Search Methods

Lecture Plan
GEIST

Introduction

Introduction
m Problem definition
m The Tree-Search algorithm
m The Graph-Search algorithm

GEIST (KA AGH) Search Methods 26 maja 2010 1/39

Problem definition Search Methods

GEIST
We define a problem by providing: Ec T
Problem definition
State space — S.
Initial state — s; € S.

Actions available within given state.?

Blind

Goal test or goal state — sg € S.°

Cost function ~, DF
Forbidden states — F C S.

2Usually defined as so-called successor function which, for a given state,
returns the set of available actions.
bExplicit (designated state) or implicit (goal satisfaction solutions).

Formal problem definition

A problem P is defined as six-tuple:

P: (Sa5135G7F,O»7)'

GEIST (KA AGH) Search Methods 26 maja 2010 2/39

State_space and Problem Solution Search Methods

State-Space

A state-space is a set of potential/feasible/legal states of some
system. A state-space can be discrete (finite) or continuous.

States

Blind

A state representes local description of a system which is:

m complete,
m consistent,

® minimal.

Problem solution

For P = (S, s1,s6, F, O,7) its solution is defined by a sequnece
(01,02,...,0p), such that:

o1(s1) = 51,05(51) = 2, ..., 0p(Sn—1) = SG

Induced sequnece of states s; = sg,51,5,...,5, = Sg.

GEIST (KA AGH) Search Methods 26 maja 2010

Example: a trip to Romania Search Methods

Example problem statement

We are in Arad in Romania.
Our plane leaves tomorrow from Bucharest.

Problem statement
m State space: distingushed cities
Initial state: Arad
Available actions: travel to another city (see map)
Goal test: Are we in Bucharest? or
Goal state: Bucharest
Cost function: sum of road lengths to given city

Forbidden states: optional

GEIST (KA AGH) Search Methods 26 maja 2010

Introduction ~ Problem de

Map Of Romania Search Methods

GEIST

Problem definition

g9 Fagaras

Dobreta [J
Eforie

GEIST (KA AGH) Search Methods 26 maja 2010 5/39

Introduction ~ Problem definition

Search Methods

Example: 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

Problem statement
m State space: all possible combinations of tile locations
m Initial state: any of the above states

m Available actions: legal moves (from: Left, Right, Up,
Down)

m Goal test: are all tiles in order?

m Cost function: number of steps in path

GEIST (KA AGH) Search Methods 26 maja 2010

Example State-Space Search Problems Search Methods

Toyproblems

m Missionaries and cannibals,
Towers of Hanoi,
Block World,
Criptoarithmetic problems,

N-queens problem.

More serious applications
m Route planning,
m Agent action planning,
m Robot navigation,
m Symbolic integration, term rewriting,

m Configuration, assembly, package planning.

GEIST (KA AGH) Search Methods 26 maja 2010

Introduction ~ Tree-Search

Search Methods

State space vs. search tree

GEIST

The difference
m State space represents the states of the search space.

m Search tree shows how we proceed within the state space.

A node in the search tree consists of:

state to which it corresponds,

parent node which generated (among others) this node,
action applied to generate this node,
path cost g(n) from initial state to this node,

depth, i.e. number of steps from initial state.

GEIST (KA AGH) Search Methods 26 maja 2010 8 /39

InfOI’maI Tree—search algorithm Search Methods

GEIST

Tree-Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

GEIST (KA AGH) Search Methods 26 maja 2010 9/39

Introduction ~ Tree-Search

Important definitions search Methods

GEIST

Tree-Search

Search strategy star el 9
"Udé\,.r’.""’,.'-
Decides, which node (among ‘.G
those determined by available é é S Y
actions) is expanded next. >0
< explored nodes | *.
y unexplored nodes

Fringe (frontier) \“

§o/y /0 e
Queue of nodes to be expanded. 3

GEIST (KA AGH) Search Methods 26 maja 2010 10 / 39

Introduction ~ Tree-Search

Search Methods

Evaluation of search algorithms

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Optimality

When the algorithm finds a solution, is this the optimal one?

Time complexity

How long does it take to find a solution??

20ften measured as number of nodes generated during search.

Space complexity

How much memory is needed to perform the search??

20ften measured as maximum number of nodes stored in memory.

GEIST (KA AGH) Search Methods 26 maja 2010

The Tree-Search algorithm Search Methods

GEIST

function TREE-SEARCH(problem, fringe) returns a solution, or failure TIE
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) Tree-Search
loop do
if fringe is empty then return failure
node «— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe — INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors < the empty set

for each action, result in SUCCESSOR-FN(problem, STATE[node]) do
s<—a new NODE
PARENT-NODE[s] < node; ACTION[s] < action; STATE[s] < result
PATH-COST[s] «— PATH-CoOsT[node] + STEP-COST(node, action, s)
DEPTH][s] +— DEPTH[node] + 1
add s to successors

return successors

GEIST (KA AGH) Search Methods 26 maja 2010 12 / 39

Introduction Graph-Search

Avoiding repeated states Search Methods

GEIST

Problems
m Loops (solution: remember path).
m Infinite paths (solution: limit cost).
m Repeated search of nodes (solution: store all nodes).
m Any algorithm that forgets its history is doomed to repeat it.

Solution

m Modify the Tree-Search algorithm to include a so-called
closed list, storing every expanded node.

m The new algorithm is called Graph-Search.

GEIST (KA AGH) Search Methods 26 maja 2010 13 / 39

The Graph-Search algorithm Search Methods

GEIST

Graph-Search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe — INSERTALL(EXPAND(node, problem), fringe)
end

GEIST (KA AGH) Search Methods 26 maja 2010

Lecture Plan S —

GEIST

Graph as a model of the Search Space
m Definitions
m Visualisation

GEIST (KA AGH) Search Methods 26 maja 2010 15 / 39

Definitions of a graph Search Methods

GEIST

Basic intuitive formulation et

A graph is a set of nodes (vertices) interconnected with links
(edges). A graph is a model of a search space.

e s

Emaus L,

K
7
st
o7

b
s,
saiva
Cﬂm‘y,,
o
B9z
@ Q. =

¢ 12

e e

GEIST (KA AGH) Search Methods 26 maja 2010 16 / 39

Graphs Definitions

Search Methods

Formal definitions of a graph |

GEIST

Definition: Simple Directed Graph
m V — a finite set of vertices (or nodes), V = {vi,va,...,v,},
m E — a finite set of edges (or links); EC V x V.

A simple directed graph G is defined as

G =(V,E).

Definition: Directed Graph
A directed graph G is any four-tuple

G=(V,E,a,w)

m «: E — Vis a function defining the starting point of an edge,

m w is a function w: E — V defining the end point of an edge.

GEIST (KA AGH) Search Methods 26 maja 2010

Graphs Definitions

Search Methods

Formal definitions of a graph II

Definition: Undirected Graph
An undirected graph G is any triple

G=(V,E,\

where \ is a function of the form \: E — V2,
V2 = {{v;, vj}: vj, vj € V} defining the endpoints for an edge.?

aAn alternative definition is also possible: G = (V,E,\),\: E — V2;
however, the definition used is more appropriate for further statements.

GEIST (KA AGH) Search Methods 26 maja 2010 18 / 39

Graphs Definitions

Search Methods

Formal definitions of a graph Ill

GEIST

Definition: Mixed Graph
A mixed graph G is any five-tuple

G = (Va El,Eg,Oé,(.u,A)

where Ej is a set of directed links, E is a set of undirected links;
sets E; and E; are disjoint (E; N E; = (). Further A, @ and w are
defined as before; o and w are defined over E; and)\ is defined
over Es.

GEIST (KA AGH) Search Methods 26 maja 2010 19 / 39

Graphs Visualisation

Graphs: visualisation Search Methods

GEIST

Visualisation

GEIST (KA AGH) Search Methods 26 maja 2010 20 / 39

Graphs Visualisation

Graphs: visualisation Search Methods

GEIST

Visualisation

GEIST (KA AGH) Search Methods 26 maja 2010 21/ 39

Blind strategies

Lecture Plan S —

GEIST

Blind strategies

Blind search strategies
m Breadth-First Search (BFS)
m Uniform-Cost Search (UCS)
m Depth-First Search (DFS)
m lterative Deepening Search
m Dijkstra's Algorithm
m Comparison of Algorithms

GEIST (KA AGH) Search Methods 26 maja 2010 22 /39

Blind strategies = BFS

Breadth-First Search (BFS) Search Methods

GEIST

Breadth-first search strategy
m All nodes on a given level are expanded first.
m Only then deeper nodes are expanded.

>®

GEIST (KA AGH) Search Methods 26 maja 2010 23 /39

Blind strategies = BFS

Breadth-First Search (BFS) Search Methods

GEIST

Breadth-first search strategy
m All nodes on a given level are expanded first.
m Only then deeper nodes are expanded.

(A)
>(E) ©

GEIST (KA AGH) Search Methods 26 maja 2010

Blind strategies = BFS

Breadth-First Search (BFS) Search Methods

GEIST

Breadth-first search strategy
m All nodes on a given level are expanded first.
m Only then deeper nodes are expanded.

GEIST (KA AGH) Search Methods 26 maja 2010

Blind strategies = BFS

Breadth-First Search (BFS) Search Methods

GEIST

Breadth-first search strategy
m All nodes on a given level are expanded first.
m Only then deeper nodes are expanded.

GEIST (KA AGH) Search Methods 26 maja 2010 23 /39

Blind strategies = BFS

Breadth-First Search (BFS) Search Methods

BFS characteristics

m Completeness: if the branching factor is finite and the goal ,
node is at depth d, BFS will eventually find it. Blind s

BFS

m Optimality: BFS is optimal if path cost is a non-decreasing
function of depth.?

= Time complexity:
L+b+b2+b2+...+b?+b(b? — 1) = O(b1).

m Space complexity: O(b?*1).?

20therwise, the shallowest node may not necessarily be optimal.
bp — branching factor; d — depth of the goal node

GEIST (KA AGH) Search Methods 26 maja 2010

(R

i

¥
o
75

BFS

783
Gdmw
175
KR G R ECINEE
al fosallosal loa3|fea
sy basitios) [17

GEIST (KA AGH)

3
5
.

7

6

in 8-puzzle problem

3
7

3
2
LS

783

6
'

74
5u

Search Methods

GEIST

53t
7w 5| Node

3
283
T2
765!
7 8
w3 283
184 Pdm
765 165
12 13 16 1
w83 283 EEEIEEE
214 714 14311 45|
165 65 165)|76
2 25
w3 83 8][783 EEI RN 8!
214 714 143jias tolligalfisel 163
765 6us 165s|7mef [7s5affrs4l{rmaf (754

Search Methods 26 maja 2010 25 / 39

Blind strategies =~ UCS

Uniform-Cost Search (UCS) Search Methods

GEIST

Uniform-cost search strategy

m Expands the node with the lowest cost from the start node
first.?

m Completeness: yes, if cost of each step > € > 0.

Blind str

ucs

m Optimality: same as above - nodes are expanding in
increasing order of cost.

m Time and space complexity: O(b'*[C*/<1)b

2|f all step costs are equal, UCS=BFS.
b« — cost of optimal solution

GEIST (KA AGH) Search Methods 26 maja 2010 26 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

>®

GEIST (KA AGH) Search Methods 26 maja 2010 27 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

(A)
>(E) ©

GEIST (KA AGH) Search Methods 26 maja 2010 27 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

GEIST (KA AGH) Search Methods 26 maja 2010 27 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

GEIST (KA AGH) Search Methods 26 maja 2010 27 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

GEIST (KA AGH) Search Methods 26 maja 2010 27 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

GEIST (KA AGH) Search Methods 26 maja 2010 27 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

GEIST (KA AGH) Search Methods 26 maja 2010 27 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

GEIST (KA AGH) Search Methods 26 maja 2010

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

(A)
20

GEIST (KA AGH) Search Methods 26 maja 2010

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

GEIST (KA AGH) Search Methods 26 maja 2010 27 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

GEIST (KA AGH) Search Methods 26 maja 2010 27 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

Depth-first search strategy
m DFS first expands the deepest node in the fringe. J

GEIST (KA AGH) Search Methods 26 maja 2010

DFS

Search Methods

DFS in 8-puzzle problem

GEIST (KA AGH) Search Methods 26 maja 2010 28 / 39

Blind strategies DFS

Depth-First Search (DFS) Search Methods

GEIST

DFS characteristics

m Small space requirements: only the path to the current node
and the siblings of each node in the path are stored.

m Backtracking search generates only one successor for each
node.

m Completeness: no, if the expanded subtree has an infinite
depth.

m Optimality: no, if a solution located deeper, but located in a
subtree expanded earlier, is found.

m Time complexity: O(b™).

Space complexity: O(bm) (linear!).

GEIST (KA AGH) Search Methods 26 maja 2010 29 / 39

Blind strategies DFS

Depth-Limited Search (DLS) Search Methods

GEIST

Depth-limited search strategy
m Modification of Depth-First Search.

m We introduce a maximum depth ¢; nodes located at depth /¢
are treated as if they had no successors.

m Returns two error types: failure means no solution, cutoff
means no solution within given depth limit.

Why DLS is not widely used?

For most problems, one does not know a good depth limit until
the problem is solved...

GEIST (KA AGH) Search Methods 26 maja 2010 30 / 39

Blind strategies DFS

Depth-Limited Search (DLS)

Search Methods

GEIST

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? < false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? «— true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

GEIST (KA AGH) Search Methods 26 maja 2010 31/39

Blind strategies IDS

Iterative-Deepening Search (IDS)

Search Methods

GEIST
Iterative-deepening depth-first search strategy

m IDS — [terative Deepening Search.

m IDS is a strategy for determination of optimal depth limit.

m Just like BFS, IDS expands an entire layer of new nodes
before going deeper.

Limit=0 »@d []

GEIST (KA AGH) Search Methods 26 maja 2010

Blind strategies IDS

Search Methods

Iterative-Deepening Search (IDS)

GEIST
Iterative-deepening depth-first search strategy
m IDS — [terative Deepening Search.
m IDS is a strategy for determination of optimal depth limit.

m Just like BFS, IDS expands an entire layer of new nodes
before going deeper.

Limit=1 »® ® ® ./0\.
>® © »©

GEIST (KA AGH) Search Methods 26 maja 2010

Blind strategies IDS

Iterative-Deepening Search (IDS)

Search Methods

GEIST
Iterative-deepening depth-first search strategy

m IDS — [terative Deepening Search.

m IDS is a strategy for determination of optimal depth limit.

m Just like BFS, IDS expands an entire layer of new nodes
before going deeper.

Limit=2 @
> ©
Q)
Q
>® ©

©

ST SO A

GEIST (KA AGH) Search Methods 26 maja 2010

Blind strategies IDS

Iterative-Deepening Search (IDS)

Search Methods

GEIST

Iterative-deepening depth-first search strategy ntroduction
m IDS — [terative Deepening Search.

m IDS is a strategy for determination of optimal depth limit.

m Just like BFS, IDS expands an entire layer of new nodes
before going deeper.

Limit=3 >® @
>(®) ©

GEIST (KA AGH) Search Methods 26 maja 2010 32 /39

Blind strategies IDS

Search Methods

Iterative-Deepening Search (IDS)
GEIST
IDS characteristics
m Completeness: yes.
m Optimality: yes, if step cost = 1.

m Time complexity:
(d +1)B° 4 db' + (d — 1)b? + ... + b¥ = O(b?).
m Space complexity: O(bd).

Numerical comparison for b =10, d =5

N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123450
N(BFS) = 10+ 100 + 1000 + 10000 + 100000 + 999990 = 1111100

Conclusion

IDS exhibits better performance, because it does not expand other
nodes at depth d.

GEIST (KA AGH) Search Methods 26 maja 2010

Dijkstra’s Algorithm Search Methods

GEIST

ntroduction

General description

m Finds the shortest path with a single source in a graph with
non-negative edge weights.

Dijkstra

More information and examples (clickable links)
m Wikipedia PL
m Wikipedia EN

m | LO w Tarnowie

GEIST (KA AGH) Search Methods 26 maja 2010 34 /39

http://pl.wikipedia.org/wiki/Algorytm_Dijkstry
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://edu.i-lo.tarnow.pl/inf/utils/002_roz/ol009.php

Bidirectional Search Search Methods

Ideas for bidirectional search

Start the search from the initial node and the goal node in parallel.
The main advantage: depth cut by 2.

Problems with bidirectional search Dijstra
m works only for BFS-like strategies, ‘
m costly test for achieving the goal,
m goal node must be defined explicitly (not a goal test),

m expand function must be reversible.

GEIST (KA AGH) Search Methods 26 maja 2010 35 /39

Blind strategies = Comparison

Comparison of Algorithms Search Methods

GEIST

Criterion BFS ucs DFS DLS IDS
Complete? | Yes! Yes? No Yes® Yes
Time pd+1 b1+[C*/s] pm b b
Space b+l pl+ICx/cl pm bl bd
Optimal? | Yes* Yes No No Yes®

where:
m b — branching factor, Comparison
m d — depth of shallowest solution,
m m — maximum depth of search tree,
m / — depth limit.

lif b < o0

2if b < oo and step costs > ¢ > 0
3i1>d

4if step costs are equal

5if step costs are equal

GEIST (KA AGH) Search Methods 26 maja 2010 36 / 39

Concluding Remarks Search Methods

For blind strategies

DL is often preferred,

the current path is used to avoid cycles,

depth is checked to stay within the current depth limit,
Comparison

the cost function may be used to restrict search,
forbidden states restrict the search,

dynamic search-space reconfiguration with constraint
propagation.

GEIST (KA AGH) Search Methods 26 maja 2010 37 /39

H Search Method
DFS in Prolog eareh Methods

GEIST

path(F,F,T,T).
path(I,F,Path,T):-
p(I,N),
not (member (N,Path)),
path(N,F, [N|Path],T). Comparison

go(I,F,Path):-
path(I,F, [I],Path).

GEIST (KA AGH) Search Methods 26 maja 2010 38 /39

L Blind strategies BNl
H Search Method
BFS in Prolog eareh Methods

GEIST

bf (F, [[F|Path]l|_], [F|Path]).
bf (F, [Path|Set0fPaths],T):-
extend(Path,NewPaths) ,
append (Set0fPaths,NewPaths,NewSet0fPaths),
bf (F,NewSet0fPaths,T).

extend ([N|Path] ,NewPaths) : - Comparison
bagof ([NextN,N|Path], (p(N,NextN),
not (member (NextN, [N|Path]))) ,NewPaths),!.
extend(_,[]).

go(I,F,Path):-
bf(F, [[I]],Path).

GEIST (KA AGH) Search Methods 26 maja 2010 39 /39

	Introduction
	Problem definition
	The Tree-Search algorithm
	The Graph-Search algorithm

	Graph as a model of the Search Space
	Definitions
	Visualisation

	Blind search strategies
	Breadth-First Search (BFS)
	Uniform-Cost Search (UCS)
	Depth-First Search (DFS)
	Iterative Deepening Search
	Dijkstra's Algorithm
	Comparison of Algorithms

