
HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE

GEIST

Institute of Automatics
AGH University of Science and Technology, POLAND

Hybrid Knowledge Engineering

http://hekate.ia.agh.edu.pl

GEIST (AGH-UST) HeKatE 1 / 57

http://hekate.ia.agh.edu.pl

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Outline

1 Rule–Based Systems

2 HeKatE Approach

3 HaDEs

4 Integration

GEIST (AGH-UST) HeKatE 2 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Rule–Based Systems

Rule–Based Systems

Features

RBS → type of expert system

knowledge representation → rules

state of the system → factbase

Rules

easy to understand and intuitive

high-level declarative knowledge representation

logical independence of applications

constis of only two parts: condition and decision

GEIST (AGH-UST) HeKatE 3 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach

HeKatE Approach

Features

formal logical system description ALSV (FD)

three stages of hierarchical design

ARD+ → rule prototyping

XTT 2 → logical system design

automated implementation → prototype generation

formal on-line verification

GEIST (AGH-UST) HeKatE 4 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

Conceptual Design – ARD+

ARD+

ARD+ → Attribute Relationship Diagram

supportive method for XTT2

hierarchical method

general model transformation−−−−−−−−→ more detailed model

the most detailed model automatic transition−−−−−−−−−−−→ schema of XTT2

GEIST (AGH-UST) HeKatE 5 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

ARD+ syntax

Definition

Conceptual Attribute. A conceptual attribute A is an attribute
describing some general, abstract aspect of the system to be
specified and refined.

Definition

Physical Attribute. A physical attribute a is an attribute describing
a well-defined, atomic aspect of the system.

GEIST (AGH-UST) HeKatE 6 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

ARD+ syntax

A property is described by one or more attributes.

Definition

Simple Property. PS is a property described by a single attribute.

Definition

Complex Property. PC is a property described by multiple
attributes.

Definition

Dependency. A dependency D is an ordered pair of properties
D = 〈p1, p2〉 where p1 is the independent property, and p2 is the
one that dependent on p1.

GEIST (AGH-UST) HeKatE 7 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

ARD+ syntax

Definition

Diagram. An ARD diagram G is a pair G = 〈P, D〉 where P is a
set of properties, and D is a set of dependencies.

Constraint

Diagram Restrictions. The diagram constitutes a directed graph
with certain restrictions:

1 In the diagram cycles are allowed.

2 Between two properties only a single dependency is allowed.

GEIST (AGH-UST) HeKatE 8 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

Conceptual Design – ARD+

ARD+ Features

visual method
two types of diagrams:

ARD diagram → attributes relationships diagram
TPH diagram → history of ARD transformations

ARD
diagram

TPH
diagram

GEIST (AGH-UST) HeKatE 9 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

Simple diagaram

Time Temperature

GEIST (AGH-UST) HeKatE 10 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

ARD+ diagaram transformations

Diagram transformations are one of the core concepts in the
ARD.

They serve as a tool for diagram specification and
development.

For the transformation T such as T : D1 → D2, where D1
and D2 are both diagrams, the diagram D2 carries more
knowledge, is more specific and less abstract than the D1.

A transformed diagram D2 constitutes a more detailed
diagram level.

GEIST (AGH-UST) HeKatE 11 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

Finalization transformation

Definition

Finalization. Finalization TF is a function of the form

TF : P1 → P2

transforming a simple property P1 described by a conceptual
attribute into a P2, where the attribute describing P1 is substituted
by one or more conceptual or physical attributes describing P2.

Time Temperature

Date
Hour

season
operation

Temperature

Time Temperature

Time thermostat_settings

GEIST (AGH-UST) HeKatE 12 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

Split transformation

Definition

Split. A split is a function S of the form:

S : PS→ {PS1, PS2, . . . PSn}

where a complex property PS is replaced by n properties, each of
them described by one or more attributes originally describing PS.

Date
Hour

season
operation

Temperature

Date
Hour

season
operation

Temperature

Date
Hour

season
operation

Temperature

Date
Hour

season

operation

Temperature

GEIST (AGH-UST) HeKatE 13 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

The TPH

The purposes of having the hierarchical model are:

gradual refinement of a designed system, and particularly

identification of the origin of given properties,

ability to get back to previous diagram levels for refactoring
purposes,

big picture perspective of the designed system.

Implementation:

storing the lowest available, most detailed diagram level, and

information needed to recreate all of the higher levels:
Transformation Process History.

GEIST (AGH-UST) HeKatE 14 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

The TPH Examples

ARD: TPH:

Time Temperature

Date
Hour

season
operation

Temperature

Time

Date
Hour

season
operation

Date
Hour

season
operation

Temperature

Date
Hour

season
operation

Temperature

Date
Hour

season
operation

Date
Hour

season
operation

GEIST (AGH-UST) HeKatE 15 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Conceptual Design

The TPH Examples

Thermostat

Time
Temperature

Time Temperature

Date
Hour

season
operation

thermostat_settings

Date
Hour

season
operation

Date Hour season operation

day
month
today

hour

month
day

today

day today

GEIST (AGH-UST) HeKatE 16 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Logical Design

Hekate Rule Language

What is XTT...

XTT2 → eXtended Tabular Trees

the main stage of the HeKatE design process

method of the rules design

it bases on the ALSV(FD) logic

Features

XTT2 bases on the classic concept of rule languages with
certain extensions:

provides structured rulebase

provides visualization

provides formal and on-line verification

specifies inference control in the knowledge base

GEIST (AGH-UST) HeKatE 17 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Logical Design

ALSV(FD)

ALSV(FD)

ALSV(FD) – Attributive Logic with Set Values over Finite
Domains

more expressive than First Order Logic

it introduces a concept of generalized atrribute

ALSV(FD) in XTT

an attribute Ai is a function of the form Ai : O → Di
a rule format:
(A1 ∝1 V1) ∧ (A2 ∝2 V2) ∧ · · · ∧ (An ∝n Vn)→ RHS

a simple table format:
Rule A1 A2 . . . An H
1 ∝11 t11 ∝12 t12 . . . ∝1n t1n h1
2 ∝21 t21 ∝22 t22 . . . ∝2n t2n h2
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
m ∝m1 tm1 ∝m2 tm2 . . . ∝mn tmn hm

GEIST (AGH-UST) HeKatE 18 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Logical Design

XTT diagram example

GEIST (AGH-UST) HeKatE 19 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Logical Design

ARD → XTT

userRequestedAction

cashPointActivity

desiredAmount

cdAmountDifference

udAmountDifference

userAccountAmount

cashPointAmount

enteredPin

pinDifference

correctPin

authorizated

failedAttempts

GEIST (AGH-UST) HeKatE 20 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Logical Design

Verification of XTT Components

Within the proposed approach verification of the following
theoretical properties is performed:

redundancy – subsumption of rules,

indeterminism – overlapping rules,

completeness – missing rules.

The components are checked if they are minimal and reduction
possibilities are suggested.

GEIST (AGH-UST) HeKatE 21 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Physical Design

Physical Design

Physical Design

XTT2 automatic transition−−−−−−−−−−−→ Physical Implementation (HMR)

graphical representation → textual representation

no semantic gap

HMR

HMR – Hekate Meta Representation

HMR – textual representation

HMR – PROLOG based representation

directly interpreted by HeaRT engine

GEIST (AGH-UST) HeKatE 22 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Physical Design

HMR rule representation

GEIST (AGH-UST) HeKatE 23 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Physical Design

HeKatE Rule Framework

GEIST (AGH-UST) HeKatE 24 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HeKatE Approach Physical Design

Knowledge Markup

Knowledge in the HeKatE design process is described in HML
(Hekate Markup Language), a machine readable XML-based
format.
HML consists of three logical parts:

ATTML – attribute specification,
ARDML – attribute and property relationship specification
and
XTTML – rule specification.

number of XSLT transformations provide translation to other
markups, e.g. W3C RIF.

GEIST (AGH-UST) HeKatE 25 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HaDEs

HaDEs

HaDEs

HaDEs – Hekate Design Environment

a set of tools that supports design in HeKatE methodology

HML

HMR

ARD+

XTT2

Implementation Process

Visual Design Logical Model Automated Implementation

HeaRT

HaThoR

jvm/C++

V1 V2 V3HJEd/Varda

MODEL

CONTROLLER

VIEWS

Drools

SWRL

RIF

Analysis

HQEd

Logical

D
e
s
ig

n
 P

ro
c
e
s
s

Human readable

Machine readable

XML serialization

Physical

Conceptual

GEIST (AGH-UST) HeKatE 26 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs VARDA

VARDA

GEIST (AGH-UST) HeKatE 27 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs VARDA

VARDA
VARDA

VARDA – Visual ARD Rapid Development Alloy

is a PROLOG based tool

allows for ARD+ modeling by using PROLOG-based interface

has command line user interface

uses GraphViz for visualization

managing:

attributes,
properties,

dependencies,

TPH

attributes
properties

dependencies

TPH

transformations

for GraphViz

data generation

spawning

visualization

visualization

tool−chain

interoperability

primitives

User

raw data

API call/reply

API call/reply

DOT

diagrams

DOT

DOT

SWI−Prolog
raw data

raw data

A
P

I
ca

ll
/r

ep
ly

X
M

L
/r

aw
 d

at
a

GEIST (AGH-UST) HeKatE 28 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs VARDA

VARDA

CashPoint

UserRequestedAction

ActionEnvironment

CashPointActivity

UserRequestedAction

ActionEnvironmentCashPointActivity

userRequestedAction

Authorization

Founds

cashPointActivity

Authorization Founds

enteredPin

correctPin

pinDifference

authorizated

failedAttempts

desiredAmount

UserResources

CashPointResources

EnoughResources

desiredAmount

UserResources CashPointResourcesEnoughResources

cdAmountDifferenceudAmountDifference

userAccountAmount cashPointAmount
cdAmountDifference

udAmountDifference

enteredPin correctPin

pinDifference

authorizatedfailedAttempts

GEIST (AGH-UST) HeKatE 29 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HJed

HJed
HJed

HJed – HeKtE Java EDitor

allows for visual ARD+ modeling using GUI

available under the GNU GPL from
https://ai.ia.agh.edu.pl/wiki/hekate:hjed

GEIST (AGH-UST) HeKatE 30 / 57

https://ai.ia.agh.edu.pl/wiki/hekate:hjed

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HQed

HQed

GEIST (AGH-UST) HeKatE 31 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HQed

HQEd intro
a complex visual XTT 2 editor
using the rule prototypes generated with VARDA, it allows for
the actual logical rule design
the editor allows for gradual refinement of rules, with an
online checking of attribute domains, as well as simple table
properties
a plugin framework allows for integrating Prolog-based
analysis plugins to check formal properties of the XTT rule
base
HQEd is a crossplatform tool written in C++, that depends
only on the Qt library
it is available under the GNU GPL from
https://ai.ia.agh.edu.pl/wiki/hekate:hqed
the output from the editor is a complete rulebase encoded in
Prolog
it can be executed using a Prolog-based inference engine
the rulebase can be integrated into a larger application as a
logical core

GEIST (AGH-UST) HeKatE 32 / 57

https://ai.ia.agh.edu.pl/wiki/hekate:hqed

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HQed

HQed architecture

FILES

XTT Model ARD Model

PROLOG

PLUGINS

User Interface

Controller
PLUGINS

API

HQed

XML mapping

USER

View

Controller

Model

TCP/IP

GEIST (AGH-UST) HeKatE 33 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HeaRT

HeaRT

GEIST (AGH-UST) HeKatE 34 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HeaRT

HeaRT

HeaRT (HeKatE Run Time)

dedicated inference engine for the XTT 2 rule bases

cross-platform tool written in PROLOG

Functionality

store and export models in HMR files

verify HMR syntax and logic (HalVA)

Communication and integration

direct interaction via Prolog console

through TCP/IP protocol offers integration mechanism

supports Java integration based on callbacks mechanism and
Prolog JPL library

GEIST (AGH-UST) HeKatE 35 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HeaRT

HeaRT architecture

GEIST (AGH-UST) HeKatE 36 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HalVA

HalVA

HalVA

the verification framework for XTT 2 model

consists of several PROLOG-based plugins

Features

it has a simple debugging mechanism

allows for export entire model to LaTeX

it supports syntactic analysis of HMR using a DCG grammar

it provides logical verification of models: completeness,
determinism and redundancy

it can be run from the interpreter or indirectly from HQEd
using the communication protocol

GEIST (AGH-UST) HeKatE 37 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

HaDEs HalVA

Verification cycle

GEIST (AGH-UST) HeKatE 38 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

SemWeb Architecture (a.k.a. ”layer
cake”)

application interface

safety

rules, logic (SWRL,RIF, ...)

ontologies (RDFS, OWL)

metadata (RDF)

serialization (XML)

resource identification (URI)

GEIST (AGH-UST) HeKatE 39 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

SemWeb Architecture (a.k.a. ”layer
cake”)

application interface

safety

rules, logic (SWRL,RIF, ...)

ontologies (RDFS, OWL)

metadata (RDF)

serialization (XML)

resource identification (URI)

GEIST (AGH-UST) HeKatE 39 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

Big Picture

HML RDF/XML

Attributive Logic Description Logics

ATTML + ARDML + XTTML OWL/XML, RIF/XML,
N3, N-Triple

HeKatE Semantic Web

ARD, XTT OWL(RDF), SWRL, RIF, ...

?

?

?

HaThoR

DAAL

GEIST (AGH-UST) HeKatE 40 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

Motivation and challenges for integration

Motivation

Expressive rule language for the Semantic Web applications

Visual rule design support

Methodology for a rule base design, not only single rules

Formal verification and validation

Integration challenges

ALSV(FD) – dynamic changes of a system, DL –
terminological structural knowledge

CWA in ALSV(FD), OWA in DL

UNA in ALSV(FD)

nonmonotonicity in ALSV(FD), no assert/retract functions in
DL

GEIST (AGH-UST) HeKatE 41 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

DAAL Approach

Observation

KR HeKatE based on Attributive Logic

Ontologies based on Description Logics

Let’s understand the foundations and how they are related

Research track

Analysis of knowledge representation in
Attributive Logic
Description Logics

Mapping proposal

GEIST (AGH-UST) HeKatE 42 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

Description And Attributive Logics
(DAAL)

1 Conceptual modelling: attributes in AL, concepts in DL
Attr. Name Attr. Domain Concept Constructors

Ai Di Ai ≡ Di
D = {a1, a2, . . . , an} D ≡ {a1, a2, . . . , an}

2 Rule formulas – DL axioms
AL Formula DL Axiom AL Formula DL Axiom

Ai = d Ai ≡ {d} Ai 6= d Ai ≡ ¬{d}
Ai ∈ Vi Ai ≡ Vi Ai 6∈ Vi Ai ≡ ¬Vi

3 State representation – World description
Attr. Type AL Formula DL Assertion

simple Ai := di A(d)
generalized Ai := Vi , A(vi1).Ai (vi2). . . . Ai (vin)

Vi = {vi1 , . . . , vin}
4 Reasoning – consistency checking of temporary ontologies

(rule preconditions + system state)

GEIST (AGH-UST) HeKatE 43 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

Inference

Hybrid system: HeaRT engine + DL reasoner

HeaRT

Rule selection

Rule execution

Definitions of
attributes (TBox)

System state
(ABox)

Rule axioms

DL reasoner

Consistency checking
Knowledge Base

Definitions of
attributes (TBox)

System state
(ABox)

Selected rule
Preconditions

(temporary TBox)

Selected rule
actions

(ABox assertions)

DL ontology

GEIST (AGH-UST) HeKatE 44 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

HaThoR Approach

Observation

HeKatE Markup Language

RDF/XML syntax for ontologies

How to translate one format to the other?

Research track

Analysis of serialization formats

XSLT translators from HML to RDF/XML

HaThoR 2 Online:
http://home.agh.edu.pl/wtf/onto/hathor2/www

GEIST (AGH-UST) HeKatE 45 / 57

http://home.agh.edu.pl/wtf/onto/hathor2/www

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

HeKatE Translator (HaThoR)

1 Attributes ↔ instances

2 Class constraints: datatype properties for types and object
properties linking attributes and types

Attributive Logic Description Logic
Attr. Name Attr. Domain DL Axioms

Ai Di Type(Ti), Attribute(Ai)
Di = {a1, . . . , an} attHasType(Ai , Ti),

domainOfTi (Ti , Di)

3 State: role assertions

Attributive Logic Description Logic
Attribute Type Formula Assertion in ABox

simple Ai := di attTakesValue(Ai , di)
generalized Ai := Vi attTakesValue(Ai , v1), . . .

. . . , attTakesValue(Ai , vn)

GEIST (AGH-UST) HeKatE 46 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

Inference

SWRLTab in Protegé

GEIST (AGH-UST) HeKatE 47 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

Design Process Ontology

Motivation

Overcome limitations of ARD:

allow to specify different classes of functional dependencies,

provide more expressive means for the history description,

allow to build a single coherent model combining both
functional dependencies and history information.

Idea

Use an ontology to capture the functional dependencies present in
the main ARD diagram and history information captured in the
TPH.

Design Process Ontology

DPO is a proposal of a task ontology. Its aim is to capture the
system characteristics together with dependencies among them, as
well as represent the gradual refinement of the design process.

GEIST (AGH-UST) HeKatE 48 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

DPO Concepts

Main classes and properties

a geneneral class Attribute
4 properties,
dependsOn – functional dependencies
transformedInto, splitInto and finalizedInto – the
design process transformations.

DPO for concrete tasks

DPO may be specialized by concrete ontologies for specific design
tasks. In this case system characteristics subclass the Attribute
class. The properties may be specialized accordingly.

GEIST (AGH-UST) HeKatE 49 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration Semantic Web

Simple DPO in OWL designed in Protegé

GEIST (AGH-UST) HeKatE 50 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration UML

HeKatE process and UML representation

GEIST (AGH-UST) HeKatE 51 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration UML

An example of ARD diagram and its UML
representation

GEIST (AGH-UST) HeKatE 52 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration UML

An example of XTT table and its UML
representation

GEIST (AGH-UST) HeKatE 53 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration UML

Metamodel for UML representation of
ARD

Example of the OCL constraints
for Class:

context Class
inv:

Class.allInstances()->one(c |
c.isAbstract = false
and
c.association->size() = 0
)

self.name = self.name.toLower() implies
self.supplierDependency->size() = 0
and self.association->size() = 0

GEIST (AGH-UST) HeKatE 54 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration UML

Metamodel for UML representation of
XTT

Example of the OCL constraints
for ActivityParameterNode:

context ActivityParameterNode
inv:

self.incoming->forAll(edge |
edge.source.oclIsTypeOf(MergeNode)
xor
edge.source.oclIsKindOf(Action)
)

self.outgoing->forAll(edge |
edge.target.
oclIsTypeOf(DecisionNode)

)

GEIST (AGH-UST) HeKatE 55 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration UML

Summary

The proposed representation:

provides two abstraction levels (tables and system)

does not introduce new artifacts or extend the UML language

shows both structure of dependecies
and behaviour of the system (rule processing)

The proposed solution:

provides XMI serialization

provides translation between UML representation (XMI)
and HeKatE project representation (HML)

GEIST (AGH-UST) HeKatE 56 / 57

HeKatE

GEIST

Rule–Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of
HeKatE and the
Semantic Web

Design Process Ontology

UML

HeKatE process and UML
representation

Summary

Integration UML

The End

GEIST (AGH-UST) HeKatE 57 / 57

	Rule--Based Systems
	HeKatE Approach
	Conceptual Design
	Logical Design
	Physical Design

	HaDEs
	HaDEs
	VARDA
	HJed
	HQed
	HeaRT
	HalVA

	Integration
	Semantic Web
	UML

