AGH

Introduction to Python and Lisp

1

Stawomir Nowaczyk

Laboratorium Informatyki
Katedra Autormatyki

Akademia Goérniczo-Hutnicza

January 21, 2009

CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 1/45

Languages of Al

AGH

o Special purpose languages

s PROLOG
- s Planning Domain Definition Language PDDL
» Bertrand — Constraint Programming

j LB B |

o General purpose languages
s exploratory programming
» Mmutable specifications
s tricky problems
s limited system integration
CSLAB s expert users

Katedra
Automatyki

Introduction to Python and Lisp — p. 2/45

Simple Calculator by AGH Students

| f (x.equal s("+"))
{
b = Integer.val ued (stos.renovelLast());
a = I nteger.val ue (stos. renovelLast());
result = a+b;
st os. addLast (String. valueO (result));
updat eDi spl ay() ;
Systemout.println(String.valueO (a) +
"+" + String.valueO (b)) + "=" +
String.valueO (result));

AGH

CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 3/45

Simple Calculator by AGH Students

| f(x.equal s("-"))
{
b = Integer.val ued (stos.renovelLast());
a = I nteger.val ue (stos. renovelLast());
result = a-Db;
st os. addLast (String. valueO (result));
updat eDi spl ay() ;
Systemout.println(String.valueO (a) +
"-" 4+ String.valueO (b) + "=" +
String.valueO (result));

AGH

CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 4/45

Simple Calculator by AGH Students

| f(x.equal s("/"))
{
b = Integer.val ueCf (stos. renmovelLast()):
a = I nteger.val ue (stos. renovelLast());
I f (b==0) { return D visionByZero; }
result = a/b;
st os. addLast (String. valueO (result));
updat eDi spl ay() ;
Systemout.println(String.valueO (a) +
"I" + String.valueO(b) + "=" +
String.valueO (result));

AGH

CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 5/45

AGH

CSLAB

Katedra
Automatyki

Simple Calculator in JAVA

Interface calc { Iint do(int a,
class plus 1 nplenents calc {

Int b); }

int do(int a, int b) { return a+b; } }

| f(x.equal s("+")) {

doWwr k(new plus(),"+",fal se);
}
| f(x.equals("-")) {

dowbrk(new mnus(),"-", fal se)
}
| f(x.equals("/")) {

dowbr k(new divide(),"/",true)

Introduction to Python and Lisp — p. 6/45

AGH

CSLAB

Katedra
Automatyki

Powerful Language

» EXpressive abstraction mechanisms
s groupsimilar concepts together

o \Ways to avoid code duplication
» Specify subtlaifferences

o EXxpress complex concepts cleanly
s Clear mapping intdprogrammer’s head”

o Programming skills & learning curve
s Will bad programmer blow things up?
» handling idiosyncrasies within a project

o Mental effort
s Is coding more like puzzle-solving?

Introduction to Python and Lisp — p. 7/45

C versus Python versus Lisp

o General-purpose programming languages are
becoming more and motasp-like

- s Lispis only 1 year younger than Fortran
s 14 years older than C
» 33 years older than Python

Code readability
Dynamism

AGH

Compiled to a byte code
Interpreted by virtual machine
Garbage collection

CSLAB
Extremely powerful

© © o o o o

Katedra

Automatyki

Introduction to Python and Lisp — p. 8/45

Basic Python Features

AGH

nteractive “shell”

Rich container types
—unctions, classes, modules
Namespaces

Exceptions

Portable

Powerful introspection

Plenty of dynamic features
Extremely rich standard library

© © o o o o o o o

CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 9/45

Python Applications

ndustrial Light & Magic
—orecastWatch.com
—requentis TAPtools
AstraZeneca

MayaVi

YouTube.com

Google

Journyx

EZTrip.com

Firaxis Games

AGH

1

CSLAB

© © o o o o o o o o o

Katedra

Automatyki

Introduction to Python and Lisp — p. 10/45

The Zen of Python, by Tim Peters

AGH

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
. Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one— and preferably only one —obvious wag tb d
Although that way may not be obvious at first unless you'reddut
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good.idea
CSLAB Namespaces are one honking great idea — let's do more oflthose

Katedra

Automatyki

Introduction to Python and Lisp — p. 11/45

Python Design

o Readability
s “Python Is executable pseudocode”

- s Whitespace Is significant (no brackets)
» use English keywords instead of punctuatior

o Strongly dynamically typed language
» Vvariables are not declared
» any value can be assigned

s Vvalues “carry” their own types
s a=1, a="1" #OK
¢ 1 =="1" #False
» Assignment manipulates references
» x = y does not make a copy

AGH

CSLAB

Katedra
Automatyki

Introduction to Python and Lisp — p. 12/45

Basic Python Features

AGH

o Numeric types: long, complex & rational

» Both “normal” and unicode strings
- s Immutable

» Lists as essential data type
» flexible arrays ot linked lists)
s Indexing, slices, basic operations

» Dictionaries as fundamental data type
» hash tables with immutable keys

o “Batteries-included” approach to standard librar
s one of Python’s greatest strengths

CSLAB s makes Python a powerfglue language

Katedra
Automatyki

Introduction to Python and Lisp — p. 13/45

Some More Exotic Features

o Good support for iterators
o for linein file("fname"):

AGH

= o Resource Mmanagement
wth open("/etc/passwd", "r") as File:
rai se Exception

o Generators
s def Fi bonacci ():

a, b =20, 1
whi |l e True:
yield a
a, b =Db, a+b
CSLAB . . :
» Multi-paradigm programming language
Katedra

Automatyki

Introduction to Python and Lisp — p. 14/45

Basic Control Structures

1f x < O:

print "negative"
elif x > O:

print "positive"
el se:

print "zero"

AGH

1

for x I n argv:

print X
whil e True:
| f not done:
CSLAB .
cont 1 nue
Katedra br eak

Automatyki

Introduction to Python and Lisp — p. 15/45

Functions

def add(x, y): return x+y

def add(x=0, y=0):
"docunentation string"
return x+y

AGH

def add(=*args): # add(1, 2, 3,4, 5)
res = 0
for x In args: res += X
return res

def display(*x+xarg): # display(a=1, b=2,c=3)
for 1 I n arg:

CSLAB print "%: %" % (1, arg[i])

Katedra

Automatyki

Introduction to Python and Lisp — p. 16/45

Standard Library

o Core
s 0S, Sys, string, getopt, struct, pickle, re,
= » Internet
s socket, rfc822, httplib, htmllib, ftplib, smtplib,
o Data types
s datetime, calendar, sets, mutex, weakref,
» Operating system
» threading, select, mmap, ctypes, platform,

o Miscellaneous

s pdb, profile, Tkinter, audio, dom, xml,
CSLAB distutils, zipfile

AGH

Katedra

Automatyki

Introduction to Python and Lisp — p. 17/45

Some Examples

o Decode a base64 encoded file

AGH

| nport base64, sys

fin = open(sys.argv[1], "rb")
fout = open(sys.argv[2], "wh")
base64. decode(fi n, f out)

o Download a web page

| mport urllib2
f = urllib2. urlopen(’ http://ww. python.org/’)

print f.read(1024)
CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 18/45

AGH

CSLAB

Katedra
Automatyki

Some Examples

o Countbytes-transferredrom apache log

81.107... "GET /[ply/ HITP/1.1" 200 7587
81.107... "GET /fav.ico HITP/1.1" 404 133

www ogfil e = open("access-1 o0g")
bytecolum = (line.rsplit(None, 1)[1]
for line in ww oQ)
(int(x) for x in bytecol um
f x I="-")
print "Total", sumbytes)

byt escount

Introduction to Python and Lisp — p. 19/45

Metaclasses

AGH

o \Very powerful mechanism
» nhot for faint of heart

def class wth _nmethod(func):
cl ass kl ass: pass
setattr(klass, func. nanme_, func)
return Kkl ass

def say foo(self): print ’foo

Foo = class wth nethod(say foo)
foo = Foo()

CSLAB f 00. say foo()

Katedra

Automatyki

Introduction to Python and Lisp — p. 20/45

Metaclasses, cont.

AGH

» Metaclasses: a solution looking for a problem?

- . Metaclasses are deeper magic than 99% o
users should ever worry about. If you
wonder whether you need them, you don’t
(the people who actually need them know
with certainty that they need them, and don
need an explanation about why).

cstaB — Python Guru Tim Peters

Katedra
Automatyki

Introduction to Python and Lisp — p. 21/45

AGH

CSLAB

Katedra
Automatyki

Metaclasses Example

class Printable(type):
def whoam (cl s):
print "I ama", cls._ _nane

Foo = Printable(’ Foo', (),{})
Foo. whoam ()

class Bar():

__metaclass. = Printable
def who(self): print "Wo?"
Bar (). who()
Bar . whoam ()

Introduction to Pyth

on and Lisp —p. 22/45

Lisp

AGH

» LISt Processing language
s primary data structure is a linked list
= s (eleml elen? elenB el emd)
» source Is organised in this fashion as well
» readily-availableabstract syntax tree

» Code and data are interchangeable
» basic syntax of the language Is very simple
s heavily customisable usingacros

o Read-Eval-Print Loop
s reads-expression
CSLAB s evaluate resultingisp form

Katedra

Automatyki

Introduction to Python and Lisp — p. 23/45

AGH

CSLAB

Katedra
Automatyki

Lisp Applications

o Emacs

© o o o o

s the extensible, customizable,
self-documenting, real-time display editor

» large portion of code written in Lisp
s Lisp Is the extension language
» by far the best IDE In existence

AutoCAD

Script-Fu plugins for GIMP

Remote Agent (NASA Deep Space 1, 1998)
ITA Software’s airline engine

Yahoo Store

Introduction to Python and Lisp — p. 24/45

AGH

CSLAB

Katedra
Automatyki

Language Evolution
o Paul Graham, The Roots of Lisp, May 2001

It seems to me that there have been two really cle
consistent models of programming so far: the C moc
and the Lisp model. These two seem points of hi
ground, with swampy lowlands between them. £
computers have grown more powerful, the new la
guages being developed have been moving steadily
ward the Lisp model. A popular recipe for new prc
gramming languages in the past 20 years has bee
take the C model of computing and add to it, piec
meal, parts taken from the Lisp model, like runtin
typing and garbage collection.

Introduction to Python and Lisp — p. 25/45

AGH

CSLAB

Katedra
Automatyki

First language to have...

© © o o o o o o o

Conditionals: if-then-else constructs

A function type

Recursion

Typed values rather than typed variables
Dynamic memory allocation

Garbage collection

Incremental compilation

Built-in extensibility

The whole language always available

s programs can construct and execute other
programs on the fly

Introduction to Python and Lisp — p. 26/45

AGH

CSLAB

Katedra
Automatyki

Learning Lisp

Lisp is worth learning for a different reasor
the profound enlightenment experience Yy
will have when you finally get it. That ex-
perience will make you a better programm
for the rest of your days, even Iif you neve
actually use Lisp itself a lot.

— Eric Raymond, the author of The Cathedral and t
Bazaar, The Art of Unix Programming, The New
Hacker’s Dictionary

Introduction to Python and Lisp — p. 27/45

Lisp Design

A GH o Every Lisp object is either an atom or a list
~ e Empty listis both:(), ni |
= ® (a) ==(a . NWL)

® (+1 2) ==>3

® '(+12) ==>(+1 2)

(defun fib (n)

(if (< n 3)
1
(+ (fib (- n1) (fib (- n 2))))))
CSLAB

(format t "Hello, world!")
Katedra

Automatyki

Introduction to Python and Lisp — p. 28/45

AGH

CSLAB

Katedra
Automatyki

Lisp Basics

(defun hello-world ()
(format t "hello, world"))

CL- USER> (hel | o- wor | d)
hell o, world
NI L

(defvar *db* nil)

(push (list :nane "A" :count 2 :value 3) =db)
(push (list :nane "B" :count 3 :value 8) =*db)

(def un dunp-db ()
(dolist (cd ~db*)

(format t "~{~a:~10t~a~%}~% cd)))

Introduction to Python and Lisp — p. 29/45

Lisp Basics, part 2

(defun save-db (filenane)
(Wth-open-file (out filenane
:direction :output
.1 f-exists :supersede)
(Wt h-standard-i o- synt ax
(print db* out))))

AGH

(defun | oad-db (fil enane)
(Wth-open-file (in filenane)
(Wt h-standard-i o-synt ax

CSLAR (setf xdb* (read in)))))

Katedra

Automatyki

Introduction to Python and Lisp — p. 30/45

Lisp Basics, part 3

CL- USER> (setf =*print-circle* t)
CL- USER> (setg x "(a b c))
(A B QO

CL-USER> (setg y '(d e f))
(D E F)

CL- USER> (nconc X Y)
(ABCDEF)

CL- USER> X

(AB CDEF)

CL- USER> vy

(D E F)

CL- USER> (nconc X Yy)
(ABC. #1=(D E F . #1#%))

AGH

CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 31/45

AGH

CSLAB

Katedra
Automatyki

Macros

o Themost powerful feature of any language
» code which is used to create more code
» full-fledgedcode generatiosystem
s Mmetaprogramming technique

o Macro takesinevaluated Lisp codas argument
s and returns a newisp formto be evaluated

(def un backwards (expr) (reverse expr))
(backwards (1 2 3)) ==> (3 2 1)

(def macro backwards (expr) (reverse expr))

(backwards ("Hello, world" t format))

Introduction to Python and Lisp — p. 32/45

AGH

CSLAB

Katedra
Automatyki

Macros

o Themost powerful feature of any language
» code which is used to create more code
» full-fledgedcode generatiosystem
s Mmetaprogramming technique

o Macro takesinevaluated Lisp codas argument
s and returns a newisp formto be evaluated

(def macro backwards (expr) (reverse expr))
(backwards ("Hello, world" t format))
Hell o, world

(macr oexpand ' (backwards ("H " t fornat)))
(FORVAT T "H ")

Introduction to Python and Lisp — p. 33/45

Macros Explained

AGH

» Macros look like functions
e (defun add (a b) (+ a b))
= s (defrmacro add (a b) (+ a b))

o Macro returns &orm, not a value
s (add 1 2) <==> 3
» Macro getexpandedaluringcompilation
s (macroexpand '(add 1 2)) ==> 3
s (let ((a 1)) (add a 5)) IS an error
s atcompile-timesincea Is not a number

(defmacro add (a b) '(+ a b))
CSLAB (macroexpand '(add 1 2)) ==> (+ A B)
Katedra (let ((a l) (b 2)) (add a b)) ==> 3

Automatyki

Introduction to Python and Lisp — p. 34/45

Programmable Programming Language
AGH Common Lisp follows the philosophy tha
what's good for the language’s designer
good for the language’s users. Thus, wh
you’re programming in Common Lisp, yol
almost never find yourself wishing the lar
guage supported some feature that wol
make your program easier to write, becau:
as you’'ll see throughout this book, you ce

just add the feature yourself.

CSLAB

Katedra
Automatyki

Introduction to Python and Lisp — p. 35/45

Programmable Programming Language
AGH For instance, the original implementation ¢
the Common Lisp Object System (CLOS
Common Lisp’s powerful object system, we
as a library written in portable Common Lisy
This allowed Lisp programmers to gain a
tual experience with the facilities It provide
before it was officially incorporated into th

language.
CSLAB __Practical Common Lisp, Peter Seibel

Katedra
Automatyki

Introduction to Python and Lisp — p. 36/45

AGH

CSLAB

Katedra
Automatyki

Useful Macros

(dolist (x "(a b c))

(print x))

(dolist (var |list &optional result)
&body body)

DOLIST is similar to Perl's foreach or Python’s for. Java addx similar kind of loop construct
with the "enhanced" for loop in Java 1.5, as part of JSR-20daticd what a difference macros
make. A Lisp programmer who notices a common pattern in tb@ile can write a macro to
give themselves a source-level abstraction of that pattérdava programmer who notices the
same pattern has to convince Sun that this particular absinas worth adding to the language.
Then Sun has to publish a JSR and convene an industry-wigettegroup” to hash everything
out. That process—according to Sun—takes an average of héhsioAfter that, the compiler
writers all have to go upgrade their compilers to supportée feature. And even once the Java
programmer’s favorite compiler supports the new versiodanf, they probably still can’t use the
new feature until they’re allowed to break source complvith older versions of Java. So an
annoyance that Common Lisp programmers can resolve forstbless within five minutes plagues
Java programmers for years.

Introduction to Python and Lisp — p. 37/45

Basic Control Structures

(1f (spamp current-nessage)
(progn
(file-in-spamfol der current-nessage)
(updat e- spam dat abase current-nessage))

AGH

(def macro when (condition & est body)
‘(i1f ,condition (progn , @ody)))

(when (spamp current-nessage)
(file-in-spamfol der current-nessage)
(updat e- spam dat abase current-nessage))

CSLAB (defmacro unless (condition & est body)

Alﬁgtrgg@ki ‘(if (not ,condition) (progn ,@ody)))

Introduction to Python and Lisp — p. 38/45

DOLIST Macro

A GH) (macr oexpand- 1
| "(dolist (x "(abec)) (print x)))
: (DO ((#1=#:LIST-3526 ' (A B O (CDR #1#))
(X NIL))
((ENDP #1#) N L) (DECLARE (LIST #1#))
(SETQ X (CAR #1#)) (PRI NT X))
(do* (variable-definition*)
(end-test-formresult-forn)
St at enent *)
CSLAB
Katedra

Automatyki

Introduction to Python and Lisp — p. 39/45

Loop Macro

(loop for x in’'(ab c de)
for y in’(1 2 3 4 5)
collect (list x vy))

AGH

(loop for xin'"(abcdel?234)
unti | (nunberp x)
do (print Xx)
collect (list x 'foo0))

(let ((s "al pha45"))
(loop for I fromO below (|l ength s)

CSLAR for ch = (char s 1)
when (find ch "0123456789" :test # eql)
Kated
Automatyk return ch))

Introduction to Python and Lisp — p. 40/45

Testing Framework

AGH

o Simple unit testing framework
» Organise, run and report tests
- s Not full-fledged, but with some cool features

» Incremental development
s simplifying code
» adding functionality
» 26 lines of code

CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 41/45

Dialects

AGH

o Common Lisp
s rich, multi-paradigm version
- s CLOS is an object system that supports
multimethods and method combinations
® Scheme
» Mmuch smaller and more functional
» focus on usefulness as teaching language

o Elisp
» outdated as a language
s but probably most practically useful

CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 42/45

AGH

CSLAB

Katedra
Automatyki

Take-Away Message

» Programming languagese different
s but which one is better depends on skills of
people who are supposed to use them
» Pythonis useful for doing real work
s honestly, it isa lot better than Java in virtually
every respect
o Lispisaway to improve your programming skills
» limited practical use, but it is a different way
of looking at computational problems
o Dozens of cool languages appear every year
s keep expanding your horizons
s remember about COBOL & FORTRAN

Introduction to Python and Lisp — p. 43/45

AGH

CSLAB

Katedra
Automatyki

L earn More

o Python
s htpp://www.python.org
s Tutorial
» Library Reference
s Google
o Lisp
» Practical Common Lispy Peter Seibel
http://www.gigamonkeys.com/book/
s Structure and Interpretation of Computer
Programsby Harold Abelson, Gerald Jay

Sussman and Julie Sussman
http://mitpress.mit.edu/sicp/full-text/book/booktit

Introduction to Python and Lisp — p. 44/45

http://www.gigamonkeys.com/book/
http://mitpress.mit.edu/sicp/full-text/book/book.html

1

Questions?

CSLAB

Katedra

Automatyki

Introduction to Python and Lisp — p. 45/45

	Languages of AI
	Simple Calculator by AGH Students
	Simple Calculator by AGH Students
	Simple Calculator by AGH Students
	Simple Calculator in JAVA
	Powerful Language
	C versus Python versus Lisp
	Basic Python Features
	Python Applications
	The Zen of Python, by Tim Peters
	Python Design
	Basic Python Features
	Some More Exotic Features
	Basic Control Structures
	Functions
	Standard Library
	Some Examples
	Some Examples
	Metaclasses
	Metaclasses, cont.
	Metaclasses Example
	Lisp
	Lisp Applications
	Language Evolution
	First language to have...
	Learning Lisp
	Lisp Design
	Lisp Basics
	Lisp Basics, part 2
	Lisp Basics, part 3
	Macros
	Macros
	Macros Explained
	Programmable Programming Language
	Programmable Programming Language
	Useful Macros
	Basic Control Structures
	DOLIST Macro
	Loop Macro
	Testing Framework
	Dialects
	Take-Away Message
	Learn More
	Questions?

