2025/04/14 21:07 1/3 about en

- 1. Introduction
 - What is an algorithm?
 - What is a data structure?
 - Inductive reasoning
 - Inductive proof
 - Complexity of an algorithm
 - Sorting by insertion
 - Analysis of sorting by insertion
 - Asymptotic notations
- 2. Sorting, Heap, Recursion
 - Divide-and-conquer method.
 - Sorting by merging MergeSort.
 - Complexity of merge sorting.
 - Recursion, computing recursive complexity, solving recursion, the universal recursion theorem.
 - Heap, heap property, restoring heap property, building a heap.
 - Analysis of heap algorithms
 - Heap Sorting, Priority Queues, Priority Sorting, Quicksort.
- 3. Priority queues, Quicksort, Linear time sorting.
 - Priority queues
 - Heap operations
 - Implementation of priority queues
 - Quicksort
 - Algorithm
 - Quicksort analysis
 - Decision Tree Model alg. Sorting
 - Sorting by counting, positional sorting, bucket sort.
 - Dynamic Sorts, Stack, List
- 4. Data structures, Stack, Queue, List, BST and RB Trees.
 - Dynamic Sets
 - Stack
 - Oueue
 - List
 - BST tree
 - browse, search, delete operations
 - complexity of BST tree operations
 - Well-balanced trees
 - Red-Black Tree (RB-Tree)
 - inserting into RB-tree
- 5. Skip lists, hash tables, positional statistics
 - Skip lists
 - hash tables
 - direct addressing
 - open addressing
 - linear, square, double addressing
 - List implementation, collision resolution
 - Hashing function
 - o positional statistics
 - selection problem, selection in pessimistic linear time
 - dynamic positional statistics
- 6. Dynamic positional statistics, interval trees, graphs.

- dynamic positional statistics
 - determination of an element of a given rank
 - rotation in a tree of dynamic positional statistics
- Interval trees
 - rotation in an interval tree
 - searching for an interval in an interval tree
- Graphs
 - graph representation, neighborhood matrix, neighborhood lists
 - graph search, BFS algorithm
- 7. Graphs, DFS, graph spanning tree, topological sorting.
 - Graph algorithms
 - Graph Searching
 - BFS, DFS
 - spanning tree creation
 - edge classification
 - forward edge, traversal edge, backward edge, spanning tree edge.
 - directed acyclic graph
 - topological sorting
 - properties of topological sorting
- 8. Graph algorithms, search for minimal paths.
 - Minimum spanning tree
 - Observation, optimal structure consists of optimal substructures.
 - Prim algorithm for searching a minimal spanning tree * Prima algorithm for searching a minimal spanning tree
 - Searching for minimal paths in any directed graph, Ford Bellman algorithm.
 - A version of the Ford Bellman algorithm for directed acyclic graphs.
 - Searching for shortest paths in a graph with nonnegative edge weights, Dijkstra's algorithm.
- 9. Graph algorithms, amortised cost method.
 - Dijkstra's algorithm
 - operation, complexity, correctness
 - Spanning trees
 - Kruskal algorithm
 - Kruskal algorithm correctness
 - The problem of shortest paths between each pair of vertices in a graph.
 - Warshal Floyd algorithm
 - Amortised cost analysis
 - dynamic arrays
 - analysis by the summary cost method
 - analysis by accounting method
- 10. Flow networks, pattern finding algorithms
 - Flow networks
 - Ford-Fulkerson algorithm, residual network, augmented path, flow function.
 - minimum crosssection, maximum flow.
 - Maximal associations in bipartite graphs.
 - reduction to a flow network problem
 - pattern search in text
 - "naive" algorithm, Rabin Karp algorithm,
 - Finite state automata, introduction to KMP

11. Text algorithms

2025/04/14 21:07 3/3 about en

- Pattern search
 - finite automata
 - searching for a pattern in a text using automata
 - KMP algorithm (reduction of transition functions to an array)
 - Boyer-Moore algorithm
 - heuristics
 - inconsistencies
 - good suffix
- 12. Text compression, Parallel algorithms
 - text compression
 - Information theory, Shannon's entropy measure
 - Huffman coding
 - Huffman coding algorithm
 - LZW compression
 - Parallel algorithms
 - Flynn's taxonomy of parallel systems
 - parallel architectures
 - PRAM model
 - EREW, CREW, ERCW, CRCW
 - examples of parallel algorithms
 - Pascal's triangle, minimum search, positional statistics, determining the rank of an element in a list.

13. Geometric algorithms

- basic concepts
- determining the position of points relative to each other
- the problem of intersection of two segments.
- construction techniques for geometric algorithms
- the problem of finding the convex envelope of a set of points
- Graham's algorithm for finding the convex envelope of a set of points.
- Finding intersecting segments in a set of segments.
- algorithm for finding intersecting segments by the sweeping method
- o problem of finding the least distant pair of points in a point set
 - the divide and conquer algorithm
- 14. Summary lecture

From:

https://home.agh.edu.pl/~kkulak/old page/ - Konrad Kułakowski's Home Page

Permanent link:

https://home.agh.edu.pl/~kkulak/old_page/doku.php?id=user:konrad:teaching:courses:wish:aizo:about_en

×

Last update: 2024/06/10 16:56