
con�ogo

Overview of expert system shells

Krzysztof Kaczor, Szymon Bobek, Grzegorz J. Nalepa

Institute of Automatics
AGH University of Science and Technology, Poland

In»ynieria wiedzy
12.05.2010, Kraków
http://geist.agh.edu.pl

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 1 / 31

http://geist.agh.edu.pl

con�ogo

Outline

1 Introduction

2 Expert system shells

3 Hello World example

4 Rule Inference Algorithms

5 Knowledge modularisation

6 Expert system shells in use

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 2 / 31

con�ogo

Introduction Rules, Rule�based systems

Rule�based systems

Rules � very popular method for knowledge representation.
I Usually presented in the IF...THEN... form.

Rule�based systems � a class of expert systems.

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 3 / 31

con�ogo

Introduction Shells

Expert System Shells

Expert system shell

Has to provide an inference engine and a rule representation language.

Expert system shells � CLIPS, JESS, DROOLS.

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 4 / 31

con�ogo

Expert system shells CLIPS

CLIPS

Supports rule-based, object-oriented and procedural programming.

Inference engine uses the RETE algorithm.

Only provides forward chaining.

LISP-like syntax � all expressions are enclosed within roundz brackets.

The rule format:

(defrule rule_name �optional_comment�
(pattern_1) ; Left-Hand Side (LHS)
(pattern_2) ; of the rule consisting of elements
. ; before the "=>"
.
.
(pattern_N)
=>
(action_1) ; Right-Hand Side (RHS)
(action_2) ; of the rule consisting of elements
. ; after the "=>"
.

(action_M))

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 5 / 31

con�ogo

Expert system shells JESS

JESS

Inference engine uses the RETE algorithm.

Provides forward and backward chaining.

Extends CLIPS syntax.

Knowledge represented as rules or JessML:

(defrule
example-rule
(button)
=>

(printout t

"Hello!" crlf))

<rule>
<name>myrule</name>
<lhs>

<group>
<name>and</name>
<pattern>

<name>MAIN::button</name>
</pattern>

</group>
</lhs>
<rhs>

<funcall>
<name>printout</name>
<value type="SYMBOL">t</value>
<value type="STRING">Hello!</value>
<value type="SYMBOL">crlf</value>

</funcall>
</rhs>

</rule>

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 6 / 31

con�ogo

Expert system shells Drools5

Drools5

More than a classic expert system shell � provides a platform for integration
of processes and rules.

Consists of four modules:
I Drools Guvnor � knowledge base repository.
I Drools Expert � rule engine.
I Drools Flow � work�ow modelling.
I Drools Fusion (event processing/temporal reasoning).

Only provides forward chaining.

Inference engine uses a RETE-based algorithm.

Knowledge represented as rules in Drools5 format:

rule "RuleName" when
// conditions

then
// actions

end

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 7 / 31

con�ogo

Hello World example

Hello World example

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 8 / 31

con�ogo

Hello World example

Hello World example

age
user_message

salutation

hour

greeting

gender

marital_status

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 9 / 31

con�ogo

Hello World example Hello World - CLIPS

Hello World - CLIPS

(defrule rule1 ""
(gender female)
(marital_status married)
(age ?years)
(test (>= ?years 10))
=>

(assert (salut Mrs.))
(printout t "rule1 -> fired" crlf)
)

(defrule rule2 ""
(gender female)
(marital_status single)
(age ?years)
(test (>= ?years 10))
=>

(assert (salut Ms.))
(printout t "rule2 -> fired" crlf)
)
...

...
(defrule rule8 ""

(hour ?value)
(test (<= ?value 24))
(test (>= ?value 23))

=>
(assert (greet "Good Night"))
(printout t "rule9 -> fired" crlf)

)

(defrule rule9 ""
(greet ?g)
(salut ?s)

=>
(printout t ?g " " ?s crlf)

)

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 10 / 31

con�ogo

Hello World example Hello World - Drools

Hello World - Drools

rule "Morning"
no-loop
when

d : DayTime(hour < 12);
then

d.setGreeting("Good morning");
update(d);

end
rule "Afternoon"
no-loop
when

d : DayTime(hour >= 12, hour < 18);
then

d.setGreeting("Good afternoon");
update(d);

end

rule "Salutation Mr"
no-loop
when

p : Person(age >= 10, male == true);
then

p.setSalutation("Mr.");
update(p);

end

rule "UserMessage"
when

p : Person(s : salutation, salutation != null);
d : DayTime(g : greeting, greeting != null);

then
System.out.println(s + " " + g);

end

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 11 / 31

con�ogo

Rule Inference Algorithms Rule Inference Algorithms

Rule Inference Algorithm

An inference algorithm performs three steps:
1 Pattern Matching.
2 Con�ict Set Resolution.
3 Action Execution.

Pattern Matching is a bottleneck of the inference
process.

The naive algorithm is far too slow.

More e�cient algorithms: RETE, TREAT, GATOR.

Changes to
Working Memory

Conflict set

Pattern matching
algorithm

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 12 / 31

con�ogo

Rule Inference Algorithms Main Concepts

Rule Inference Algorithm � concepts

Facts are stored in the Working Memory.

LHS consists of patterns:

Network � a tree-like structure consisting of patterns.

Working element � an object with attribute/value pairs describing it.

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 13 / 31

con�ogo

Rule Inference Algorithms Main Concepts

Rule Inference Algorithm � concepts

A network contains two types of nodes:
I intra-nodes � involve only one working element.

(rule1
(O1, p1 X, p2 12, p3 X, p4 11)
(O2, p1 2, p2 3))

I inter-nodes � involve more than one working element.
(rule1
(O1, p1 X, p2 12, p3 X, p4 Y)
(O2, p1 2, p2 Y))

Alpha memory � a set containing all intra-nodes (a subset of the network).

Beta memory � a set containing all inter-nodes (a subset of the network).

Productions � a set containing rules.

Con�ict set � a set containing ready-to-�re rules.

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 14 / 31

con�ogo

Rule Inference Algorithms RETE

RETE

RETE was considered the most e�cient
inference algorithm.

It tries to avoid iterating over the working
memory and the production set.

Network build process:
1 Alpha-memory building � linear sequence

of intra-elements (one-input nodes).
2 Beta-memory building � joins of intra-

and inter-elements (two-input nodes).

Each node has a memory.

[fragile]

a2a1 a3 a4 a5 a6 a7

b4

b1

b2

b3

b5

P-node

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 15 / 31

con�ogo

Rule Inference Algorithms RETE

RETE

(rule1
(o1: p1 X, p2 3)
(o2: p1 X, p2 Y)
(o3: p1 Y)

)

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 16 / 31

con�ogo

Rule Inference Algorithms RETE

RETE

(rule1
(o1: p1 X, p2 3)
(o2: p1 X, p2 Y)
(o3: p1 Y)

)

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 16 / 31

con�ogo

Rule Inference Algorithms RETE

RETE

(rule1
(o1: p1 X, p2 3)
(o2: p1 X, p2 Y)
(o3: p1 Y)

)

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 16 / 31

con�ogo

Rule Inference Algorithms RETE

RETE

(rule1
(o1: p1 X, p2 3)
(o2: p1 X, p2 Y)
(o3: p1 Y)

)

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 16 / 31

con�ogo

Rule Inference Algorithms RETE

RETE

(rule1
(o1: p1 X, p2 3)
(o2: p1 X, p2 Y)
(o3: p1 Y)

)

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 16 / 31

con�ogo

Rule Inference Algorithms TREAT

TREAT � General concepts

Based on three ideas:
1 Memory support � creation and

maintenance of the
alpha-memory.

2 Con�ict set support � the con�ict
set is explicitly retained across
production system cycles.

3 Condition membership �
introduces a new property for
each rule, called rule-active. The
match algorithm ignores rules
that are non�active.

TREAT does not use beta-memory.

R1 R2 R3 R4 R5

R2 R5R1 R3 R4

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 17 / 31

con�ogo

Rule Inference Algorithms Gator

Gator � general concepts

Each rule can be represented by a condition graph.

R1(a > 17, d(X)),

R2(d(X), e(Y), g(Z)),

R3(c = on, g(Z)),

R4(e(Y), f (W)),

R5(b = Friday , f (W))

R1 R2

R3

R4 R5R1.d=R2.d

R3.g=R2.g

R2.e=R4.e R4.f=R5.f

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 18 / 31

con�ogo

Rule Inference Algorithms Gator

Gator � details

Gator network structure:
1 Alpha-memory.
2 Optional beta-memory.
3 P-node.

Network optimisation:
1 Connectivity heuristic.
2 Disjointness constraint.
3 Lowest-cost heuristic.

R1 R2 R3 R4 R5

R2 R5R1 R3 R4

R2 R5R1 R3 R4

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 19 / 31

con�ogo

Rule Inference Algorithms Gator

Inference algorithms � comparison

TREAT vs. RETE

TREAT does not use beta-memory:
I It saves time.
I No redundant information � saves space.

TREAT works directly on the con�ict set.

Gator vs. TREAT

RETE and TREAT are special cases of Gator.

Gator beta-memory is optional and can have multiple inputs.

Gator networks are always optimal according to certain cost functions.

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 20 / 31

con�ogo

Knowledge modularisation Knowledge modularisation

Knowledge modularisation

Main goals of modularisation

1 to help manage large sets of rules,

2 to improve performance of inference algorithms,

3 to provide visualisation of the knowledge base,

4 to improve inference control strategies.

Note

There aren't any tools supporting all four goals.

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 21 / 31

con�ogo

Knowledge modularisation CLIPS

CLIPS modules

Rules in CLIPS may be grouped into modules.

A module is a set of non�related rules.

Each module has its own discrimination network.

Inference algorithms test and �re only the rules in the module that has focus.

When �red, any rule can change the current focus:

...
CLIPS> (defmodule A)
CLIPS> (defmodule B)
CLIPS> (defrule A::foo => (focus B))
CLIPS> (defrule B::bar => (return))

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 22 / 31

con�ogo

Knowledge modularisation Hello World - CLIPS

Hello World - CLIPS

(defmodule salutation
(import MAIN ?ALL)
(export ?ALL))

(defmodule greeting
(import MAIN ?ALL)
(export ?ALL))

(defmodule userMessage
(import MAIN ?ALL)
(import salutation ?ALL)
(import greeting ?ALL))

(defrule MAIN::startrule ""
=>
(printout t "---- STARTING ----" crlf)
(focus salutation greeting userMessage)

)

(defrule salutation::rule1 ""
(gender female)
(marital_status married)
(age ?years)
(test (>= ?years 10))
=>

(assert (salut Mrs.))
(printout t "rule1 -> fired" crlf)
(pop-focus)

)

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 23 / 31

con�ogo

Knowledge modularisation JESS

JESS modules

JESS also supports rule grouping.

Each module can contain any rules.

A given rule always belongs to only one module.

Inference algorithms always test all the rules.

Only rules that are in the module in focus can be �red.

When �red, any rule can change the current focus:

...
JESS> (defmodule A)
JESS> (defmodule B)
JESS> (defrule A::foo => (focus B))
JESS> (defrule bar => (return))

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 24 / 31

con�ogo

Knowledge modularisation Drools Flow

Drools Flow

Provides visualisation and a graphical user interface (GUI):

Rules are stored in one global knowledge base.

Rules can be grouped into rule�ow-groups:
rule "Rule1"
ruleflow-group "Task1"
when
...
then
...

end

Only rules from the current rule�ow-group are evaluated and �red.

Rule�ow-groups determine the order of the rules evaluation and execution.

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 25 / 31

con�ogo

Knowledge modularisation Hello World - Drools

Hello World - DroolsExpert

rule "Morning"
ruleflow-group "Greeting"
no-loop
when

d : DayTime(hour < 12);
then

d.setGreeting("Good morning");
update(d);

end
rule "Afternoon"
ruleflow-group "Greeting"
no-loop
when

d : DayTime(hour >= 12, hour < 18);
then

d.setGreeting("Good afternoon");
update(d);

end

rule "Salutation Mr"
ruleflow-group "Salutation"
no-loop
when

p : Person(age >= 10, male == true);
then

p.setSalutation("Mr.");
update(p);

end

rule "UserMessage"
ruleflow-group "Message"
when

p : Person(s : salutation);
d : DayTime(g : greeting);

then
System.out.println(s + " " + g);

end

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 26 / 31

con�ogo

Knowledge modularisation Hello World - Drools

Hello World - DroolsFlow

rule "Morning"
 ruleflow-group "Greeting"
 no-loop
 when
 d : DayTime(hour < 12);
 then
 d.setGreeting("Good morning");
 update(d);
end

rule "UserMessage"
 ruleflow-group "Message"
 when
 p : Person(s : salutation);
 d : DayTime(g : greeting);
 then
 System.out.println(s + " " + g);
end

rule "Salutation Mr"
 ruleflow-group "Salutation"
 no-loop
 when
 p : Person(age >= 10, male == true);
 then
 p.setSalutation("Mr.");
 update(p);
end

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 27 / 31

con�ogo

Knowledge modularisation Knowledge base modularisation

Comparison

All introduced shells support rule modularisation.

Shells support modularisation on di�erent levels:
I CLIPS, Drools � only rules from the current module are evaluated.
I JESS � only rules from the current module can be �red.

Rule modularisation is not related to rule context.

Feature CLIPS Jess Drools

Knowledge modularisation Yes Partiall Yes
Knowledge visualisation No No Yes
Formal rules representation No No No
Knowledge base veri�cation No No No
Inferences strategies DDI DDI, GDI, DDI
Inference algorithm Rete Rete Rete
Allows for modelling dynamic pro-
cesses

No No Yes

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 28 / 31

con�ogo

Expert system shells in use CLIPS applications

CLIPS applications

Constraint Programming within CLIPS

A generic knowledge base which enables CLIPS to solve CSPs (time table,
cross-words, graph colouring, job shop scheduling, SAT problems)

Expert Surgical Assistant

A prototype surgery interface that allows surgeons to interact with virtual tissue
and organ models using an intuitive combination of voice and gesture and also
monitors their actions to give automatic feedback

Expert System Benchmarks

CLIPS versions of ARP (Aeronautical Route Planner), Waltz (Diagram Labeling),
and Weaver (VLSI routing for channels and boxes) and other.

On-Line Nuclear Power Plant

A Java applet that simulates processes inside a nuclear power plant

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 29 / 31

con�ogo

Expert system shells in use Drools users

Drools users

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 30 / 31

con�ogo

Expert system shells in use Drools users

The End

Thank you for your attention!

Any questions?

Web Page: http://geist.agh.edu.pl

Powered by LATEX

KK+SBK+GJN (AGH-UST) Expert system shells explicite 25-02-2010 31 / 31

http://geist.agh.edu.pl

	Introduction
	Rules, Rule--based systems
	Shells

	Expert system shells
	CLIPS
	JESS
	Drools5

	Hello World example
	Hello World - CLIPS
	Hello World - Drools

	Rule Inference Algorithms
	Rule Inference Algorithms
	Main Concepts
	RETE
	TREAT
	Gator

	Knowledge modularisation
	Knowledge modularisation
	CLIPS
	Hello World - CLIPS
	JESS
	Drools Flow
	Hello World - Drools
	Hello World - Drools
	Knowledge base modularisation

	Expert system shells in use
	CLIPS applications
	Drools users

