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Introduction: state-of-the-art Background

Knowledge Engineering and Data Engineering
Rules

rules are some most successful knowledge representation formalism

number of engineering and business applications (hidden or explicit)

high-level declarative knowledge representation

logical independence of applications — rules are ’data’

potential for encoding functions, relations, causality,...

logical model (background)

Relational Databases – success factors as inspiration

three-phase, top-down design process

physical and logical independence (E.F. Codd)

tabular representation with attributes (records/tables/joins/views)

efficient data selection, relational algebra

integrity constraints, internal consistency

algebraic model (background)
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Introduction: state-of-the-art Background

Concepts and Methods
Attributive Logic

formally describe a system in terms of its attributes

non-atomic attribute values, complex inference modes

foundations for an extended rule language

eXtended Tabular Trees

structured rule representation (decision tables and trees)

visual analysis and design support

formalized description and verification

Attribute Relationship Diagrams

conceptual design for XTT

requirements engineering with attributes

visual graph-like representation
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Introduction: state-of-the-art Motivation

Research Objectives

provide an integrated, top-down design and analysis methodology for a wide
class of rule-based systems

build a toolchain supporting it

analyze and design representative usecases

propose an integration framework with classic Software Engineering methods
(UML/OOP)

implement prototypes for business rules, Java applications, as well as
embedded control systems

formal analysis of declarative rule-based system properties (on-line)

improve system quality during the design process
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HeKatE Approach

Concepts

1 formal logical system description ALSV (FD)

2 structured rule-based system core

3 requirements engineering → rule prototyping ARD+

4 system design → rules in XTT 2

5 automated implementation → prototype generation
6 formal verification of the model (partial)
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HeKatE Approach

Design Process

Conceptual Design

Logical
Design

Analysis
Verification

Physical Design

PROLOG

XML

Executable

System-specific
representation

Other Systems
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Logical Rule Formulation A Motivational Example

Logical Rule Formulation
Regular class hours are 8:00 – 18:00. If all teaching hours are located
within regular class hours then the salary is regular. If teaching hours
go beyond the regular class hours then salary is special.

The problem is to formalize these two rules with attributive logic. Let RCH stays
for regular class hours, and TH for teaching hours. We can define a fact like:

RCH = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17},

TH = {10, 11, 12, 16, 19, 20}
to specify a case of teaching hours.
To express the rules we need an extended attributive logic employing set values
of attributes and some powerful relational symbols. For example:

R1 : TH ⊆ RCH −→ Salary =′ regular ′

R2 : TH ∼ NRCH −→ Salary =′ special ′

where
NRCH = {0, 1, 2, 3, 4, 5, 6, 7, 18, 19, 20, 21, 22, 23}

is a specifications of non-regular class hours, and ∼ a non-empty intersection.
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Logical Rule Formulation Attributive Logic

Logical Rule Formulation

Attributive logics constitute a simple but widely-used tool for knowledge
specification and inference.

In fact in a large variety of applications in various areas of Artificial
Intelligence and Knowledge Engineering attributive languages constitute the
core knowledge representation formalism (RBS, RDBMS)

Although Propositional Logic and Predicate Logic have well-elaborated
syntax and semantics, presented in details in numerous books, the discussion
of attribute-based logic is omitted in such sources.

In [?] the discussion of attributive logic is much more thorough. The added
value consist in allowing that attributes can take set values and providing
formal syntax of the Set Attributive Logic (SAL) with respect to its syntax,
semantics and selected inference rules.

The very basic idea is that attributes can take atomic or set values.
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Logical Rule Formulation Attributive Logic

Attribute

It is assumed that an attribute Ai is a function (or partial function) of the
form Ai : O → Di .
A generalized attribute Ai is a function (or partial function) of the form
Ai : O → 2Di , where 2Di is the family of all the subsets of Di .
The atomic formulae of SAL can have the following three forms: Ai = d ,
Ai = t or Ai ∈ t, where d ∈ D is an atomic value from the domain D of the
attribute and t = {d1, d2, . . . , tk}, t ⊆ D is a set of such values.
The semantics of Ai = d is straightforward, the attribute takes a single
value.

The semantics of Ai = t is that the attribute takes all the values of t (the
so-called internal conjunction) while the semantics of Ai ∈ t is that it takes
some of the values of t (the so-called internal disjunction).

In this paper an improved and extended version of SAL is presented in brief. The
formalism is oriented toward Finite Domains (FD) and its expressive power is
increased through introduction of new relational symbols.
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Logical Rule Formulation ALSV(FD)

ALSV(FD)

Let us consider:
A – a finite set of attribute names,
D – a set of possible attribute values (the domains).

Let A = {A1,A2, . . . ,An} be all the attributes such that their values define
the state of the system under consideration.

It is assumed that the overall domain D is divided into n sets (disjoint or
not), D = D1 ∪ D2 ∪ . . . ∪ Dn, where Di is the domain related to attribute
Ai , i = 1, 2, . . . , n. Any domain Di is assumed to be a finite (discrete) set.

As we consider dynamic systems, the values of attributes can change over
time (or state of the system). We consider both simple attributes of the
form Ai : T → Di (i.e. taking a single value at any instant of time) and
generalized ones of the form Ai : T → 2Di (taking a set of values at a time).
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Logical Rule Formulation Syntax of ALSV

Syntax of ALSV
Let Ai be an attribute of A and Di the sub-domain related to it. Let Vi denote
an arbitrary subset of Di and let d ∈ Di be a single element of the domain.

Definition

The legal atomic formulae of ALSV for simple attributes are:
Ai = d, Ai 6= d, Ai ∈ Vi , Ai 6∈ Vi .

Definition

The legal atomic formulae of ALSV for generalized attributes are:
Ai = Vi , Ai 6= Vi , Ai ⊆ Vi , Ai ⊇ Vi , A ∼ V , Ai 6∼ Vi .

In case Vi is an empty set (the attribute takes in fact no value) we shall
write Ai = {}.
In case the value of Ai is unspecified we shall write Ai = NULL (a database
convention).

If we do not care about the current value of the attribute we shall write
A = (a Prolog convention).
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Logical Rule Formulation Semantics of ALSV

Semantics of ALSV

In case of the first four possibilities we consider Ai to be a simple attribute
taking exactly one value.

In case of next two the value is precisely defined, while in case of the third
(subset) any of the values d ∈ Vi satisfies the formula.
In other words, Ai ∈ Vi is equivalent to
(Ai = d1)⊗ (Ai = d2)⊗ . . .⊗ (Ai = dk), where Vi = {d1, d2, . . . , dk} and ⊗
stays for exclusive-or.

The semantics of next group is that Ai is a generalized attribute taking a set
of values equal to Vi (and nothing more), different from Vi (at at least one
element), being a subset of Vi , being a superset of Vi , having a non-empty
intersection with Vi or disjoint to Vi , respectively.

More complex formulae can be constructed with conjunction (∧) and
disjunction (∨); both the symbols have classical meaning and interpretation.
There is no explicit use of negation.
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Logical Rule Formulation Inference Rules for ALSV(FD)

Inference Rules for ALSV(FD)

Let V and W be two sets of values such that V ⊆W . We have the following
straightforward inference rules for atomic formulae:

A ⊇W
A ⊇ V

(1)

i.e. if an attribute takes all the values of a certain set it must take all the values
of any subset of it (downward consistency). Similarly

A ⊆ V
A ⊆W

(2)

i.e. if the values of an attribute takes values located within a certain set they
must also belong to any superset of it (upward consistency).
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Logical Rule Formulation Inference Rules for ALSV(FD)

Inference rules for atomic formulae for simple
attributes

|= A = dj A 6= dj A ∈ Vj A 6∈ Vj
A = di di = dj di 6= dj di ∈ Vj di 6∈ Vj
A 6= di di = dj Vj = D \ {di} Vj = {di}
A ∈ Vi Vi = {dj} dj 6∈ Vi Vi ⊆ Vj Vi ∩ Vj = ∅
A 6∈ Vi D \ Vi = {dj} Vi = {dj} Vj = D \ Vi Vj ⊆ Vi
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Logical Rule Formulation Inference Rules for ALSV(FD)

Inference rules for atomic formulae for generalized
attributes

|= A =W A 6=W A ⊆W A ⊇W A ∼W A 6∼W
A = V V =W V 6=W V ⊆W V ⊇W V ∩W 6= ∅ V ∩W = ∅
A 6= V V =W W = D W = D
A ⊆ V V ⊂W V ⊆W W = D V ∩W = ∅
A ⊇ V W ⊂ V W = D V ⊇W V ∩W 6= ∅
A ∼ V V ∩W = ∅ W = D V =W
A 6∼ V V ∩W 6= ∅ W = D W = D V =W
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Logical Rule Formulation Rules in ALSV(FD)

Rules in ALSV(FD)

Consider a set of n attributes A = {A1,A2, . . . ,An}.
Any rule is assumed to be of the form:

(A1 ∝1 V1) ∧ (A2 ∝2 V2) ∧ . . . (An ∝n Vn) −→ RHS

where ∝i is one of the admissible relational symbols in ALSV(FD), and RHS is
the right-hand side of the rule covering conclusion and possibly the retract and
assert definitions if necessary.
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Logical Rule Formulation Rules in ALSV(FD)

XTT Table

Rule A1 A2 . . . An H

1 ∝11 t11 ∝12 t12 . . . ∝1n t1n h1
2 ∝21 t21 ∝22 t22 . . . ∝2n t2n h2
...

...
...

. . .
...

...
m ∝m1 tm1 ∝m2 tm2 . . . ∝mn tmn hm
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Logical Rule Formulation Rules in ALSV(FD)

Rule Firing

The current values of all the attributes are specified with the contents of the
knowledge-base (including current sensor readings, measurements, etc.).

From logical point of view it is a formula of the form:

(A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn), (3)

where Si = di (di ∈ Di ) for simple attributes and Si = Vi , (Vi ⊆ Di ) for
complex.

The rules having all the preconditions satisfied can be fired.

In general, rules can be fired in parallel (at least in theory) or sequentially.

For the following analysis we assume the classical, sequential model, i.e. the
rules are examined in turn in the top-down order and fired if the
preconditions are satisfied.

G. J. Nalepa, A. Ligęza (AGH-UST) HeKaTe OINA2008 19 / 74



Rule Prototyping

ARD+ Goal

Goal

Support the designer at a very general design level, the conceptualization.

A requirements specification method.

Input: a general system description in the natural language.

Output: a model capturing knowledge about relationships between
attributes describing system properties.

The model is subsequently used in the next design stage, where the actual
logical design with rules is carried out.
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Rule Prototyping

ARD+ Concepts

Main concepts

attributive logic use of attributes for denoting properties in a system

functional dependency a general relation between two or more attributes

graph notation simple expressive knowledge specification

visualization is the key concept in the practical design support

gradual refinement the design is being specified in number of steps, each step
being more detailed than the previous one

structural transformations formalized, well defined syntax and semantics

hierarchical model captures all of the subsequent design steps, with no
semantic gaps

knowledge-based approach declarative and transparent model specification.
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Rule Prototyping Syntax

ARD syntax I

Definition

Conceptual Attribute. A conceptual attribute A is an attribute describing some
general, abstract aspect of the system to be specified and refined.

Conceptual attribute names are capitalized, e.g.: WaterLevel.

Definition

Physical Attribute. A physical attribute a is an attribute describing a
well-defined, atomic aspect of the system.

Names of physical attributes are not capitalized, e.g. theWaterLevelInTank1.
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Rule Prototyping Syntax

ARD syntax II
A property is described by one or more attributes.

Definition

Simple Property. PS is a property described by a single attribute.

Definition

Complex Property. PC is a property described by multiple attributes.

Definition

Dependency. A dependency D is an ordered pair of properties D = 〈p1, p2〉
where p1 is the independent property, and p2 is the one that dependent on p1.

Definition

Diagram. An ARD diagram G is a pair G = 〈P,D〉 where P is a set of
properties, and D is a set of dependencies.

Constraint
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Rule Prototyping Syntax

ARD syntax III

Diagram Restrictions. The diagram constitutes a directed graph with certain
restrictions:

1 In the diagram cycles are allowed.

2 Between two properties only a single dependency is allowed.
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Rule Prototyping Syntax

Simple diagaram

Time Temperature
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Rule Prototyping Transformations

ARD+ diagaram transformations

Diagram transformations are one of the core concepts in the ARD.

They serve as a tool for diagram specification and development.

For the transformation T such as T : D1 → D2, where D1 and D2 are both
diagrams, the diagram D2 carries more knowledge, is more specific and less
abstract than the D1.

A transformed diagram D2 constitutes a more detailed diagram level.
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Rule Prototyping Transformations

Finalization transformation I

Definition

Finalization. Finalization TF is a function of the form

TF : P1 → P2

transforming a simple property P1 described by a conceptual attribute into a P2,
where the attribute describing P1 is substituted by one or more conceptual or
physical attributes describing P2.

Time Temperature

Date
Hour

season
operation

Temperature
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Rule Prototyping Transformations

Finalization transformation II

Time Temperature

Time thermostat_settings
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Rule Prototyping Transformations

Split transformation I

Definition

Split. A split is a function S of the form:

S : PS→ {PS1,PS2, . . .PSn}

where a complex property PS is replaced by n properties, each of them described
by one or more attributes originally describing PS.

Date
Hour

season
operation

Temperature

Date
Hour

season
operation

Temperature
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Rule Prototyping Transformations

Split transformation II

Date
Hour

season
operation

Temperature

Date
Hour

season

operation

Temperature
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Rule Prototyping Design Example

Example I

Time
Temperature

TemperatureTime

Temperature

Date
Hour

season
operation

Temperature
season

operation
Date
Hour
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Rule Prototyping Design Example

Example II

Temperature
season

operation

Hour

Date

Temperature
season

operation

Hour

day
month
today

month

season
operation

Temperature
day

today

Hour
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Rule Prototyping Design Example

Example III

thermostat_settings

season

operation

month

day today

hour
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Hierarchical ARD+ Model

The TPH

The purposes of having the hierarchical model are:

gradual refinement of a designed system, and particularly

identification of the origin of given properties,

ability to get back to previous diagram levels for refactoring purposes,

big picture perspective of the designed system.

Implementation:

storing the lowest available, most detailed diagram level, and

information needed to recreate all of the higher levels: Transformation
Process History.
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Hierarchical ARD+ Model

The TPH Examples I

ARD:

Time Temperature

Date
Hour

season
operation

Temperature

TPH:

Time

Date
Hour

season
operation

Date
Hour

season
operation

Temperature

Date
Hour

season
operation

Temperature

Date
Hour

season
operation

Date
Hour

season
operation
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Hierarchical ARD+ Model

The TPH Examples II
Thermostat

Time
Temperature

Time Temperature

Date
Hour

season
operation

thermostat_settings

Date
Hour

season
operation

Date Hour season operation

day
month
today

hour

month
day

today

day today
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Rule Design

Hekate Rule Language

An extended rule language is proposed. It is based on the XTT language.

The XTT rule language is based on the classic concepts of rule languages
with certain important extensions and features.

In XTT the rule base is explicitly structured. The rules with same sets of
attributes are grouped within decision tables.

On the rule level explicit inference control is allowed. In this way, a set of
tables is interconnected using links, corresponding to inference control.

This makes up a decision-tree like structure, with tables in the tree nodes. In
a general case, the XTT is a directed graph, with cycles optionally allowed.

In XTT these expressions are in the the attributive logic.
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Rule Design

XTT Example
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Rule Design

XTT 2 Rule Design

1 generate rule prototypes (XTT table schemes) automatically [?],

2 build table rows to specify actual rules

3 specify inference in the knowledge base
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Rule Analysis

Verification of XTT Components

Within the proposed approach verification of the following theoretical properties
is performed:

redundancy – subsumption of rules,

indeterminism – overlapping rules,

completeness – missing rules.

The components are checked if they are minimal and reduction possibilities are
suggested.
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Rule Analysis Analysis of subsumption

Analysis of subsumption

Consider two rules, r and r ′ given below (simplified XAT scheme):

rule A1 A2 . . . Aj . . . An H
r t1 t2 . . . tj . . . tn h
r ′ t ′1 t ′2 . . . t ′j . . . t ′n h′

The condition for subsumption in case of tabular rule format takes the algebraic
form t ′j ⊆ tj , for j = 1, 2, . . . , n and h′ ⊆ h.
If it holds, then rule r ′ can be eliminated leaving the more general rule:

rule A1 A2 . . . Aj . . . An H
r t1 t2 . . . tj . . . tn h
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Rule Analysis Subsumption example

Subsumption example

In the following tabular system the first rule subsumes the second one:

rule A1 A2 A3 A4 H
r 7 [2, 9] [3, 5] {r , g , b} {a, b, c}
r ′ 7 [3, 5] 4 {b, r} {a, c}

Hence, rule r ′ can be eliminated.

Subsumption, defined as above, covers also detection and elimination of identical
rules and equivalent rules; moreover, it is performed with purely algebraic means.
In the example case of the Thermostat specification there are no subsumed rules.
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Rule Analysis Analysis of indeterminism

Analysis of indeterminism

In order to have two rules applicable in the same context, their preconditions
must have non-empty intersection.

For any attribute Aj there is an atom of the form Aj = tj in r and Aj = t ′j in
r ′, i = 1, 2, . . . , n.

Now, one has to find the intersection of tj and t ′j — if at least one of them
is empty (e.g. two different values; more generally t1,j ∩ t2,j = ∅) then the
preconditions are disjoint and thus the rules are deterministic.

The check is to be performed for any pair of rules.

In the example case of the Thermostat specification there are no indeterministic
rules.
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Rule Analysis Analysis of indeterminism

Conflict and inconsistency

Problems of conflicting and inconsistent rules are specific cases of lack of
indeterminism.
conflict when two (or more) rules are applicable to the same input situation
but the results are conflicting (under the assumed interpretation)
inconsistency when purely logical inconsistency occurs.

Detection of indeterminism is a necessary condition for eliminating conflict
and inconsistency.

Moreover, in tabular systems with no explicit negation purely logical
inconsistency cannot occur; it always follows from the intended
interpretation and thus it falls into the class of conflicts.
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Rule Analysis Analysis of reduction

Analysis of reduction

Several rules having identical conclusion part can be glued to a single, equivalent
rule according to the following scheme:

rule A1 A2 . . . Aj . . . An H
r1 t1 t2 . . . t1j . . . tn h
...

...
...

...
...
...

rk t1 t2 . . . tkj . . . tn h

r t1 t2 . . . T . . . tn h

provided that t1j ∪ t2j ∪ . . .∪ tkj = T . If T is equal to the complete domain, then
T = .
(The rules r1, r2, . . . , rk are just some selected rows of the original table
containing all of the rules.)
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Rule Analysis Reduction in the Thermostat

Reduction in the Thermostat

Info Prec Retract Assert Decision Ctrl
I aTD aTM aOP aOP H N E
3 wd [9:00, 17:00] – dbh 3.7 2.4
4 wd [00:00, 09:00] – ndbh 3.7 2.5
5 wd [17:00, 24:00] – ndbh 3.7 2.6
6 wk – – ndbh 3.7 2.3

rules 4 and 5 can be glued, provided that the time specification can be expressed
with non-convex intervals: [00:00-09:00]∪[17:00-24:00]
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Rule Analysis Reduction in the Thermostat

Reduction in the Thermostat

Info Prec Retract Assert Decision Ctrl
I aSE aOP aTHS N E
11 spr dbh 20 1.1 4.12
12 spr ndbh 15 1.1 4.13
13 sum dbh 24 1.1 4.14
14 sum ndbh 17 1.1 4.15
15 aut dbh 20 1.1 4.16
16 aut ndbh 16 1.1 4.17
17 win dbh 18 1.1 4.18
18 win ndbh 14 1.1 1.1

rules 11 and 15 can be glued to a single rule, in this case the preconditions would
read aSE ∈ {spr , sum} ∧ aOP = dbh
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Rule Analysis Analysis of completeness

Analysis of completeness

The system is complete in the sense that there are no admissible (correct) inputs
which are uncovered.

1 First some maximal reduction is performed on the precondition part of a
selected table.

2 In the ideal case an empty table (full completeness) is confirmed.

3 In other case we check which input specifications are not covered.

4 Thanks to allowing for non-atomic values of attributes it is not necessary to
perform the so-called exhaustive enumeration check

5 The attribute domains can be divided into subsets (granularized)
corresponding to the values occurring in the table

6 Hence the check is performed in a more abstract level and with increased
efficiency.

7 Uncovered input specifications define the potentially missing rule
preconditions.
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Hybrid Software Engineering

Objectives

provide a bridge for the classic SE methods and tools

build a UML representation for ARD and XTT [?]

formalize model transformation (with use of MOF metamodel and XMI, in
the works)

integrate the logical rule-based core (Model) with interfaces (View) with a
hybrid Controller (the MVC pattern)
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Hybrid Software Engineering KB Design in UML

Representing ARD with component diagrams
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Hybrid Software Engineering KB Design in UML

Activity diagram corresponding to XTT MS table
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Hybrid Software Engineering KB Design in UML

Activity diagram corresponding to XTT DT table
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Hybrid Software Engineering KB Design in UML

Activity diagram corresponding to XTT TH table
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Hybrid Software Engineering KB Design in UML

Activity diagram corresponding to XTT OS table
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Hybrid Software Engineering KB Design in UML

Activity diagram for the whole thermostat
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Hybrid Software Engineering Application Core Integration

Application integration in HeKatE

Code

C/Java

Runtime

C/Java

Knowledge Base

SLIN

Application

View/InterfaceModel

Inference Engine

HeaRT

Hardware
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HeKatE Toolchain

Overview

ARD+ design tool → VARDA
XTT 2 editor → HQEd
XML-based knowledge exchange

Prolog-based inference engine (HeaRT) (in the works)
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HeKatE Toolchain

VARDA intro

a design tool for ARD+ [?]

FIXME
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HeKatE Toolchain

VARDA architecture

managing:

attributes,
properties,

dependencies,

TPH

attributes
properties

dependencies
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data generation

spawning
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DOT
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HeKatE Toolchain

HQEd intro

[?]

a complex XTT 2 editor

FIXME
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HeKatE Toolchain

HQEd architecture

FILES

XTT Model ARD Model

PROLOG PLUGINS

User Interface

Controller
PLUGINS

API
PROLOG

API

HQed

XML mapping

USER
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HeKatE Toolchain

Knowledge Markup

HML – Hekate Markup Language

XSLT-based translators

FIXME
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HeKatE Cases Thermostat

Description
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HeKatE Cases Thermostat

ARD model
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HeKatE Cases Thermostat

XTT model
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HeKatE Cases CashMachine

Description
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HeKatE Cases CashMachine

ARD model
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HeKatE Cases CashMachine

XTT model
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HeKatE Cases UServ

Description
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HeKatE Cases UServ

ARD model
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Future Work

Conclusions
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Future Work

Future developments

nxt
embedded
bizrules
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References

The End

Thank you for your attention!
Any questions?

HeKatE Web Page: http://hekate.ia.agh.edu.pl

Powered by LATEX
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