PrROLOG

Prolog

Wyktad p.t.

Prolog

Language and terms
Antoni Ligeza

| i geza@gh. edu. pl
http://hone. agh. edu. pl / ~l i geza
http:// honmeagh. edu. pl / ~l i geza/ w ki
Some quoted materials:
http://ww. sw - prol og. org/

(©Antoni Ligeza

PrRoOLOG 2

Alphabet and Notation

The alphabet of ROLOG consists of atomic symbols denoting individual ob-
jects, variables, functional symbols (complex object taut$ors) and relational
symbols (predicative symbols, predicates).

e (' — a set of constant symbols (or constants, for short),
e IV — a set of variable symbols (or variables, for short),
e ['— a set of function (term) symbols,

e P — a set of relation (predicate) symbols.

There are also logical connectives:

° - Is equivalent of implicationif),
o, Is equivalent of conjunctiorafnd)n,
o Is equivalent of disjunctionof).

Some auxiliary symbols are: is the end of a clause, and parentheses are in
use.

All the sets are assumed to be countable (or finite, at leaspewific applica-
tions).

Constants denote specific objects, items, elements, vablesomena, etc.
Constants names start with a lower-case letter.

Variables are used to denote the same elements in case theepname of an
element is currently not known, unimportant, or a class efrants is to be
represented. Variable names start with an upper-case lette

Functional symbols serve as complex objects constructush objects have
a root symbol (an element df) and a number of arguments. They follow the
tree-like structure.

(©Antoni Ligeza

PrRoOLOG 3

The Role of Variables

The role of variables in first-order calculus is three-fdlds worth examining
the role in some details here, since it will influence desigd properties of
various classes of rule-based systems.

In short, variables place the role of:

e unknown but specific objects,
e place-holders, assure consistency with the arity of a fanat symbol,

e coreference constraints and data carriers.

First of all, variables may be used to denaot&known but specific obje¢some
variable X € V may denote an object the properties of which are specified
without specifying the object by its name. This means thatascof objects
can be defined in an implicit way, or one may refer to a groupbpécis using
universally quantified variables.

Second, any functional and predicate symbol have assignedsdant number
of arguments they operate on; this is calledahgy of a symbol. Thisis denoted
as:

fin,
wheren is the arity of the constant number of argumentg.oSince the number
of arguments cannot change — no argument can be missingmlass that if
some of the arguments are unknown, variables must be uséatie @f specific
names.

Last but not least, variables play the roleaafreference constraintand data
carriers. Two or more occurrences of the same variable ixjpression denote
the same object; if any replacement of an occurrence of s@nable takes
place, all the occurrences of this variable must be replaathithe same symbol
or value. In this way data may be passed from rule input towduipthe rule
— a variable occurring in preconditions and conclusion ofila will carry its
value over the rule after being unified with some values dunratching of
preconditions against current state formula.

PrROLOG 4

In the presented notatiorariablesare denoted with single characters or strings,
always beginning with an upper case letter or underscorgstantsare denoted
with any other strings of characters and special symbolsgtesletters (most
typically a sequence of lower-case letters and possiblersubre characters;
this convention is used in order to improve readability).

IMPORTANT: In PROLOG variables can be substituted with certain values.
This means that a variable can be assigned some valuelmwuralto it. The
assignment can be annulled as a result of backtracking andaithew value can
be assigned to the variable. But once a value is assignednbtée overwrit-
ten!!! The variable must be free first.

In PROLOG there is nothing like:

X=X+1
X:=X+1
X =1,
X =2

(©Antoni Ligeza

PrROLOG 5

Function and Predicate Symbols

Function symbols denote, in general, mappings; howevéogic they are mo-
stly applied to form record-like structures for represegtmore complex ob-
jects. In this case, one can assume that a function mapgsiants into the
resulting structured object.

Predicate symbols are used to specify relations holdingcéotain objects.
These objects are specified as the arguments of a predicabmby

It is assumed that for any functional symhoke ' and any predicate symbol
p € P there is a unique functiom defining its number of arguments (arity) of
the form

a:F— {1,2,3,...}

and
a:P —{0,1,2,3,...}

By convention, functional symbols of no arguments are a®rsid to be con-
stants. If for a certain function symbdgl (predicate symbagb) the number of
arguments is., f (p) is called am-place orn-ary function (predicate) symbol.

Functions and predicates are to be denoted with any anpitdaaracters or
strings; they are easily recognizable by their positiomyexpression. Further,
proper names are frequently used so as to provide somdontgnd refer to
some specific examples at hand. If necessary, indices carchsionally used,
S0 as to provide relatively precise definitions and theorems

(©Antoni Ligeza

PrRoOLOG 6

Terms in Prolog

In order to denote any object — represented by a constantjable or as a
result of a mapping (a structured object), the notioteoimis introduced. The
set of termsl’ E R is defined recursively in the following manner:

Definicja 1 The set otermsT E'R is one satisfying the following conditions:

e if cis a constantg € C, thenc € TER;
o if X isavariable,X € V,thenX € TER;

e if fis ann-ary function symbolf € F', andty, to,...,t, are terms, then
f(tl, to, ... ,tn) € TER,;

¢ all the elements df' £ R are generated only by applying the above rules.

The definition above imposes that only the expressions beigrto one of the
above categories (i.e. constants, variables, and propenigtructed structured
objects) are terms. Furthermore, all of the expressionsfgalg one of the
above conditions are terms.

Note that the definition is recursive, i.e. in order to chd@kaertain expression
Is aterm one is to check if one of the above conditions hofdsase of the third
possibility, the verifying procedure must be applied rectgly down to all the
elements, o, . . ., t,, provided thatf is ann-ary function symbol.
Assumethat,b,ce C,X,Y,Z €V, f,g € F, and arity off andg is 1 and 2,
respectively. Then, all the following expressions are gxiasof terms:

e a,b,c

PrROLOG

Note that even for finite sets of constants, variables, andtions, it is possible
to build an infinite set of terms. Obviously, if the set of ftinoal symbolst’ is
empty, the setoftermsER =C U V.

(©Antoni Ligeza

PrRoOLOG 8

Interpretation and Applications of Terms

Terms can be used to represent various complex data stescturch as record-
like objects, lists, trees, and many other. For intuiti@t,us show how general
and flexible terms are when applied for structure conswuctLest us look at
the following examples.

Consider a book as an object having title, author, publigflace and a year of
publication. Further, let the author be a man having firstemamd surname. A
book can be represented as a complex term of the form:

book (book title,
aut hor (first_nane, | ast _nane),
publ i sher nane,
year of publication

)

Note that many structures used in electronic documentd)antics, formal
languages and other systems are in fact terms. For examp®/JL the exam-
ple concerning the specification of a book can be represasted

<book>
<book title> Learning XM. </ book title>
<aut hor >
<first_name> Erik </first_nanme>
<| ast _nanme> Ray </|ast_nane>
</ aut hor >
<publ i sher nanme> O Reilly & Associates, Inc. </publisher
<year of publication> 2003 </year _of publication>
</ book>

where each field is declared in an explicit way by its nameirraegg and end
with a pair<nane> cont ent s </ nanme> and the contents is either atomic
value or another XML structure. Note that the internal suite of a tree is
preserved.

PrRoOLOG 9

Consider another example concerning specification of madhieal formulae.
The following formula

%
[+7Z
is in fact defined inAIEX as
\ frac{
\frac{x}{y}
}
{
\sgrt{l+\frac{x}{y}}
}

where\ f r ac is a two-argument symbol of division andsqrt is a single

argument symbol of/(.).
Next, consider a list structure, e.§jr ed, gr een, bl ue, yel I ow] . A list

Is constructed as an ordered pair of two elementshéi@d being the single
first element and itsail being the rest of the list (the definition is obviously
recursive). A list as the one above can be represented aslkheihg term

list(red,list(green,list(blue,list(yellownil))))

whereni | is an arbitrary symbol denoting an empty list. Note that tdan
be used to represent a set, a multi-set (or a bag — a set withtegbelements)
and a sequence.

Finally, consider a binary tree, for example of depth 2; it ba represented by
a term according to the following scheme

tree (
tree (left left, left _right),
tree (right _left, right _right)
)

More complex trees can be represented with the use of ligtsywth a structure
of the form

PrRoOLOG 10

tree (root,list_of subtrees)

Terms can be also used to specify graphs (e.g. as a list obraoatkanother list
of vertices), forests, relations, matrices, etc. In fagpressive power of terms
highly overcomes the immediate expectations followingrtdefinition. Some
further examples will be presented in the part concernirRgQU®G program-
ming language.

(©Antoni Ligeza

PrROLOG 11

Some Prolog Predicates: Term Types

var (+Term
Succeeds if Termcurrently is a free vari abl e.

nonvar (+Term
Succeeds if Termcurrently is not a free vari abl e.

nunmber (+Term
Succeeds if Termis bound to an integer or floating
poi nt nunber.

I nteger (+Term
Succeeds if Termis bound to an integer.

float(+Term
Succeeds if Termis bound to a floating point nunber.

rational (+Term
Succeeds if Termis bound to a rational nunber.
Rati onal nunbers
I ncl ude i ntegers.

atom(+Term
Succeeds if Termis bound to an atom

atom c(+Term
Succeeds if Termis bound to an atom string,
I nteger or floating point nunber.

conpound(+Ter m
Succeeds if Termis bound to a conpound term
See also functor/3 and =../2.

PrRoOLOG 12

cal | abl e(+Term
Succeeds if Termis bound to an atom or a conpound term
so it can be handed w thout type-error to call/1,
functor/3 and =../2.

ground(+Term
Succeeds if Term hol ds no free vari abl es.

cyclic tern(+Term
Succeeds if Termcontains cycles, i.e. is an infinitet
See al so acyclic_ternil and section 2.16.

acyclic tern(+Term
Succeeds if Term does not contain cycles, i.e.
can be processed recursively in finite tinme.
See also cyclic termll and section 2.16.

(©Antoni Ligeza

PrRoOLOG 13

Some Prolog Predicates: Term Comparison and Unification

+Ternml = +Tern®
Unify Ternml with TernR. Succeeds if the unification
succeeds.

+Ternml \= +TernR
Equi valent to \+Ternl = TernL.

+Ternl == +Tern®
Succeeds if Ternml is equivalent to Tern®,
A variable is only identical to a sharing vari abl e.

+Ternl \ == +Tern?
Equi valent to \+Ternl == Ter nR.

unify with occurs_check(+Ternl, +TernR)
As =/2, but using sound-unification. That is,
a variable only unifies to atermif this term
does notcontain the variable itself.
To illustrate this, consider the two goal s bel ow

172- A=f(A.

A=FEEEEEEEEEG)))))
2 ?- unify with occurs _check(A f(A).

No

|.e. the first creates a cyclic-term which is
printed as an infinitely nested f/1 term

(see the max_depth option of wite terni?2).

The second executes logically sound unification

PrROLOG

and thus fails.

+Ternml =@ +Terng

Succeeds if Ternl
Structural equival ence
(==/2), but stronger

Two terns are structurally equal if
I's identical

representation

14

Is ‘structurally equal’ to Ternt.
I s weaker than equival ence
than unification (=/2).

their tree
and they have the

sane ‘pattern’ of variables. Exanples:
a =& A fal se
A =& B true
X(AJA) =@ x(B,C false
Xx(AA) =@ x(B,B) true
Xx(A,B) =@ x(C/D true
The predicates =@/2 and \=@/2 are cycle-safe.

Attributed variables are considered structurally equal
I ff their attributes are structurally equal.

+Terml \ =@ +Tern?
Equi valent to ‘\+Ternl =@ Tern’.

+Exprl == +Expr2
Succeeds when expression Exprl evaluates to
a nunber equal to Expr?2.

termvari abl es(+Term -List)
Unify List with a list of wvariables, each

sharing wwth a unique variable of Term
See al so termyvari abl es/3. For exanpl e:
?- termvariables(a(X, b(Y, X, 2), L).

L = [G367, G366, G371]

PrROLOG

G367
G366
G371

X
Y
Z

termvariabl es(+Term -List, ?Tail)
Difference |ist version of termuvari abl es/ 2.
l.e. Tail is the tail
of the variable-list List.

15

(©Antoni Ligeza

PrRoOLOG 16

Some Prolog Predicates: Term Composition

functor(?Term ?Functor, ?Arity)
Succeeds if Termis atermwth functor
Functor and arity Arity. If Termis a variable
It isunified wwth a newtermholding only
vari abl es. functor/3 silently fails on
I nstantiation faults |If
Term is an atomor nunber, Functor w ||
be unified wwth Term and
arity wll be unified with the integer 0 (zero).

arg(?Arg, +Term ?Val ue)
Term should be instantiated to a term
Arg to an integer between 1 and the arity of Term
Value is wunified with the Arg-th
argunent of Term Arg may al so be unbound.
In this case Value
wll be unified wth the successive argunents
of the term On successful wunification, Arg
Is unified with the argunent nunber.
Backtracking vyields alternative solutions.
The predicate arg/3 fails silently if
Arg= 0 or Arg > arity and raises the exception
domai n_error(not | ess then zero, Arg)if Arg <O.

?Term =.. ?Li st
List is alist which head is the functor of
Term and the renmaining argunents are the argunents
of the term Each of the argunents may
be a variable, but not both. This predicate
Is called ‘Univ’ .
Exanpl es:

PrROLOG 17

?- foo(hello, X) =.. List.
List = [foo, hello, X]
?- Term=.. [baz, foo(1l)]
Term = baz(foo(1l))
termvari abl es(+Term -List)
Unify List with a list of wvariables, each
sharing wwth a unique
variable of Term See also termuvari abl es/ 3.

For exanpl e:

?- termvariables(a(X, b(Y, X, 2), L).

[G367, G366, G371]
G367
G366
&R71

N < X ™
Il

termvariabl es(+Term -List, ?Tail)
Difference |ist version of termuvari abl es/ 2.
l.e. Tail is the tail
of the variable-list List.

(©Antoni Ligeza

