

AGH UNIVERSITY OF SCIENCE

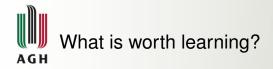
Essential Thinking. Introduction to Problem Solving Example Problems I

Antoni Ligeza

Faculty of EEACSE
Department of Automatics

AGH'2011 Kraków, Poland

- References, What is Worth Learning, Assumptions
- 2 Introduction
- Solutions for Problems
- Three Further Example Problems
- 6 Prolog
- 6 Some Problems: Do Not Stop Thinking



- Stuart J. Russel, Peter Norvig: Artificial Intelligence. A Modern Approach. Third Edition. Pearson, Prentice Hall, Boston, 2010. http://aima.cs.berkeley.edu/.
- Ivan Bratko: Prolog Programming for Artificial Intelligence. Fourth Edition, 2011. Pearson, Addison Wesley, 2012. http://www.pearsoned.co.uk/HigherEducation/Booksby/Bratko/
- Frank van Harmelen, Vladimir Lifschitz, Bruce Porter (Eds.): Handbook of Knowledge Representation. Elsevier B.V., Amsterdam, 2008.
- Michael Negnevitsky: Artificial Intelligence. A Guide to Intelligent Systems. Addison-Wesley, Pearson Education Limited, Harlow, England, 2002.
- Adrian A. Hopgood: Intelligent Systems for Engineers and Scientists. CRC Press, Boca Raton, 2001.
- Joseph C. Giarratano, Gary D. Riley: Expert Systems. Principles and Programming. Fourth Edition, Thomson Course Technology, 2005.

3/20

- George Polya: How to Solve it?. Princeton University Press, 1945; PWN 1993. http://en.wikipedia.org/wiki/How_to_Solve_It.
- ② John Mason, Leone Burton, Kaye Stacey: *Thinking Mathematically*. Addison-Wesley, 1985; WSiP, 2005.
- Mordechai Ben-Ari: Mathematical Logic for Computer Science. Springer-Verlag, London, 2001.
- Michael R. Genesereth, Nils J. Nilsson: Logical Foundations of Artificial Intelligence. Morgan Kaufmann Publishers, Inc., Los Altos, California, 1987.
- Zbigniew Huzar: Elementy logiki dla informatyków. Oficyna Wyawnicza Politechniki Wrocławskiej, Wrocław, 2007.
- Peter Jackson: Introduction to Expert Systems. Addison-Wesley, Harlow, England, 1999.
- Antoni Ligęza: Logical Foundations for Rule-Based Systems. Springer-Verlag, berlin, 2006.

A bit provocative position statement

- Languages enable communication and knowledge representation;
 Wieviel Sprachen du sprichst, sooftmal bist du Mensch; Goethe
- Problem Solving analytical thinking; cross-curricular competencies,
- Learning persistent learning, quick learning, focused learning, learning on-demand, ...

5/20

Thinking — What is the Essence of it?

Another Example: Four-Digit Palindrom Case

Four Digit Palindrom

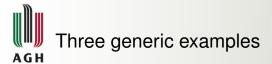
- a four digit palindrom: 1221, 7337, 2992,...
- observe: 1221:11=111, 7337:11=667, 2992:11=272,...
- Hypothesis: Every four-digit palindrom numebr is divisible by 11.


Analytical thinking vs. brute search

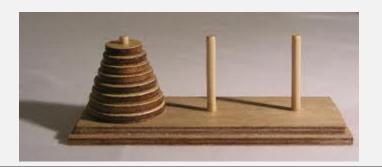
- is the hypothesis true or not?
- try several examples; try to invent a counterexample,
- try to induce regularity or chcek all cases?
- proove or disprove!

Analytical Thinking

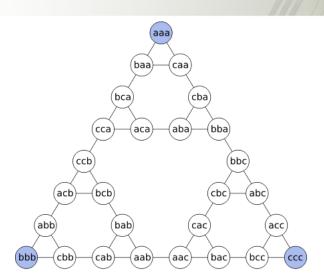
Brute Search

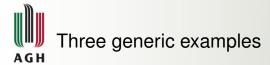

A cryptoarithemtic problem

SEND

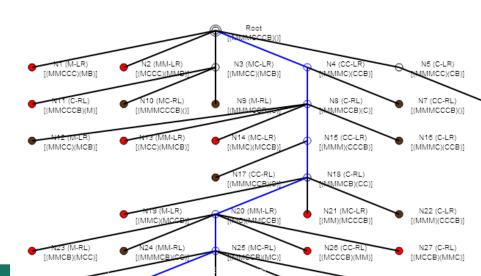

+ MORE

MONEY




Towers of Hanoi

Three generic examples



Missionaries and Cannibals

Three generic examples

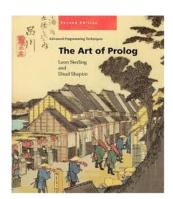
A Generic Problem Example

Another Example: The Zebra Puzzle

- a) Norweg zamieszkuje pierwszy dom;
- b) Anglik mieszka w czerwonym domu;
- c) Zielony dom znajduje się po lewej stronie domu białego;
- d) Duńczyk pija herbatkę;
- e) Palacz Rothmansów mieszka obok hodowcy kotów;
- f) Mieszkaniec żółtego domu pali Dunhille;
- g) Niemiec pali Marlboro;
- h) Mieszkaniec środkowego domu pija mleko;
 - i) Palacz Rothmansów ma sąsiada, który pija wodę;
- j) Palacz Pall Malli hoduje ptaki;
- k) Szwed hoduje psy;
- I) Norweg mieszka obok niebieskiego domu;
- m) Hodowca koni mieszka obok żółtego domu;
- n) Palacz Philip Morris pija piwo;
- o) W zielonym domu pija się kawę.

Analytical thinking — problem solving

- basic problem solving method is search,
- decomposition is power!
- a stable, appropriate search space must be defined,
- one can use a tree or a graph as search model,
- one can use a AND-OR tree or a AND-OR graph for decomposition,
- a search method is necessary,
- appropriate formalizm is power!
- constraints are useful!
- constraint propagation is power!
- heureka: important, but how does it work?


Analytical Thinking

Brute Search

Three generic examples: weighting

9 coins

- 9 identical coins; one is lighter
- how many weightings?

10 coins

- 10 identical coins; one is false
- how many weightings?

N coins

- N identical coins; one is lighter
- 3 weigthings
- How big N?
- How big is N in case we know only that the coin is false?

Three generic examples: combinatorics

Pages

- Book pages numbered with 2989 digits
- how many pages?

Buckets

- Two buckets: 4 and 9 liters
- Produce exactly: 1, 2, 3, 4, 5, 6, 7, 8 liters

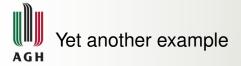
Squares on a Chessboard

- A chessboard 8x8 available
- How many squares can be found?

Three generic examples: planning

Desert: how many days?

- To cross a desert: 9 days (+ return)
- Two man; each can carry food for 12 days
- Food can be stored and retrieved


Raft + 3 + 2

- 3 man want to cross a river
- There are two boys with a raft of them
- The raft can carry one man only

Missionaries and Cannibals: 4 + 4

- 4 missionaries, 4 cannibals,
- a boat for two,
- M < C forbidden (M not 0)

A Ligeza (AGH-UST) Essential Thinking 2011 19 / 20

Desert: how many days?

- Give a polyhedron:
 - K the numer of edges,
 - N the numer of corners,
 - S the number of walls.
- N+S-K=2
 - prove,
 - disprove

20 / 20