PrROLOG

Prolog

Wyktad p.t.

Prolog

Podstawienia, unifikacja, algorytm
unifikacji

Antoni Ligeza

| i geza@gh. edu. pl
http://gal axy. uci . agh. edu. pl / ~l i geza
Wykorzystano materiaty:
http://ww. sw - prol og. or g/

(©Antoni Ligeza

PrRoOLOG 2

Substitutions

Substitution is an operation allowing to replace some Wem occurring in
a formula with terms. The goal of applying a substitutionagrake a certain
formula more specific so that it matches another formula. iCBlly, substi-
tutions are applied in resolution theorem proving for uatficn of formulae.
A substitution is defined as follows:

Definition 1 A substitutions is any finite mapping of variables into terms of

the form
oV —TFER.

(©Antoni Ligeza

PrRoOLOG 3

Extending Substitutions over Terms and Formulae

Since substitutions are applied to more complex expressibis necessary to
extend the definition of substitutions on terms and formulddas is done in a
straightforward way as follows:

Definition 2 Any substitutiow (o: V' — T ER) is extended to operate on terms
and formulae so that a finite mapping of the form

oc:TEFRUFOR —-TERUFOR
satisfying the following conditions is induced:
e 0(c) =cforanyc e C,

e 0(X) € TER, ando(X) # X for a certain finite number of variables
only;

o if f(t1,t2,...,t,) € TER, then

o(f(ti,ta, ... tn)) = fo(tr),o(ta),...,0(tn));
o if p(ty,to,...,t,) € ATOM, then

o(p(ti,te, ... tn)) = p(o(tr),o(ta), ..., 0(tn));

e (P oV) = og(P)oo(V) for any two formulaed, ¥ € FOR and for
o €AV, =, &

(©Antoni Ligeza

PrROLOG 4

Instances and Ground Terms

A substitutions is any finite mapping of variables into terms extended over
terms and formulae in the above way. Any formul@) resulting from appli-
cation of substitutiorr to the variables o will be denoted a®c and it will

be called asubstitution instancer simply aninstanceof . If no variables
occur in®o (or any other formula or term), it will be calledground instance
(aground formulaor aground term respectively).

Note, that according to the above definition, substitutionfact operate only
on free variables (they change only free variables, i.e. otines that are not
guantified). For example, in resolution theorem provingdtadl quantifiers (for-
mally) are removed, and the resulting formulae are quanfie®; thus all the
variables can be regarded as free variables, at least vg#ndd¢o substitutions
application.

(©Antoni Ligeza

PrROLOG 5

Notation and Operation of Substitutions

Since substitutions operate in fact on a finite number of\deis only, they can
be conveniently denoted as sets of ordered pairs of vasald the terms to be
substituted for them. Hence, any substitutiooan be presented as

o= X0/t Xofta. ., Xufta),

wheret; is a term to be substituted for variable , i = 1,2,....n. If & s
a formula (or term) and is a substitution, thedo is the formula (or term)
resulting from simultaneous replacing the variablesbokith the appropriate
terms ofo.

(©Antoni Ligeza

PrRoOLOG 6

Composition of Substitutions

Since substitutions are mappingsampositiorof substitutions is well defined.
Note that, having two substitutions, sayandd, the composed substitutiert
can be obtained from by simultaneouspplication off to all the terms ob,
deletion of any pairs of the fornX /¢ wheret = X (identity substitutions), and
enclosing all the pairX /¢ of 4, such that does not substitute for (operate on)
X [?2,7].

Leto = {Xl/tl, Xg/tg, ceey Xn/tn} and letd = {}/1/81, }/2/82, ceey Ym/Sm}.
The composition of the above substitutions is obtained fitoerset

{Xl/tle,Xz/tze, NN Xn/tne, }/1/81, }/2/82, ceey Ym/Sm}
by:
e removing all the pairs; /t;,0 whereX; = t;0, and

e removing all the paird’;/s; whereY; € {X;, X», ..., X,,}.

Example 1 Consider the following substitutions o =
{X/g(U),Y/f(2),V/W,Z]c} and 0 = {Z/f(U),W/V,U/b}. The com-
position of them is defined as

(©Antoni Ligeza

PrROLOG 7

Renaming and Inverse Substitution

Substitutions are in general mappings, but not one-to-omgpngs; hence, in
general an inverse substitution for a given one may not.ekisivever, there
exists a class of substitutions, the so-caflleehming substitutionsuch that an
inverse substitution always exists provided that they ageto-one mappings.

Definition 3 Substitution\ is a renaming substitution iff it is off the form
0={X1/Y1,Xo/Ys,.... X,/ Y} (1)
Moreover, it is a one-to-one mappinghf # Y, fori # j,4,j € {1,2,...,n}.

Assume) is a renaming, one-to-one substitution . The inverse sulist
for it is given by \™! = {V1/X1,Y3/X5,...,Y,/X,, }. The composition of a
renaming substitution and the inverse one leads terapty substitutiortradi-
tionally denoted withe; we havex\—! = e.

(©Antoni Ligeza

PrRoOLOG 8

Some Properties

Let &/ denote an expression (formula or termyjenote an empty substitution,
and let\ be a one-to-one renaming substitutiergndf denote any substitution.
The following properties are satisfied for any substitusion

e F(c) = (Fo)b,

e 0(0v) = (c0)v (associativity),
o Fe=F,

® co=o0c=o0.

Note that, in general, the composition of substitutionsosaommutative.

(©Antoni Ligeza

PrRoOLOG 9

Unification

Substitutions are applied tmify terms and formulae. Unification is a process
of determining and applying a certain substitution to a $ekpressions (terms
or formulae) in order to make them identical. We have theofaithg definition

of unification.

Definition 4 Let Fy, Es, ..., E, € TER U FOR are certain expressions. We
shall say that expressions,, E», ..., E, are unifiableif and only if there exi-
sts a substitutiow, such that{ £y, Es, ..., E,}0 = {Ei0, Ey0, ..., E,0} IS

a single-element set.

Substitutions satisfying the above condition is calleduaifier (or a unifying
substitution for expression®;, Eo, . .., E,.

(©Antoni Ligeza

PrRoOLOG 10

The Most General Unifier

Note that if there exists a unifying substitution for some tw more expressions
(terms or formulae), then there usually exists more thansmoé substitution.
It is useful to define the so-calledost general unifie(mgu for short), which,
roughly speaking, substitutes terms for variables onlyig hecessary, leaving
as much place for possible further substitutions, as plessithe most general
unifier is defined as follows.

Definition 5 A substitutions is a most general unifiefor a certain set of
expressions if and only if, for any other unifteof this set of expressions, there
exists a substitution, such that) = o \.

The meaning of the above definition is obvious. Substituéios not a most
general unifier, since it is a composition of some simplesstiions with an
auxiliary substitutiom.

In general, for arbitrary expressions there may exist anitefnumber of unify-
ing substitutions. However, it can be proved that any twotrgeseral unifiers
can differ only with respect to variable names. This is stateh the following

theorem.

Twierdzenie 1 Let #, and 6, be two most general unifiers for a certain set of
expressions. Then, there exists a one-to-one renamingjitstiios A such that
0, = 0>\ andfy = (91)_1.

(©Antoni Ligeza

PrROLOG 11

Example

As an example consider atomic formulaeX, f(Y)) andp(Z, f(Z)). The fol-
lowing substitutions are all most general unifiers:

o 0={X/UY/U Z/U},
o 0, =1{Z/X,Y/X},
o 0y=1{X/Y,Z/Y},
o 0y =1{X/2,Y/Z}.

All of the above unifiers are equivalent — each of them can hiainbd from
another one by applying a renaming substitution. For exantpk 6, for
A = {X/U}; on the other hand obviousty = 60X,

(©Antoni Ligeza

PrRoOLOG 12

Unification Algorithm — An Idea

It can be proved that if the analyzed expressions are termsrimulae, then
there exists an algorithm for efficient generating the mesiegal unifier, provi-
ded that there exists one; in the other case the algoritnmnates after finite
number of steps . Thus, the unification problem is decidable.

The basic idea of the unification algorithm can be explaine@ aubsequent
search through the structure of the expressions to be urdiethconsistent
relative components and replacing one of them, hopefullydoa variable, with
the other.

In order to find inconsistent components it is useful to defireeso-called di-
sagreement set. L&V C TER U FOR be a set of expressions to be unified.
A disagreement sab(11) for a nonempty setV is the set of terms obtained
through parallel search of all the expression3iof(from left to right), which
are different with respect to the first symbol. Hence, the¥ét’) specifies alll
the inconsistent relative elements met first during thecsear

(©Antoni Ligeza

PrRoOLOG 13

Unification Algorithm

Unification Algorithm

1. Seti =0, W, =W, 0, = e.

2. If W; is a singleton, then stop; is the most general unifier fo¥ .
3. Find D(W;).
4.

If there are a variabl& € D(WW;) and a termt € D(W;), such thatX
does not occur im, then proceed; otherwise stop ¥4 is not unifiable.

Set@i_;_l = Q{X/t}, VVi—i—l = WZ{X/t}

o

6. Set; =i+ 1 and go to 2.

(©Antoni Ligeza

PrROLOG 14

Example

Example 2 Consider two atomic formulag(X, f(X,Y),g(f(Y,X))) and
ple, Z,9(Z)). The following steps illustrate the application of the wafion
algorithm to these atomic formulae.

1.:=0,Wp = {p(Xaf(X? Y),g(f(Y, X)))ap(ca Z,g(Z))},H() - {}
2. D(Wy) = {X, .

3.01 = {X/C}’ Wy = {p(C, f(C, Y),g(f(Y, C)))?]?(Ca Z7g(Z))}

4. D(Wh) ={f(¢,Y), Z}.
5

Oy ={X/cH{Z/f(c.Y)} ={X/c, Z/f(c.Y)},
W2 = {p(C, f(C, Y)vg(f(Y7 c))),p(c, f(C, Y)7g(f(cv Y))>}

6. D(Ws) = {Y, c}.

7. 03 =4{X/c, Z/ f(c,Y){Y/c} ={X/c, Z/ f(c,c),Y/c},
W3 = {p(C, f(C, C),g(f(C, C)))?Z)(C? f(C, c),g(f(c, C)))}

8. Stop; the most general unifierds = {X/c, Z/f(c,c), Y /c}.

(©Antoni Ligeza

PrRoOLOG 15

Properties of Unification Algorithm — Theorem

The unification algorithm has some important propertiesmgivy Theorem 2.

Twierdzenie 2 If WV is a finite set of unifiable expressions, then the algorithm
always terminates at step 2 and it produces the most geneifaufor 1. Mo-
reover, if the expressions o are not unifiable, then the algorithm terminates
at step 4.

(©Antoni Ligeza

PrROLOG

16

Unification Algorithm in Prolog

From: R. Bartak:

http://kti.nff.cuni.cz/~bartak/prol og/data struct.
ht m

uni fy(A B): -

atom c(A), atom c(B), A=B.
uni fy(A B): -

var (A), A=B. % wi t hout occurs check
uni fy(A B): -

nonvar (A),var(B), A=B. % w thout occurs check
uni fy(A B): -

conpound(A), conpound(B),

A=..[F| ArgsA], B=..[F| ArgsB],

uni fy args(ArgsA, ArgsB).

uni fy args([Al TA],[B| TB]): -
uni fy(A B),
uni fy args(TA, TB).

uni fy_args([].[]).

(©Antoni Ligeza

PrROLOG

17

(©Antoni Ligeza

PrROLOG

18

(©Antoni Ligeza

PrROLOG

19

(©Antoni Ligeza

PrROLOG

20

(©Antoni Ligeza

PrROLOG

21

(©Antoni Ligeza

PrROLOG

22

(©Antoni Ligeza

