HeKatE

GEIST

Institute of Automatics AGH University of Science and Technology, POLAND

Hybrid Knowledge Engineering

http://hekate.ia.agh.edu.pl

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDE

VARD

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog UML

Outline

- 1 Rule–Based Systems
- 2 HeKatE Approach

3 HaDEs

4 Integration

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Logical Design Physical Design

HaDEs

HaDE

HJed

HQed

HeaRT

nearti

. . ..

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog UML

Rule–Based Systems

Features

- **RBS** → type of expert system
- knowledge representation \rightarrow rules
- state of the system → **factbase**

Rules

- easy to understand and intuitive
- high-level declarative knowledge representation
- logical independence of applications
- constis of **only** two parts: *condition* and *decision*

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design Physical Design

HaDEs

HaDE VARE HJed HQed HeaR

. . ..

Semantic We

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HeKatE Approach

Features

- formal logical system description ALSV(FD)
- three stages of hierarchical design
- $ARD+ \rightarrow$ rule prototyping
- $XTT^2 \rightarrow \text{logical system design}$
- \blacksquare automated implementation \rightarrow prototype generation
- formal on-line verification

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARD

HJed

HQed

HeaR

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Conceptual Design – ARD+

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

HOed

ARD+

- $ARD+ \rightarrow$ Attribute Relationship Diagram
- supportive method for XTT2
- hierarchical method
- general model <u>transformation</u> more detailed model
- the most detailed model $\xrightarrow{\text{automatic transition}}$ schema of XTT2

ARD+ syntax

Definition

Conceptual Attribute. A conceptual attribute A is an attribute describing some general, abstract aspect of the system to be specified and refined.

Definition

Physical Attribute. A physical attribute a is an attribute describing a well-defined, atomic aspect of the system.

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Physical Design

HaDEs

HaDEs

VADD

WAILD.

HJed

HQed

HeaR

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

ARD+ syntax

A *property* is described by one or more attributes.

Definition

Simple Property. PS is a property described by a single attribute.

Definition

Complex Property. PC is a property described by multiple attributes.

Definition

Dependency. A dependency D is an ordered pair of properties $D = \langle p_1, p_2 \rangle$ where p_1 is the independent property, and p_2 is the one that dependent on p_1 .

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARE

HJed

HQed

Heat

.....

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

ARD+ syntax

Definition

Diagram. An ARD diagram G is a pair $G = \langle P, D \rangle$ where P is a set of properties, and D is a set of dependencies.

Constraint

Diagram Restrictions. The diagram constitutes a directed graph with certain restrictions:

- 1 In the diagram cycles are allowed.
- 2 Between two properties only a single dependency is allowed.

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VADE

VAILE

HJed

пце

HeaR'

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Conceptual Design – *ARD*+

ARD+ Features

- visual method
- two types of diagrams:
 - ARD diagram → attributes relationships diagram
 - TPH diagram → history of ARD transformations

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs VARDA HJed

HQed

HeaRT

Tiear

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Simple diagaram

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design Physical Design

HaDEs

HaDE

VARD

H.led

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog UML

ARD+ diagaram transformations

- Diagram transformations are one of the core concepts in the ARD.
- They serve as a tool for diagram specification and development.
- For the transformation T such as T : D₁ → D₂, where D₁ and D₂ are both diagrams, the diagram D₂ carries more knowledge, is more specific and less abstract than the D₁.
- A transformed diagram D_2 constitutes a more detailed *diagram level*.

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARD

HJed

HQed

HeaR

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Finalization transformation

Definition

Finalization. Finalization TF is a function of the form

$$TF: P_1 \rightarrow P_2$$

transforming a simple property P_1 described by a conceptual attribute into a P_2 , where the attribute describing P_1 is substituted by one or more conceptual or physical attributes describing P_2 .

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARD

HJed HQed

HQe

неак

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology

UML

Split transformation

Definition

Split. A split is a function S of the form:

$$S: PS \rightarrow \{PS_1, PS_2, \dots, PS_n\}$$

where a complex property PS is replaced by n properties, each of them described by one or more attributes originally describing PS.

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs VARD4

HJed

HQed

HeaR

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology

HeKatE process and UM representation

The TPH

The purposes of having the hierarchical model are:

- gradual refinement of a designed system, and particularly
- identification of the origin of given properties,
- ability to get back to previous diagram levels for refactoring purposes,
- big picture perspective of the designed system.

Implementation:

- storing the lowest available, most detailed diagram level, and
- information needed to recreate all of the higher levels: Transformation Process History.

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARD

HJed HQed

нųе

HeaR

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

The TPH Examples

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design Physical Design

HaDEs

HaDE

VARD

HJed

HQed

.....

Tiear

.

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog UML

HeKatE process and UM representation Summary

season

operation

►

Temperature

ARD:

TPH:

Time

Date

Hour

season

operation

Date

Hour

The TPH Examples

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARD

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Hekate Rule Language

What is XTT...

- XTT2 → eXtended Tabular Trees
- the main stage of the HeKatE design process
- method of the rules design
- it bases on the ALSV(FD) logic

Features

- XTT2 bases on the classic concept of rule languages with certain extensions:
- provides structured rulebase
- provides visualization
- provides formal and on-line verification
- specifies inference control in the knowledge base

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARD

HQed

пеак

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

ALSV(FD)

ALSV(FD)

- ALSV(FD) Attributive Logic with Set Values over Finite Domains
- more expressive than First Order Logic
- it introduces a concept of generalized atrribute

ALSV(FD) in XTT

- an attribute A_i is a function of the form $A_i : O \rightarrow D_i$
- a rule format:
 - $(A_1 \propto_1 V_1) \land (A2 \propto_2 V_2) \land \cdots \land (A_n \propto_n V_n) \to RHS$
- a simple table format:

Rule	A1	A2	 An	Н
1	$\propto_{11} t_{11}$	$\propto_{12} t_{12}$	 $\propto_{1n} t_{1n}$	h1
2	$\propto_{21} t_{21}$	$\propto_{22} t_{22}$	 $\propto_{2n} t_{2n}$	h2
			· · ·	
			· · ·	
m	$\propto m1 tm1$	$\propto m2^{t}m2$	 $\propto_{mn} t_{mn}$	hm

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design

Physical Design

HaDEs

HaDEs

VARD

HJed

HJed

HQe

HeaR

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

XTT diagram example

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

inget

HeaRT

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog

Rule-Based Systems

$ARD \rightarrow XTT$

CashPoint

Verification of XTT Components

Within the proposed approach verification of the following theoretical properties is performed:

- redundancy subsumption of rules,
- indeterminism overlapping rules,
- completeness missing rules.

The components are checked if they are minimal and reduction possibilities are suggested.

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARD

H.led

HQed

HeaR

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Physical Design

Physical Design

- XTT2 <u>
 automatic transition</u> Physical Implementation (HMR)
- **\blacksquare** graphical representation \rightarrow textual representation
- no semantic gap

HMR

- HMR Hekate Meta Representation
- HMR textual representation
- HMR PROLOG based representation
- directly interpreted by HeaRT engine

GEIST

Rule-Based Systems

HeKatE Approach

Logical Design

Physical Design

HaDEs

HaDEs

VARD

HJed

HQed

Hope

Ticalt

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HMR rule representation

🕨 🗘 (?) diagn	🗘 (?) aller	\$ (?) age	🔷 (->) medic	
AcuteSinusitils	= none	> 17	:= Amoxicillin	
AcuteSinusitils	= none	<= 17	:= Cefuroxime	
AcuteSinusitils	= penicillin	= any	:= Levofloxacin	
Table id: tab 2 - Table1				

xschm 'Tablel': [diagnosis,allergic,age] ==> [medication].

```
xrule 'Tablel'/1:
      [diagnosis eg 'AcuteSinusitils'.
       allergic eg none.
       age gt 171
    ==>
      [medication set 'Amoxicillin']
    'Table2'
xrule 'Tablel'/2:
      [diagnosis eq 'AcuteSinusitils',
       allergic eq none,
       age 1te 17]
    ==>
      [medication set 'Cefuroxime'].
wrule 'Tablel'/3:
      [diagnosis eq 'AcuteSinusitils',
       allergic eg penicillin,
       age eg any]
    - - 2 \lambda
      [medication set 'Levofloxacin'].
```

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design

Physical Design

HaDEs

H-DE-

VADD

HJea

HQed

HeaRT

HalVA

Integration

Semantic Wel

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HeKatE Approach	Physica	I Desigr
-----------------	---------	----------

HeKatE Rule Framework

Conceptual Design Logical Design Physical Design HaDEs HQed

HeKatE GEIST

Knowledge Markup

- Knowledge in the HeKatE design process is described in HML (Hekate Markup Language), a machine readable XML-based format.
- HML consists of three logical parts:
 - ATTML attribute specification,
 - ARDML attribute and property relationship specification and
 - XTTML rule specification.
- number of XSLT transformations provide translation to other markups, e.g. W3C RIF.

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design

Physical Design

HaDEs

HaDEs

HJed

HJea

HQeo

HeaR

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HaDEs HaDEs

HaDEs

HaDEs

- HaDEs Hekate Design Environment
- a set of tools that supports design in HeKatE methodology

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design Physical Design

HaDEs

HaDEs

VAPD

HJed HQed

нųе

HeaR

HalV

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HaDEs VARDA

VARDA

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

conceptual Design

Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog

HaDEs VARDA

VARDA

VARDA

- VARDA Visual ARD Rapid Development Alloy
- is a PROLOG based tool
- allows for ARD+ modeling by using PROLOG-based interface
- has command line user interface
- uses GraphViz for visualization

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design Physical Design

HaDEs

HaDEs

VARDA

HJed

HQed

HeaR

.....

Integration

Semantic Wel

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HeKatE process and UM representation Summarv

HeKatE

HaDEs **VARDA**

VARDA

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Physical Design

HaDEs

VARDA

HQed

HaDEs HJed	
HJed	HeKatE GEIST
	Rule-Based Systems
Java ED itor al ARD+ modeling using GUI the GNU GPL from a.agh.edu.pl/wiki/hekate:h	jed HeKatE Approach Conceptual Design Uogical Design Physical Design HaDEs VARDA HJed
	HQed HeaRT
	HalVA
	Integration Semantic Web Towards integration of HeKALE and the Semantic Web Design Process Ontology UML HeKatE process and UML representation Summary

HJed

- HJed HeKtE
- allows for visua
- available under https://ai.i

HaDEs HQed

HQed

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Physical Design

HaDEs

HaDEs

VARD

H led

HQed

HeaR

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog

HaDEs HQed

HQEd intro

- a complex visual XTT^2 editor
- using the rule prototypes generated with VARDA, it allows for the actual logical rule design
- the editor allows for gradual refinement of rules, with an online checking of attribute domains, as well as simple table properties
- a plugin framework allows for integrating Prolog-based analysis plugins to check formal properties of the XTT rule base
- HQEd is a crossplatform tool written in C++, that depends only on the Qt library
- it is available under the GNU GPL from https://ai.ia.agh.edu.pl/wiki/hekate:hqed
- the output from the editor is a complete rulebase encoded in Prolog
- it can be executed using a Prolog-based inference engine
- the rulebase can be integrated into a larger application as a logical core

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design Physical Design

HaDEs

HaDEs

HOed

Integration

HaDEs HeaRT

HeaRT

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Physical Design

HaDEs

HQed

HeaRT

nearti

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog

HaDEs HeaRT	
HeaRT	HeKatE GEIST
HeaRT (HeKatE Run Time)	Rule-Based Systems
 dedicated inference engine for the XTT² rule bases cross-platform tool written in PROLOG 	HeKatE Approach Conceptual Design Logical Design Physical Design
	HaDEs HaDEs
Functionality	VARDA HJed HQed
store and export models in HMR files	HeaRT HaIVA
 verify HMR syntax and logic (HaIVA) 	Integration Semantic Web Towards integration of HeKatE and the
Communication and integration	Semantic Web Design Process Ontology UML
 direct interaction via Prolog console through TCP/IP protocol offers integration mechanism 	HeKatE process and UML representation Summary

supports Java integration based on callbacks mechanism and Prolog JPL library

HaDEs HeaRT

HeaRT architecture

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

.

Physical Design

HaDEs

VADD

HJed

HQed

HQec

HeaRT

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HalVA

HaDEs

HalV/A

HalVA

- the verification framework for XTT² model
- consists of several PROLOG-based plugins

Features

- it has a simple debugging mechanism
- allows for export entire model to LaTeX
- it supports syntactic analysis of HMR using a DCG grammar
- it provides logical verification of models: completeness, determinism and redundancy
- it can be run from the interpreter or indirectly from HQEd using the communication protocol

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design Physical Design

HaDEs

HaDEs

VARD

H.led

HQed

HeaR

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HaDEs HalVA

Verification cycle

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Physical Design

HaDEs

HaDEs

VARDA

... .

HQed

HeaRT

HalVA

Integratio

Semantic Wel

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog UML

Integration S

Semantic Web

SemWeb Architecture (a.k.a. "layer cake")

- application interface
- safety
- rules, logic (SWRL,RIF, ...)
- ontologies (RDFS, OWL)
- metadata (RDF)
- serialization (XML)
- resource identification (URI)

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

HaDEs

VARDA

HJed

HQed

HeaRT

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Integration S

Semantic Web

SemWeb Architecture (a.k.a. "layer cake")

- application interface
- safety
- rules, logic (SWRL,RIF, ...)
- ontologies (RDFS, OWL)
- metadata (RDF)
- serialization (XML)
- resource identification (URI)

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARD

HJed

HQed

HeaRT

Tiearti

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Integration Semantic Web

Big Picture

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Physical Design

HaDEs

HaDE

VADD

TAIL D

HJed

HQed

HeaRT

HalVA

Integration

Semantic We

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Motivation and challenges for integration

Motivation

- Expressive rule language for the Semantic Web applications
- Visual rule design support
- Methodology for a rule base design, not only single rules
- Formal verification and validation

Integration challenges

- ALSV(FD) dynamic changes of a system, DL terminological structural knowledge
- CWA in ALSV(FD), OWA in DL
- UNA in ALSV(FD)
- nonmonotonicity in ALSV(FD), no assert/retract functions in DL

HeKatE

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design Physical Design

HaDEs

HaDEs

HOed

Integration

Towards integration of HeKatE and the Semantic Web

DAAL Approach

Observation

- KR HeKatE based on Attributive Logic
- Ontologies based on Description Logics

Let's understand the foundations and how they are related

Research track

- Analysis of knowledge representation in
 - Attributive Logic
 - Description Logics
- Mapping proposal

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs VARDA HJed HQed

HeaR

HalVA

Integratio

Semantic We

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Integration Semantic Web

Description And Attributive Logics (DAAL)

1 Conceptual modelling: attributes in AL, concepts in DL

Attr. Name	Attr. Domain	Concept Constructors
A_i	Di	$A_i \equiv D_i$
	$D = \{a_1, a_2, \ldots, a_n\}$	$D \equiv \{a_1, a_2, \ldots, a_n\}$

2 Rule formulas – DL axioms

AL Formula	DL Axiom	AL Formula	DL Axiom
$A_i = d$	$A_i \equiv \{d\}$	$A_i \neq d$	$A_i \equiv \neg \{d\}$
$A_i \in V_i$	$A_i \equiv V_i$	$A_i \notin V_i$	$A_i \equiv \neg V_i$

3 State representation – World description

Attr. Type	AL Formula	DL Assertion
simple	$A_i := d_i$	A(d)
generalized	$A_i := V_i,$	$A(v_{i_1}).A_i(v_{i_2})A_i(v_{i_n})$
	$V_i = \{v_{i_1}, \ldots, v_{i_n}\}$	

 Reasoning – consistency checking of temporary ontologies (rule preconditions + system state) GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design Physical Design

HaDEs

HaDEs

VARD

HJed

HQed

HeaRT

Integration

Semantic Wel

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Inference

Hybrid system: HeaRT engine + DL reasoner

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

H-DE

VARDI

HJed

HQed

HeaRT

HalVA

Integration

Semantic We

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HaThoR Approach

Observation

- HeKatE Markup Language
- RDF/XML syntax for ontologies

How to translate one format to the other?

Research track

- Analysis of serialization formats
- XSLT translators from HML to RDF/XML
- HaThoR 2 Online: http://home.agh.edu.pl/wtf/onto/hathor2/www

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs VARDA H.led

HQed

HeaR

Integration

Semantic We

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Semantic Web

HeKatE Translator (HaThoR)

- **1** Attributes \leftrightarrow instances
- 2 Class constraints: datatype properties for types and object properties linking attributes and types

Attri	butive Logic	Description Logic
Attr. Name	Attr. Domain	DL Axioms
Ai	Di	$Type(T_i), Attribute(A_i)$
	$D_i = \{a_1, \ldots, a_n\}$	$attHasType(A_i, T_i),$
		$domainOfT_i(T_i, D_i)$

3 State: role assertions

Attributive	Logic	Description Logic	
Attribute Type Formula		Assertion in ABox	
simple	$A_i := d_i$	$attTakesValue(A_i, d_i)$	
generalized	$A_i := V_i$	$attTakesValue(A_i, v_1), \ldots$	
		\ldots , attTakesValue(A_i , v_n)	

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design

Physical Design

HaDEs

HaDEs VARD/

HJed

HQed

HeaRT

Integration

Semantic We

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

Inference

SWRLTab in Protegé

<u>File Edit Project QWL R</u> easoning <u>C</u> ode <u>T</u> ools <u>Wi</u> ndow Collaboration <u>H</u> elp				
DBU ⊀Bā ≧uủ ₡७ POÞ ⊲⊳ 🤗 protégé				
🔶 Metadata(hml2owl1-thermostat.owl) 🍋 OWLClasses 📜 Properties 🕻 🔶 Individuals 🕺 🛢 Forms 🎽 🖯 SWRL Rules				
SWRL Rules 🔤 🖷 👼 📆 🗐 🗊				
Enabled Name Expression				
tab 2 rul 5 → attTakesValue(att 9, "April") → attTakesValue(att 6, "Autumn")				
tab 2 rul 5 → attTakesValue(att_9, "March") → attTakesValue(att_6, "Autumn")				
✓ tab 2 rul 5 → attTakesValue(att_9, "May") → attTakesValue(att_6, "Autumn")				
✓ tab 2 rul 6 → attTakesValue(att_9, "August") → attTakesValue(att_6, "Winter")				
Tab 2 rul 6 → attTakesValue(att 9. "July") → attTakesValue(att 6. "Winter")				
tab 2 rul 6 → attTakesValue(att 9. "June") → attTakesValue(att 6. "Winter")				
★ tab 2 rul 8 → attTakesValue(att 9, "November") → attTakesValue(att_6, "Spring")				
tab 2 rul 8 → attTakesValue(att_9, "October") → attTakesValue(att_6, "Spring")				
tab 2 rul 8 → attTakesValue(att 9, "September") → attTakesValue(att 6, "Spring")				
★ tab 3 rul 2 → attTakesValue(att 8, ?var att 8) ∧ swrlb:greaterThanOrEqual(?var att 8, "Tuesday") ∧ swrlb:lessThanOr				
✓ tab 3 rul 9 → attTakesValue(att_8, "Saturday") → attTakesValue(att_10, "weekend")				
- individuais - Axioms - interred individuais - interred Axioms				
SWRLJessTab → Rules → Classes → Property Assertion Axioms				
SWRL rule and relevant OWL knowledge successfully converted to Jess knowledge.				
Number of SWRL rules exported to Jess: 27				
Number of OWL classes exported to jess: 2				
Number of OWI and/duals exported to Jess. 7				
Look at the "less Rules" tab for the less rules.				
Look at the "Imported Jess Classes" tab for the Jess class definitions.				
Look at the "Imported Jess Properties" tab for the Jess property assertions.				
Look at the imported jess individuals tab for the jess individual assertions.				
reas de l'angles souri o fan de jess faic engre.				
OWL+SWRL->less Run less less->OWL				

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs

VARDA

.....

HQed

ngec

HeaRT

HalVA

Integration

Semantic We

Towards integration of HeKatE and the Semantic Web

Design Process Ontology

Design Process Ontology

Motivation

Overcome limitations of ARD:

- allow to specify different classes of functional dependencies,
- provide more expressive means for the history description,
- allow to build a single coherent model combining both functional dependencies and history information.

Idea

Use an ontology to capture the functional dependencies present in the main ARD diagram and history information captured in the TPH.

Design Process Ontology

DPO is a proposal of a *task ontology*. Its aim is to capture the system characteristics together with dependencies among them, as well as represent the gradual refinement of the design process.

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design Physical Design

HaDEs

HaDEs VARDA HJed

HQed

i leaix i

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology

UML

DPO Concepts

Main classes and properties

- a geneneral class Attribute
- 4 properties,
 - dependsOn functional dependencies
 - transformedInto, splitInto and finalizedInto the design process transformations.

DPO for concrete tasks

DPO may be specialized by concrete ontologies for specific design tasks. In this case system characteristics subclass the Attribute class. The properties may be specialized accordingly.

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HaDEs VARDA HJed HQed

HeaR'

Integration

Semantic Wel

Towards integration of HeKatE and the Semantic Web

Design Process Ontology

UML

Integration

Semantic Web

Simple DPO in OWL designed in Protegé

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Conceptual Design

Logical Design Physical Design

HaDEs

HJed

HQed

HeaRT

Design Process Ontology

HeKatE process and UML representation

Phase of Knowledge Representation UML Representation of the the HeKatE Process Design Diagrams Knowledge Representation today 下、、<<derive>> todav Conceptual Design operation operation hour hour ¥ th (?) today (?) hour (->) operation -=workday > 17=nbizhrs Logica Analysis =weekend =anv =nhizhrs -Design Verification =workday <9 =nbizhrs in [9:17] =bizhrs =workday Table id: 3 - th Prolog XMI XML Physical Design Executable System-specific Other systems representation

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design Physical Design

HaDEs

HOed

An example of ARD diagram and its UML representation

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARD

HJed

HQed

HeaRT

incure

Integration

Semantic Wel

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog

HeKatE process and UML representation

An example of XTT table and its UML representation

	(?) today	(?) hour	(->) operation	
→	=workday	> 17	=nbizhrs	►
→	=weekend	=any	=nbizhrs	┝
→	=workday	<9	=nbizhrs	┝
→	=workday	in [9;17]	=bizhrs	┝
	Table id: 3 th			

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Logical Design

Physical Design

HaDEs

HaDEs

VARD

HJed

HQed

HeaRT

Tiear

HalVA

Integration

Semantic Wel

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog

HeKatE process and UML representation

Metamodel for UML representation of ARD

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design

Physical Design

HaDEs

HaDEs

VARDA

....

HQed

inget

неакт

HalVA

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology JML

HeKatE process and UML representation

Metamodel for UML representation of XTT

Example of the OCL constraints for ActivityParameterNode:

context ActivityParameterNode
 inv:

self.incoming->forAll(edge |
edge.source.ocllsTypeOf(MergeNode)
xor
edge.source.ocllsKindOf(Action)

self.outgoing->forAll(edge |
 edge.target.
 oclIsTypeOf(DecisionNode)

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design

Logical Design

Physical Design

HaDEs

VADD

......

HJed

HQe

HeaR'

HalV/

Integration

Semantic Wel

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog

HeKatE process and UML representation

Summary

The proposed representation:

- provides two abstraction levels (tables and system)
- does not introduce new artifacts or extend the UML language
- shows both structure of dependecies and behaviour of the system (rule processing)

The proposed solution:

- provides XMI serialization
- provides translation between UML representation (XMI) and HeKatE project representation (HML)

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach Conceptual Design Logical Design Physical Design

-HaDEs

VARD

Hind

HQed

Heal

.....

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontology UML

HeKatE process and UM representation

The End

HeKatE

GEIST

Rule-Based Systems

HeKatE Approach

Logical Design

Physical Design

HaDEs

HaDE

VARE

Hilad

HQed

Tieat

Integration

Semantic Web

Towards integration of HeKatE and the Semantic Web

Design Process Ontolog UML

HeKatE process and UM representation