vp 2(p-Vp)
2D torus 2(Vp ! 2) 4 2Vp 2p
binary tree 2log(p/2+1/2) 1 1 p-1
hypercube log p logp| p/2 | p(logp)/2

Ring 2D Mesh 2D Torus 3D Mesh 3D Torus FatTree CCC

9
11

Average Hop Count
Maximum Hop Count

Average Latency

Bisection BW

Etfective BW: Uniform
Effecive BW: Hot-spot
Effective BW: Bit Complement
Effective BW: NEWS
Effective BW: Transpose

Effective BW: Perfect-Shuffle
Table 5: Comparison of performance of topologies with 64 endnodes

Krzysztof Banas Computational Performance 10

Collective communication times

> Communication times for collective operations on hypercube
" One-to-all broadcast: T, .. = (t, + mt) log(p)
" All-to_one reduction: T, .. = (t. + mt) log(p)

R HC

" Allgather (all-to-all broadcast): T, .=t logp + mt_(p—1)

" All-to-all reduction: T,, .. = (t, +t) logp
" Gather and scatter: T, .=t logp +mt (p—1)

" All-to-all (full exchange): T,, .. = (t. + ¥2pmt) log(p)

> For other topologies communication times are the same or
longer, e.g.:
" Allgather for 2D torus: T, ,. =2t (Vp-1) + mt (p—1)

AG 2T

" All-to-all for 2D torus: T,, ,, = (2t + pmt) (Vp— 1)

Krzysztof Banas Computational Performance 11

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11

