
GEIST

Department
of Automatics

Introduction to Python and Lisp

Sławomir Nowaczyk

Laboratorium Informatyki

Katedra Autormatyki

Akademia Górniczo-Hutnicza

January 21, 2009

Introduction to Python and Lisp – p. 1/75

GEIST

Department
of Automatics

Languages of AI

Special purpose languages (SQL, XSL, awk, ...)
PROLOG
PDDL: Planning Domain Definition Language

Bertrand: Constraint Programming
KQML, Phantom, SAIL, ARL, Brahms, CEL,
AgentSpeak, MAML, ...

General purpose languages
exploratory programming
mutable specifications
tricky problems
limited system integration
expert users

Introduction to Python and Lisp – p. 2/75

GEIST

Department
of Automatics

Powerful Language

Expressive abstraction mechanisms
groupsimilar concepts together

Ways to avoid code duplication
specify smalldifferencesefficiently

Express complex concepts cleanly
clear mapping into“programmer’s head”

Programming skills & learning curve
will bad programmer blow things up?
handling idiosyncrasies within a project

Mental effort
is coding more like puzzle-solving?

Introduction to Python and Lisp – p. 3/75

GEIST

Department
of Automatics

Abstraction Mechanisms

Functions

if(action.equals("+"))

{

b = Integer.valueOf(stack.removeLast());

a = Integer.valueOf(stack.removeLast());

result = a+b;

stack.addLast(String.valueOf(result));

updateDisplay();

System.out.println(String.valueOf(a) +

"+" + String.valueOf(b) + "=" +

String.valueOf(result));

}

Introduction to Python and Lisp – p. 4/75

GEIST

Department
of Automatics

Functional Abstraction
interface Operation

{ int apply(int a, int b); }

class AddOperation implements Operation

{ int apply(int a, int b) {return a+b;} }

void doComputation(Operation operation) {

b = Integer.valueOf(stack.removeLast());

a = Integer.valueOf(stack.removeLast());

result = operation.apply(a,b);

stack.addLast(String.valueOf(result));

updateDisplay();

System.out.println(String.valueOf(a) +

"+" + String.valueOf(b) + "=" +

String.valueOf(result));

} Introduction to Python and Lisp – p. 5/75

GEIST

Department
of Automatics

Functional Abstraction
interface ZeroDiv

{ bool isValid(int a, int b) return true; }

class ZeroDivReal implements ZeroDiv

{ int isValid(int a, int b) return b!=0; }

void doComputation(Operation operation,

ZeroDiv zerodiv) {

b = Integer.valueOf(stack.removeLast());

a = Integer.valueOf(stack.removeLast());

if (zerodiv.isValid()) {

result = operation.apply(a,b);

stack.addLast(String.valueOf(result));

updateDisplay();

System.out.println(...);

} } Introduction to Python and Lisp – p. 6/75

GEIST

Department
of Automatics

Functional Abstraction
void doComputation(Operation operation,

ZeroDiv zerodiv,

StackItemSelector sel,

ArgumentsOrder order,

Associativity assoc,

Display display,

...)

{

...

}

Introduction to Python and Lisp – p. 7/75

GEIST

Department
of Automatics

File Handling
FileOutputStream out;

PrintStream p;

try

{

out = new FileOutputStream("myfile.txt");

p = new PrintStream(out);

p.println("This is written to a file");

p.close();

}

catch (Exception e)

{

System.err.println ("Error");

}

Introduction to Python and Lisp – p. 8/75

GEIST

Department
of Automatics

File Handling
FileOutputStream out;

PrintStream p;

try

{

out = new FileOutputStream("myfile.txt");

p = new PrintStream(out);

p.println(getResult());

p.close();

}

catch (Exception e)

{

System.err.println ("Error");

}

Introduction to Python and Lisp – p. 9/75

GEIST

Department
of Automatics

File Handling
FileOutputStream out;

PrintStream p;

try

{

out = new FileOutputStream("myfile.txt");

p = new PrintStream(out);

p.println(getResult());

}

finally

{ p.close(); }

catch (Exception e)

{ System.err.println("Error"); }

Introduction to Python and Lisp – p. 10/75

GEIST

Department
of Automatics

Resource Acquisition Is Initialization
void main() {

file myfile("myfile.txt");

myfile.write(getResult());

}

class file {

FILE* file_;

file (const char* filename)

: file_(fopen(filename, "w+")) {

if (!file_)

throw runtime_error("failure");

}

~file() { fclose(file_) }

}

Introduction to Python and Lisp – p. 11/75

GEIST

Department
of Automatics

Programming Languages Evolution

General-purpose programming languages are
becoming more and moreLisp-like

Lisp is only 1 year younger than Fortran
14 years older than C
33 years older than Python
37 years older than Java

Code readability

Dynamism

Compiled to a byte code

Interpreted by virtual machine

Garbage collection

Introduction to Python and Lisp – p. 12/75

GEIST

Department
of Automatics

Basic Python Features

Interactiveshell
incredibly useful for debugging

Rich container types

Functions, classes, modules

Namespaces

Exceptions

Portable

Powerful introspection

Plenty of dynamic features

Extremely rich standard library

Introduction to Python and Lisp – p. 13/75

GEIST

Department
of Automatics

Python Applications

Industrial Light & Magic

ForecastWatch.com

Frequentis TAPtools

AstraZeneca

MayaVi

YouTube.com

Google

Journyx

EZTrip.com

Firaxis Games

...

Introduction to Python and Lisp – p. 14/75

GEIST

Department
of Automatics

The Zen of Python, by Tim Peters
Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one– and preferably only one –obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea – let’s do more of those!

Introduction to Python and Lisp – p. 15/75

GEIST

Department
of Automatics

Python Design

Readability
“Python is executable pseudocode”
whitespace is significant (no brackets)
use English keywords instead of punctuation

Multi-paradigm programming language

Strongly dynamically typed language
variables are not declared
any value can be assigned
values “carry their own types”

a = 1; a = "x" # OK
1 == "1" # False

Introduction to Python and Lisp – p. 16/75

GEIST

Department
of Automatics

Basic Python Features

Numeric types: long, complex & rational

Both “normal” and unicode strings
immutable

Dictionaries as fundamental data type
hash tables with immutable keys
internally storing fields & methods of classes

Lists and tuples
flexible arrays (not linked lists)
indexing, slices & other basic operations

Assignment manipulates references
x = y does not make a copy

Introduction to Python and Lisp – p. 17/75

GEIST

Department
of Automatics

Basic Python Features

“Batteries-included” approach to standard library
one of Python’s greatest strengths
makes Python a powerfulglue language

Numerous high-level data types
tuple
set & frozenset
datetime, calendar
heapq
queue, deque
defaultdict
namedtuple
weakref

Introduction to Python and Lisp – p. 18/75

GEIST

Department
of Automatics

Standard Library

Core
os, sys, string, getopt, struct, pickle, re,

Internet
socket, rfc822, httplib, htmllib, ftplib, smtplib,

Data types
datetime, calendar, sets, mutex, weakref,

Operating system
threading, select, mmap, ctypes, platform,

Miscellaneous
pdb, profile, Tkinter, audio, dbm, xml,
distutils, zipfile

Introduction to Python and Lisp – p. 19/75

GEIST

Department
of Automatics

Control Structures
if x < 0:

print "negative"

elif x > 0:

print "positive"

else:

print "zero"

for x in argv:

print x

while True:

if not done:

continue

break

Introduction to Python and Lisp – p. 20/75

GEIST

Department
of Automatics

Functions
def add(x, y): return x+y

def add(x=0, y=0):

"documentation string"

return x+y

def add(*args): # add(1,2,3,4,5)

res = 0

for x in args: res += x

return res

def display(**arg): # display(a=1,b=2,c=3)

for i in arg:

print "%s: %s" % (i, arg[i])

Introduction to Python and Lisp – p. 21/75

GEIST

Department
of Automatics

Lists
s = [1,2,"a","b",[1,2],{1:2,3:4}]

s[i] = x

s[i:j] = t

del s[i:j]

s.append(x)

s.extend(x)

s.count(x)

s.index(x[, i[, j]])

s.insert(i, x)

s.pop([i])

s.remove(x)

s.reverse()

s.sort([cmp[, key[, reverse]]])

Introduction to Python and Lisp – p. 22/75

GEIST

Department
of Automatics

Some More Exotic Features

Iterators
for line in file("fname"):

Anonymous functions

>>> sorted(["a","B","c"])

[’B’, ’a’, ’c’]

>>> sorted(["a","B","c"],

key=lambda x: x.lower())

[’a’, ’B’, ’c’]

“else” clause in loops

for x in [1,2,3,4]:

if x==5: break

else: print "Not found"

Introduction to Python and Lisp – p. 23/75

GEIST

Department
of Automatics

Generators

Functions with “resume” capability

def Fibonacci():

a, b = 0, 1

while True:

yield a

a, b = b, a + b

Usable as iterators
for i in Fibonacci():

print i

Generator expressions
sum(i*i for i in range(10))

Introduction to Python and Lisp – p. 24/75

GEIST

Department
of Automatics

Resource Acquisition

Context managers
with open("/etc/passwd", "r") as File:

File.write(getResult())

More or less equivalent to

__manager = open("/etc/passwd", "r")

File = __manager.__enter__()

try:

File.write(getResult())

except Exception, e:

if not __manager.__exit__(e):

raise e

Introduction to Python and Lisp – p. 25/75

GEIST

Department
of Automatics

Properties
class myclass(object):

def __init__(self):

self.__x = None

def getx(self): return self.__x

def setx(self, value): self.__x = value

def delx(self): del self.__x

x = property(getx, setx, delx,

"I’m the ’x’ property.")

a = myclass()

a.x = 5 # Set

print a.x # Get

del a.x # Del

Introduction to Python and Lisp – p. 26/75

GEIST

Department
of Automatics

Some Code Examples

Decode a base64 encoded file

import base64, sys

fin = open(sys.argv[1], "rb")

fout = open(sys.argv[2], "wb")

base64.decode(fin,fout)

Download a web page

import urllib2

f = urllib2.urlopen(’http://www.python.org/’)

print f.read(1024)

Introduction to Python and Lisp – p. 27/75

GEIST

Department
of Automatics

Some Examples

Countbytes-transferredfrom apache log

81.107... "GET /ply/ HTTP/1.1" 200 7587

81.107... "GET /fav.ico HTTP/1.1" 404 133

wwwlogfile = open("access-log")

bytecolumn = (line.rsplit(None,1)[1]

for line in wwwlog)

bytescount = (int(x) for x in bytecolumn

if x != ’-’)

print "Total", sum(bytes)

Introduction to Python and Lisp – p. 28/75

GEIST

Department
of Automatics

Some Examples

Get all links in a web page
import HTMLParser, urllib

class linkParser(HTMLParser.HTMLParser):

def __init__(self):

HTMLParser.HTMLParser.__init__(self)

self.links = []

def handle_starttag(self, tag, attrs):

if tag==’a’:

self.links.append(dict(attrs)[’href’])

htmlSource = urllib.urlopen(

"http://www.python.org/").read()

p = linkParser().feed(htmlSource)

for link in p.links:

print link
Introduction to Python and Lisp – p. 29/75

GEIST

Department
of Automatics

Some Examples

Fetch, read and parse RSS

import urllib, sys, xml.dom.minidom

address = ’http://www.example.org/rss’

txt = urllib.urlopen(address)

doc = xml.dom.minidom.parse(txt)

for item in doc.getElementsByTagName(’item’):

title = item.getElementsByTagName(

’title’)[0].firstChild.data

print "Title:",

title.encode(’latin-1’,’replace’)

Introduction to Python and Lisp – p. 30/75

GEIST

Department
of Automatics

Metaclasses

Very powerful mechanism
not for the faint of heart

def class_with_method(func):

class klass: pass

setattr(klass, func.__name__, func)

return klass

def say_foo(self): print ’foo’

Foo = class_with_method(say_foo)

foo = Foo()

foo.say_foo()

Introduction to Python and Lisp – p. 31/75

GEIST

Department
of Automatics

Metaclasses, cont.

Metaclasses: a solution looking for a problem?

Metaclasses are deeper magic than 99% of

users should ever worry about. If you

wonder whether you need them, you don’t

(the people who actually need them know

with certainty that they need them, and don’t

need an explanation about why).

— Python Guru Tim Peters

Introduction to Python and Lisp – p. 32/75

GEIST

Department
of Automatics

Metaclasses Example
class Printable(type):

def whoami(cls):

print "I am a", cls.__name__

Foo = Printable(’Foo’,(),{})

Foo.whoami()

class Bar():

__metaclass__ = Printable

def who(self): print "Who?"

Bar().who()

Bar.whoami()

Introduction to Python and Lisp – p. 33/75

GEIST

Department
of Automatics

Aspect-Oriented Programming
if len(sys.argv) > 2:

mod, mc = sys.argv[1:3]

m = __import__(mod,globals(),locals(),[mc])

__metaclass__ = getattr(m, mc)

class Data:

def __init__(self):

self.num, self.str = 38, "spam"

self.lst = [’a’,’b’,’c’]

def dumps(s): return str((s.__dict__))

print Data()

{’lst’:[’a’,’b’,’c’],’num’:38,’str’:’spam’}

Introduction to Python and Lisp – p. 34/75

GEIST

Department
of Automatics

Aspect-Oriented Programming
% dump.py gnosis.magic MetaXMLPickler

<?xml version="1.0"?>

<!DOCTYPE PyObject SYSTEM "PyObjects.dtd">

<PyObject module="__main__" class="Data" id="720748">

<attr name="lst" type="list" id="980012" >

<item type="string" value="a" />

<item type="string" value="b" />

<item type="string" value="c" />

</attr>

<attr name="num" type="numeric" value="38" />

<attr name="str" type="string" value="spam" />

</PyObject>

Introduction to Python and Lisp – p. 35/75

GEIST

Department
of Automatics

Aspect-Oriented Programming
class MetaPickler(type):

"Metaclass for gnosis.xml serialization"

def __init__(cls, name, bases, dict):

from gnosis.xml.pickle import dumps

super(MetaPickler, cls).__init__(

name, bases, dict)

setattr(cls, ’dumps’, dumps)

Introduction to Python and Lisp – p. 36/75

GEIST

Department
of Automatics

Dynamic language
py> from ctypes import *
py> class X:

... def __init__(s, foo): s.foo = foo

py> x = X(123)

py> x.foo

123

py> p = cast(c_char_p("foo"),POINTER(c_char))

py> p[0],p[1],p[2] = "b","a","r"

py> x.foo

AttributeError: X has no attribute ’foo’

py> dir(x)

[’__doc__’, ’__init__’, ’__module__’, ’bar’]

py> x.bar

AttributeError: X has no attribute ’bar’

Introduction to Python and Lisp – p. 37/75

GEIST

Department
of Automatics

Django

High-level Python Web framework
rapid development
clean design

Object-relational mapper
automatically manage DB
rich API available

Automatically generated admin interface

Flexible URL configuration

Rich template definition language

Customisable caching framework

Syndication-feed-generating framework

Introduction to Python and Lisp – p. 38/75

GEIST

Department
of Automatics

Django Framework
#> django-admin.py startproject mysite

mysite/

__init__.py

manage.py

settings.py

urls.py

#> python manage.py runserver

Validating models...

0 errors found.

Django version 1.0, using settings ’mysite.settings’

Development server is running at http://127.0.0.1:8000/

Introduction to Python and Lisp – p. 39/75

GEIST

Department
of Automatics

Django Framework
#> vi settings.py

DATABASES = {

’default’: {

’ENGINE’: ’django.db.backends.sqlite3’,

’NAME’: ’mydatabase’

} }

INSTALLED_APPS = (

’django.contrib.auth’,

’django.contrib.contenttypes’,

’django.contrib.sessions’,

’django.contrib.sites’,

’mysite.polls’)

#> python manage.py syncdb

Introduction to Python and Lisp – p. 40/75

GEIST

Department
of Automatics

Django Framework
#> python manage.py startapp polls

#> vi polls/models.py

from django.db import models

class Poll(models.Model):

question = models.CharField(max_length=200)

pub_date = models.DateTimeField(

’date published’)

class Choice(models.Model):

poll = models.ForeignKey(Poll)

choice = models.CharField(max_length=200)

votes = models.IntegerField()

Introduction to Python and Lisp – p. 41/75

GEIST

Department
of Automatics

Lisp

LISt Processing language
primary data structure is a linked list
(elem1 elem2 elem3 elem4)

source code is organised in the same fashion
readily-availableabstract syntax tree

Code and data are interchangeable
basic syntax of the language is very simple
heavily customisable usingmacros

Read-Eval-Print Loop
reads-expression
evaluate resultingLisp form

Introduction to Python and Lisp – p. 42/75

GEIST

Department
of Automatics

Lambda Calculus

Lambda terms
variablex

λx.t

ts

Identity functionλx.x

Constant functionλx.y

Function application(λx.x)y

Introduction to Python and Lisp – p. 43/75

GEIST

Department
of Automatics

Lisp Applications

Emacs
the extensible, customizable,
self-documenting, real-time display editor
large portion of code written in Lisp
Lisp is the extension language
by far the best IDE in existence

AutoCAD

Script-Fu plugins for GIMP

Remote Agent (NASA Deep Space 1, 1998)

ITA Software’s airline engine

Yahoo Store

...
Introduction to Python and Lisp – p. 44/75

GEIST

Department
of Automatics

Language Evolution

Paul Graham, The Roots of Lisp, May 2001:

It seems to me that there have been two really clean,
consistent models of programming so far: the C model
and the Lisp model. These two seem points of high
ground, with swampy lowlands between them. As
computers have grown more powerful, the new lan-
guages being developed have been moving steadily to-
ward the Lisp model. A popular recipe for new pro-
gramming languages in the past 20 years has been to
take the C model of computing and add to it, piece-
meal, parts taken from the Lisp model, like runtime
typing and garbage collection.

Introduction to Python and Lisp – p. 45/75

GEIST

Department
of Automatics

First Language to Have...

Conditionals: if-then-else constructs

A function type

Recursion

Typed values rather than typed variables

Dynamic memory allocation

Garbage collection

Incremental compilation

Built-in extensibility

The whole language always available
programs are capable of constructing and
executing other programs on the fly

Introduction to Python and Lisp – p. 46/75

GEIST

Department
of Automatics

Learning Lisp

Lisp is worth learning for a different reason:

the profound enlightenment experience you

will have when you finally get it. That ex-

perience will make you a better programmer

for the rest of your days, even if you never

actually use Lisp itself a lot.

— Eric Raymond, the author of The Cathedral and the

Bazaar, The Art of Unix Programming, The New

Hacker’s Dictionary
Introduction to Python and Lisp – p. 47/75

GEIST

Department
of Automatics

Lisp Design

Every Lisp object is either an atom or a list

Empty list is both:(), nil

(a . (b . NIL)) == (a b)

(+ 1 2) ==> 3

’(+ 1 2) ==> (+ 1 2)

(defun fib (n)

(if (< n 3)

1

(+ (fib (- n 1) (fib (- n 2))))))

(format t "Hello, world!")

Introduction to Python and Lisp – p. 48/75

GEIST

Department
of Automatics

Lisp Basics
(defun hello-world ()

(format t "hello, world"))

CL-USER> (hello-world)

hello, world

NIL

(defvar *db* nil)

(push (list :name "A" :count 2 :value 3) *db)

(push (list :name "B" :count 3 :value 8) *db)

(defun dump-db ()

(dolist (cd *db*)

(format t "~{~a:~10t~a~%~}~%" cd)))

Introduction to Python and Lisp – p. 49/75

GEIST

Department
of Automatics

Lisp Basics
(defun save-db (filename)

(with-open-file (out filename

:direction :output

:if-exists :supersede)

(with-standard-io-syntax

(print *db* out))))

(defun load-db (filename)

(with-open-file (in filename)

(with-standard-io-syntax

(setf *db* (read in)))))

Introduction to Python and Lisp – p. 50/75

GEIST

Department
of Automatics

Lisp Examples
CL-USER> (setf *print-circle* t)

CL-USER> (setq x ’(a b c))

(A B C)

CL-USER> (setq y ’(d e f))

(D E F)

CL-USER> (nconc x y)

(A B C D E F)

CL-USER> x

(A B C D E F)

CL-USER> y

(D E F)

CL-USER> (nconc x y)

(A B C . #1=(D E F . #1#))

Introduction to Python and Lisp – p. 51/75

GEIST

Department
of Automatics

Lisp Examples
((a 1) (b 2) (c 3))

==>

((1 a) (2 b) (c 3))

(defun reverse-inner (lsts)

(mapcar #’reverse lsts))

Introduction to Python and Lisp – p. 52/75

GEIST

Department
of Automatics

Lisp Examples
CL-USER> (setq x

’((pear 3) (potatoe 7) (leek 5)))

((PEAR 3) (POTATOE 7) (LEEK 5))

CL-USER> (reduce #’+ x :key #’second)

15

Introduction to Python and Lisp – p. 53/75

GEIST

Department
of Automatics

Lisp Examples
CL-USER>

(let ((seq ’(1 2 3 4 5)))

(list

(position (reduce #’min seq) seq)

(position (reduce #’max seq) seq)))

(0 4)

Introduction to Python and Lisp – p. 54/75

GEIST

Department
of Automatics

Binary Tree in Lisp
(defun make-bin-tree-leaf (E)

"Create a leaf."

(list E))

(defun make-bin-tree-node (E B1 B2)

"Create a node with element K, left

subtree B1 and right subtree B2."

(list E B1 B2))

(defun bin-tree-leaf-element (L)

"Retrieve the element of a leaf L."

(first L))

(defun bin-tree-node-element (N)

"Retrieve the element of a node N."

(first N))

Introduction to Python and Lisp – p. 55/75

GEIST

Department
of Automatics

Binary Tree in Lisp
(defun bin-tree-node-left (N)

"Retrieve the left subtree of a node N."

(second N))

(defun bin-tree-node-right (N)

"Retrieve the right subtree of a node N."

(third N))

(defun bin-tree-leaf-p (B)

"Test if binary tree B is a leaf."

(and (listp B) (= (list-length B) 1)))

(defun bin-tree-node-p (B)

"Test if binary tree B is a node."

(and (listp B) (= (list-length B) 3)))

Introduction to Python and Lisp – p. 56/75

GEIST

Department
of Automatics

Binary Tree in Lisp
CL-USER> (make-bin-tree-node ’*

(make-bin-tree-node ’+

(make-bin-tree-leaf 2)

(make-bin-tree-leaf 3))

(make-bin-tree-node ’-

(make-bin-tree-leaf 7)

(make-bin-tree-leaf 8)))

(* (+ (2) (3)) (- (7) (8)))

Introduction to Python and Lisp – p. 57/75

GEIST

Department
of Automatics

Binary Tree in Lisp
(defun bin-tree-member-p (B E)

"Test if E is an element in binary tree B."

(if (bin-tree-leaf-p B)

(equal E (bin-tree-leaf-element B))

(let

((elmt (bin-tree-node-element B))

(left (bin-tree-node-left B))

(right (bin-tree-node-right B)))

(or (equal E elmt)

(bin-tree-member-p left E)

(bin-tree-member-p right E)))))

Introduction to Python and Lisp – p. 58/75

GEIST

Department
of Automatics

Binary Tree in Lisp
(defun bin-tree-preorder (B)

"Create a list containing keys

of B in preorder."

(if (bin-tree-leaf-p B)

(list (bin-tree-leaf-element B))

(let

((elmt (bin-tree-node-element B))

(left (bin-tree-node-left B))

(right (bin-tree-node-right B)))

(cons elmt

(append (bin-tree-preorder left)

(bin-tree-preorder right))))))

Introduction to Python and Lisp – p. 59/75

GEIST

Department
of Automatics

Macros

Themost powerful feature of any language
code which is used to create more code
full-fledgedcode generationsystem
metaprogramming technique

Macro takesunevaluated Lisp codeas argument
and returns a newLisp formto be evaluated

(defun backwards (expr) (reverse expr))

(backwards ’(1 2 3)) ==> (3 2 1)

...

(defmacro backwards (expr) (reverse expr))

...

(backwards ("Hello, world" t format))

Introduction to Python and Lisp – p. 60/75

GEIST

Department
of Automatics

Macros

Themost powerful feature of any language
code which is used to create more code
full-fledgedcode generationsystem
metaprogramming technique

Macro takesunevaluated Lisp codeas argument
and returns a newLisp formto be evaluated

(defmacro backwards (expr) (reverse expr))

(backwards ("Hello, world" t format))

Hello, world

...

(macroexpand ’(backwards ("Hi" t format)))

(FORMAT T "Hi")

Introduction to Python and Lisp – p. 61/75

GEIST

Department
of Automatics

Macros Explained

Macros look like functions
(defun add-f (a b) (+ a b))

(defmacro add-m (a b) (+ a b))

Macro returns aform, not a value
(add-m 1 2) <==> 3

Macro getsexpandedduringcompilation
(macroexpand ’(add-m 1 2)) ==> 3

(let ((a 1)) (add-m a 5)) is an error
atcompile-time, sincea is not a number

(defmacro add-m (a b) ’(+ a b))

(macroexpand ’(add-m 1 2)) ==> (+ A B)

(let ((a 1) (b 2)) (add-m a b)) ==> 3

Introduction to Python and Lisp – p. 62/75

GEIST

Department
of Automatics

Programmable Programming Language

Common Lisp follows the philosophy that

what’s good for the language’s designer is

good for the language’s users. Thus, when

you’re programming in Common Lisp, you

almost never find yourself wishing the lan-

guage supported some feature that would

make your program easier to write, because,

as you’ll see throughout this book, you can

just add the feature yourself.

Introduction to Python and Lisp – p. 63/75

GEIST

Department
of Automatics

Programmable Programming Language

For instance, the original implementation of

the Common Lisp Object System (CLOS),

Common Lisp’s powerful object system, was

as a library written in portable Common Lisp.

This allowed Lisp programmers to gain ac-

tual experience with the facilities it provided

before it was officially incorporated into the

language.
—Practical Common Lisp, Peter Seibel

Introduction to Python and Lisp – p. 64/75

GEIST

Department
of Automatics

Useful Macros

(dolist (x ’(a b c))

(print x))

(dolist (var list &optional result)

&body body)

DOLIST is similar to Perl’s foreach or Python’s for. Java added a similar kind of loop construct

with the "enhanced" for loop in Java 1.5, as part of JSR-201. Notice what a difference macros

make. A Lisp programmer who notices a common pattern in theircode can write a macro to

give themselves a source-level abstraction of that pattern. A Java programmer who notices the

same pattern has to convince Sun that this particular abstraction is worth adding to the language.

Then Sun has to publish a JSR and convene an industry-wide "expert group" to hash everything

out. That process–according to Sun–takes an average of 18 months. After that, the compiler

writers all have to go upgrade their compilers to support thenew feature. And even once the Java

programmer’s favorite compiler supports the new version ofJava, they probably still can’t use the

new feature until they’re allowed to break source compatibility with older versions of Java. So an

annoyance that Common Lisp programmers can resolve for themselves within five minutes plagues

Java programmers for years.

Introduction to Python and Lisp – p. 65/75

GEIST

Department
of Automatics

Basic Control Structures
(if (spam-p current-message)

(progn

(file-in-spam-folder current-message)

(update-spam-database current-message)))

(defmacro when (condition &rest body)

‘(if ,condition (progn ,@body)))

(when (spam-p current-message)

(file-in-spam-folder current-message)

(update-spam-database current-message))

(defmacro unless (condition &rest body)

‘(if (not ,condition) (progn ,@body)))

Introduction to Python and Lisp – p. 66/75

GEIST

Department
of Automatics

DOLIST Macro
(macroexpand-1

’(dolist (x ’(a b c)) (print x)))

(DO* ((#1=#:LIST-3526 ’(A B C) (CDR #1#))

(X NIL))

((ENDP #1#) NIL) (DECLARE (LIST #1#))

(SETQ X (CAR #1#)) (PRINT X))

(do* (variable-definition*)

(end-test-form result-form*)

statement*)

Introduction to Python and Lisp – p. 67/75

GEIST

Department
of Automatics

Loop Macro
(loop for x in ’(a b c d e)

for y in ’(1 2 3 4 5)

collect (list x y))

(loop for x in ’(a b c d e 1 2 3 4)

until (numberp x)

do (print x)

collect (list x ’foo))

(let ((s "alpha45"))

(loop for i from 0 below (length s)

for ch = (char s i)

when (find ch "0123456789" :test #’eql)

return ch))

Introduction to Python and Lisp – p. 68/75

GEIST

Department
of Automatics

Until Macro
(defmacro until (test &body body)

(let ((start-tag (gensym "START"))

(end-tag (gensym "END")))

‘(tagbody ,start-tag

(when ,test (go ,end-tag))

(progn ,@body)

(go ,start-tag)

,end-tag)))

Introduction to Python and Lisp – p. 69/75

GEIST

Department
of Automatics

Collectors Macro
(with-collectors (collectors &body))

(with-collectors (a b)

(dotimes (i 10)

(if (oddp i)

(a i)

(b i))))

=> (1 3 5 7 9) (0 2 4 6 8)

Introduction to Python and Lisp – p. 70/75

GEIST

Department
of Automatics

Resources Macro
(defmacro with-resource ((name) &body body)

‘(let ((,name (allocator-for-resource)))

(unwind-protect

(progn

,@body)

(deallocate-my-scarce-resource r))))

(with-resource (r)

(foo)

(bar))

Introduction to Python and Lisp – p. 71/75

GEIST

Department
of Automatics

Dialects

Common Lisp
rich, multi-paradigm version
CLOS is an object system that supports
multimethods and method combinations

Scheme
much smaller and more functional
focus on usefulness as teaching language

Elisp
outdated as a language
but probably most practically useful

Introduction to Python and Lisp – p. 72/75

GEIST

Department
of Automatics

Take-Away Message

Programming languagesaredifferent
but which one is better depends on skills of
people who are supposed to use them

Pythonis useful for doing real work
honestly, it isa lot better than Java in virtually
every respect

Lisp is a way to improve your programming skills
limited practical use, but it is a different way
of looking at computational problems

Dozens of cool languages appear every year
keep expanding your horizons
remember about COBOL & FORTRAN

Introduction to Python and Lisp – p. 73/75

GEIST

Department
of Automatics

Learn More

Python
htpp://www.python.org
Tutorial
Library Reference
Google

Lisp
Practical Common Lispby Peter Seibel
http://www.gigamonkeys.com/book/
Structure and Interpretation of Computer
Programsby Harold Abelson, Gerald Jay
Sussman and Julie Sussman

http://mitpress.mit.edu/sicp/full-text/book/book.html

Introduction to Python and Lisp – p. 74/75

http://www.gigamonkeys.com/book/
http://mitpress.mit.edu/sicp/full-text/book/book.html

GEIST

Department
of Automatics

Questions?

Introduction to Python and Lisp – p. 75/75

	Languages of AI
	Powerful Language
	Abstraction Mechanisms
	Functional Abstraction
	Functional Abstraction
	Functional Abstraction
	File Handling
	File Handling
	File Handling
	Resource Acquisition Is Initialization
	Programming Languages Evolution
	Basic Python Features
	Python Applications
	The Zen of Python, by Tim Peters
	Python Design
	Basic Python Features
	Basic Python Features
	Standard Library
	Control Structures
	Functions
	Lists
	Some More Exotic Features
	Generators
	Resource Acquisition
	Properties
	Some Code Examples
	Some Examples
	Some Examples
	Some Examples
	Metaclasses
	Metaclasses, cont.
	Metaclasses Example
	Aspect-Oriented Programming
	Aspect-Oriented Programming
	Aspect-Oriented Programming
	Dynamic language
	Django
	Django Framework
	Django Framework
	Django Framework
	Lisp
	Lambda Calculus
	Lisp Applications
	Language Evolution
	First Language to Have...
	Learning Lisp
	Lisp Design
	Lisp Basics
	Lisp Basics
	Lisp Examples
	Lisp Examples
	Lisp Examples
	Lisp Examples
	Binary Tree in Lisp
	Binary Tree in Lisp
	Binary Tree in Lisp
	Binary Tree in Lisp
	Binary Tree in Lisp
	Macros
	Macros
	Macros Explained
	Programmable Programming Language
	Programmable Programming Language
	Useful Macros
	Basic Control Structures
	DOLIST Macro
	Loop Macro
	Until Macro
	Collectors Macro
	Resources Macro
	Dialects
	Take-Away Message
	Learn More
	Questions?

