
PROLOG 1

Prolog

Wykład p.t.

Prolog

Podstawienia, unifikacja, algorytm
unifikacji

Antoni Ligęza

ligeza@agh.edu.pl
http://galaxy.uci.agh.edu.pl/~ligeza

Wykorzystano materiały:
http://www.swi-prolog.org/

c©Antoni Ligęza

PROLOG 2

Substitutions

Substitution is an operation allowing to replace some variables occurring in
a formula with terms. The goal of applying a substitution is to make a certain
formula more specific so that it matches another formula. Typically, substi-
tutions are applied in resolution theorem proving for unification of formulae.
A substitution is defined as follows:

Definition 1 A substitutionσ is any finite mapping of variables into terms of
the form

σ: V → TER.

c©Antoni Ligęza

PROLOG 3

Extending Substitutions over Terms and Formulae

Since substitutions are applied to more complex expressions, it is necessary to
extend the definition of substitutions on terms and formulae. This is done in a
straightforward way as follows:

Definition 2 Any substitutionσ (σ: V → TER) is extended to operate on terms
and formulae so that a finite mapping of the form

σ: TER ∪ FOR → TER ∪ FOR

satisfying the following conditions is induced:

• σ(c) = c for anyc ∈ C;

• σ(X) ∈ TER, andσ(X) 6= X for a certain finite number of variables
only;

• if f(t1, t2, . . . , tn) ∈ TER, then

σ(f(t1, t2, . . . , tn)) = f(σ(t1), σ(t2), . . . , σ(tn));

• if p(t1, t2, . . . , tn) ∈ ATOM , then

σ(p(t1, t2, . . . , tn)) = p(σ(t1), σ(t2), . . . , σ(tn));

• σ(Φ ⋄ Ψ) = σ(Φ) ⋄ σ(Ψ) for any two formulaeΦ, Ψ ∈ FOR and for
⋄ ∈ {∧,∨,⇒,⇔};

c©Antoni Ligęza

PROLOG 4

Instances and Ground Terms

A substitutionσ is any finite mapping of variables into terms extended over
terms and formulae in the above way. Any formulaσ(Φ) resulting from appli-
cation of substitutionσ to the variables ofΦ will be denoted asΦσ and it will
be called asubstitution instanceor simply aninstanceof Φ. If no variables
occur inΦσ (or any other formula or term), it will be called aground instance
(aground formulaor aground term, respectively).

Note, that according to the above definition, substitutionsin fact operate only
on free variables (they change only free variables, i.e. theones that are not
quantified). For example, in resolution theorem proving allthe quantifiers (for-
mally) are removed, and the resulting formulae are quantifier-free; thus all the
variables can be regarded as free variables, at least with regard to substitutions
application.

c©Antoni Ligęza

PROLOG 5

Notation and Operation of Substitutions

Since substitutions operate in fact on a finite number of variables only, they can
be conveniently denoted as sets of ordered pairs of variables and the terms to be
substituted for them. Hence, any substitutionσ can be presented as

σ = {X1/t1, X2/t2, . . . , Xn/tn},

whereti is a term to be substituted for variableXi , i = 1, 2, . . . , n. If Φ is
a formula (or term) andσ is a substitution, thenΦσ is the formula (or term)
resulting from simultaneous replacing the variables ofΦ with the appropriate
terms ofσ.

c©Antoni Ligęza

PROLOG 6

Composition of Substitutions

Since substitutions are mappings, acompositionof substitutions is well defined.
Note that, having two substitutions, sayσ andθ, the composed substitutionσθ
can be obtained fromσ by simultaneousapplication ofθ to all the terms ofσ,
deletion of any pairs of the formX/t wheret = X (identity substitutions), and
enclosing all the pairsX/t of θ, such thatσ does not substitute for (operate on)
X [?, ?].

Let σ = {X1/t1, X2/t2, . . . , Xn/tn} and letθ = {Y1/s1, Y2/s2, . . . , Ym/sm}.
The composition of the above substitutions is obtained fromthe set

{X1/t1θ, X2/t2θ, . . . , Xn/tnθ, Y1/s1, Y2/s2, . . . , Ym/sm}

by:

• removing all the pairsXi/tiθ whereXi = tiθ, and

• removing all the pairsYj/sj whereYj ∈ {X1, X2, . . . , Xn}.

Example 1 Consider the following substitutions σ =
{X/g(U), Y/f(Z), V/W, Z/c} and θ = {Z/f(U), W/V, U/b}. The com-
position of them is defined as

σθ = {X/g(b), Y/f(f(U)), Z/c, W/V, U/b}.

c©Antoni Ligęza

PROLOG 7

Renaming and Inverse Substitution

Substitutions are in general mappings, but not one-to-one mappings; hence, in
general an inverse substitution for a given one may not exist. However, there
exists a class of substitutions, the so-calledrenaming substitutions, such that an
inverse substitution always exists provided that they are one-to-one mappings.

Definition 3 Substitutionλ is a renaming substitution iff it is off the form

θ = {X1/Y1, X2/Y2, . . . , Xn/Yn} (1)

Moreover, it is a one-to-one mapping ifYi 6= Yj for i 6= j, i, j ∈ {1, 2, . . . , n}.

Assumeλ is a renaming, one-to-one substitution . The inverse substitution
for it is given byλ−1 = {Y1/X1, Y2/X2, . . . , Yn/Xn, }. The composition of a
renaming substitution and the inverse one leads to anempty substitution, tradi-
tionally denoted withǫ; we haveλλ−1 = ǫ.

c©Antoni Ligęza

PROLOG 8

Some Properties

Let E denote an expression (formula or term),ǫ denote an empty substitution,
and letλ be a one-to-one renaming substitution;σ andθ denote any substitution.
The following properties are satisfied for any substitutions:

• E(σθ) = (Eσ)θ,

• σ(θγ) = (σθ)γ (associativity),

• Eǫ = E,

• ǫσ = σǫ = σ.

Note that, in general, the composition of substitutions is not commutative.

c©Antoni Ligęza

PROLOG 9

Unification

Substitutions are applied tounify terms and formulae. Unification is a process
of determining and applying a certain substitution to a set of expressions (terms
or formulae) in order to make them identical. We have the following definition
of unification.

Definition 4 Let E1, E2, . . . , En ∈ TER ∪ FOR are certain expressions. We
shall say that expressionsE1, E2, . . . , En are unifiable if and only if there exi-
sts a substitutionσ, such that{E1, E2, . . . , En}σ = {E1σ, E2σ, . . . , Enσ} is
a single-element set.

Substitutionσ satisfying the above condition is called aunifier (or a unifying
substitution) for expressionsE1, E2, . . . , En.

c©Antoni Ligęza

PROLOG 10

The Most General Unifier

Note that if there exists a unifying substitution for some two or more expressions
(terms or formulae), then there usually exists more than onesuch substitution.
It is useful to define the so-calledmost general unifier(mgu, for short), which,
roughly speaking, substitutes terms for variables only if it is necessary, leaving
as much place for possible further substitutions, as possible. The most general
unifier is defined as follows.

Definition 5 A substitutionσ is a most general unifierfor a certain set of
expressions if and only if, for any other unifierθ of this set of expressions, there
exists a substitutionλ, such thatθ = σλ.

The meaning of the above definition is obvious. Substitutionθ is not a most
general unifier, since it is a composition of some simpler substitutionσ with an
auxiliary substitutionλ.

In general, for arbitrary expressions there may exist an infinite number of unify-
ing substitutions. However, it can be proved that any two most general unifiers
can differ only with respect to variable names. This is stated with the following
theorem.

Twierdzenie 1 Let θ1 and θ2 be two most general unifiers for a certain set of
expressions. Then, there exists a one-to-one renaming substitution λ such that
θ1 = θ2λ andθ2 = θ1λ

−1.

c©Antoni Ligęza

PROLOG 11

Example

As an example consider atomic formulaep(X, f(Y)) andp(Z, f(Z)). The fol-
lowing substitutions are all most general unifiers:

• θ = {X/U, Y/U, Z/U},

• θ1 = {Z/X, Y/X},

• θ2 = {X/Y, Z/Y },

• θ3 = {X/Z, Y/Z}.

All of the above unifiers are equivalent — each of them can be obtained from
another one by applying a renaming substitution. For example, θ = θ1λ for
λ = {X/U}; on the other hand obviouslyθ1 = θλ−1.

c©Antoni Ligęza

PROLOG 12

Unification Algorithm – An Idea

It can be proved that if the analyzed expressions are terms orformulae, then
there exists an algorithm for efficient generating the most general unifier, provi-
ded that there exists one; in the other case the algorithm terminates after finite
number of steps . Thus, the unification problem is decidable.

The basic idea of the unification algorithm can be explained as a subsequent
search through the structure of the expressions to be unifiedfor inconsistent
relative components and replacing one of them, hopefully being a variable, with
the other.

In order to find inconsistent components it is useful to definethe so-called di-
sagreement set. LetW ⊆ TER ∪ FOR be a set of expressions to be unified.
A disagreement setD(W) for a nonempty setW is the set of terms obtained
through parallel search of all the expressions ofW (from left to right), which
are different with respect to the first symbol. Hence, the setD(W) specifies all
the inconsistent relative elements met first during the search.

c©Antoni Ligęza

PROLOG 13

Unification Algorithm

Unification Algorithm

1. Seti = 0, Wi = W , θi = ǫ.

2. If Wi is a singleton, then stop;θi is the most general unifier forW .

3. FindD(Wi).

4. If there are a variableX ∈ D(Wi) and a termt ∈ D(Wi), such thatX
does not occur int, then proceed; otherwise stop —W is not unifiable.

5. Setθi+1 = θ{X/t}, Wi+1 = Wi{X/t}.

6. Seti = i + 1 and go to 2.

c©Antoni Ligęza

PROLOG 14

Example

Example 2 Consider two atomic formulaep(X, f(X, Y), g(f(Y, X))) and
p(c, Z, g(Z)). The following steps illustrate the application of the unification
algorithm to these atomic formulae.

1. i = 0, W0 = {p(X, f(X, Y), g(f(Y, X))), p(c, Z, g(Z))}, θ0 = {}.

2. D(W0) = {X, c}.

3. θ1 = {X/c}, W1 = {p(c, f(c, Y), g(f(Y, c))), p(c, Z, g(Z))}.

4. D(W1) = {f(c, Y), Z}.

5. θ2 = {X/c}{Z/f(c, Y)} = {X/c, Z/f(c, Y)},
W2 = {p(c, f(c, Y), g(f(Y, c))), p(c, f(c, Y), g(f(c, Y)))}.

6. D(W2) = {Y, c}.

7. θ3 = {X/c, Z/f(c, Y)}{Y/c} = {X/c, Z/f(c, c), Y/c},
W3 = {p(c, f(c, c), g(f(c, c))), p(c, f(c, c), g(f(c, c)))}.

8. Stop; the most general unifier isθ3 = {X/c, Z/f(c, c), Y/c}.

c©Antoni Ligęza

PROLOG 15

Properties of Unification Algorithm – Theorem

The unification algorithm has some important properties given by Theorem 2.

Twierdzenie 2 If W is a finite set of unifiable expressions, then the algorithm
always terminates at step 2 and it produces the most general unifier for W . Mo-
reover, if the expressions ofW are not unifiable, then the algorithm terminates
at step 4.

c©Antoni Ligęza

PROLOG 16

Unification Algorithm in Prolog

From: R. Bartak:

http://kti.mff.cuni.cz/~bartak/prolog/data_struct.
html

unify(A,B):-
atomic(A),atomic(B),A=B.

unify(A,B):-
var(A),A=B. % without occurs check

unify(A,B):-
nonvar(A),var(B),A=B. % without occurs check

unify(A,B):-
compound(A),compound(B),
A=..[F|ArgsA],B=..[F|ArgsB],
unify_args(ArgsA,ArgsB).

unify_args([A|TA],[B|TB]):-
unify(A,B),
unify_args(TA,TB).

unify_args([],[]).

c©Antoni Ligęza

PROLOG 17

c©Antoni Ligęza

PROLOG 18

c©Antoni Ligęza

PROLOG 19

c©Antoni Ligęza

PROLOG 20

c©Antoni Ligęza

PROLOG 21

c©Antoni Ligęza

PROLOG 22

c©Antoni Ligęza

