
PROLOG 1

Prolog

Wykład p.t.

Prolog

Language and terms

Antoni Ligęza

ligeza@agh.edu.pl
http://home.agh.edu.pl/~ligeza

http://homeagh.edu.pl/~ligeza/wiki
Some quoted materials:

http://www.swi-prolog.org/

c©Antoni Ligęza



PROLOG 2

Alphabet and Notation

The alphabet of PROLOG consists of atomic symbols denoting individual ob-
jects, variables, functional symbols (complex object constructors) and relational
symbols (predicative symbols, predicates).

• C — a set of constant symbols (or constants, for short),

• V — a set of variable symbols (or variables, for short),

• F — a set of function (term) symbols,

• P — a set of relation (predicate) symbols.

There are also logical connectives:

• :- is equivalent of implication (if ),

• , is equivalent of conjunction (and)n,

• ; is equivalent of disjunction (or).

Some auxiliary symbols are:. is the end of a clause, and parentheses are in
use.

All the sets are assumed to be countable (or finite, at least inspecific applica-
tions).

Constants denote specific objects, items, elements, values, phenomena, etc.
Constants names start with a lower-case letter.

Variables are used to denote the same elements in case the precise name of an
element is currently not known, unimportant, or a class of elements is to be
represented. Variable names start with an upper-case letter.

Functional symbols serve as complex objects constructors.Such objects have
a root symbol (an element ofF ) and a number of arguments. They follow the
tree-like structure.

c©Antoni Ligęza



PROLOG 3

The Role of Variables

The role of variables in first-order calculus is three-fold.It is worth examining
the role in some details here, since it will influence design and properties of
various classes of rule-based systems.

In short, variables place the role of:

• unknown but specific objects,

• place-holders, assure consistency with the arity of a functional symbol,

• coreference constraints and data carriers.

First of all, variables may be used to denoteunknown but specific objects; some
variableX ∈ V may denote an object the properties of which are specified
without specifying the object by its name. This means that a class of objects
can be defined in an implicit way, or one may refer to a group of objects using
universally quantified variables.

Second, any functional and predicate symbol have assigned aconstant number
of arguments they operate on; this is called thearity of a symbol. This is denoted
as:

f/n,

wheren is the arity of the constant number of arguments off . Since the number
of arguments cannot change — no argument can be missing. Thismeans that if
some of the arguments are unknown, variables must be used in place of specific
names.

Last but not least, variables play the role ofcoreference constraintsand data
carriers. Two or more occurrences of the same variable in an expression denote
the same object; if any replacement of an occurrence of some variable takes
place, all the occurrences of this variable must be replacedwith the same symbol
or value. In this way data may be passed from rule input to output of the rule
— a variable occurring in preconditions and conclusion of a rule will carry its
value over the rule after being unified with some values during matching of
preconditions against current state formula.



PROLOG 4

In the presented notationvariablesare denoted with single characters or strings,
always beginning with an upper case letter or underscore,constantsare denoted
with any other strings of characters and special symbols or single letters (most
typically a sequence of lower-case letters and possibly underscore characters;
this convention is used in order to improve readability).

IMPORTANT: In PROLOG variables can be substituted with certain values.
This means that a variable can be assigned some value or beboundto it. The
assignment can be annulled as a result of backtracking and then a new value can
be assigned to the variable. But once a value is assigned it cannot be overwrit-
ten!!! The variable must be free first.

In PROLOG there is nothing like:

X = X + 1

X := X + 1

X = 1,
X = 2

c©Antoni Ligęza



PROLOG 5

Function and Predicate Symbols

Function symbols denote, in general, mappings; however, inlogic they are mo-
stly applied to form record-like structures for representing more complex ob-
jects. In this case, one can assume that a function maps its arguments into the
resulting structured object.

Predicate symbols are used to specify relations holding forcertain objects.
These objects are specified as the arguments of a predicate symbol.

It is assumed that for any functional symbolf ∈ F and any predicate symbol
p ∈ P there is a unique functiona defining its number of arguments (arity) of
the form

a: F −→ {1, 2, 3, . . .}

and
a: P −→ {0, 1, 2, 3, . . .}

By convention, functional symbols of no arguments are considered to be con-
stants. If for a certain function symbolf (predicate symbolp) the number of
arguments isn, f (p) is called ann-place orn-ary function (predicate) symbol.

Functions and predicates are to be denoted with any arbitrary characters or
strings; they are easily recognizable by their position in any expression. Further,
proper names are frequently used so as to provide some intuitions and refer to
some specific examples at hand. If necessary, indices can be occasionally used,
so as to provide relatively precise definitions and theorems.

c©Antoni Ligęza



PROLOG 6

Terms in Prolog

In order to denote any object — represented by a constant, a variable, or as a
result of a mapping (a structured object), the notion ofterm is introduced. The
set of termsTER is defined recursively in the following manner:

Definicja 1 The set oftermsTER is one satisfying the following conditions:

• if c is a constant,c ∈ C, thenc ∈ TER;

• if X is a variable,X ∈ V , thenX ∈ TER;

• if f is ann-ary function symbol,f ∈ F , andt1, t2, . . . , tn are terms, then
f(t1, t2, . . . , tn) ∈ TER;

• all the elements ofTER are generated only by applying the above rules.

The definition above imposes that only the expressions belonging to one of the
above categories (i.e. constants, variables, and properlyconstructed structured
objects) are terms. Furthermore, all of the expressions satisfying one of the
above conditions are terms.

Note that the definition is recursive, i.e. in order to check if a certain expression
is a term one is to check if one of the above conditions holds; in case of the third
possibility, the verifying procedure must be applied recursively down to all the
elementst1, t2, . . . , tn, provided thatf is ann-ary function symbol.

Assume thata, b, c ∈ C, X, Y, Z ∈ V , f, g ∈ F , and arity off andg is 1 and 2,
respectively. Then, all the following expressions are examples of terms:

• a, b, c;

• X, Y, Z;

• f(a), f(b), f(c), f(X), f(Y ), f(Z);
g(a, b), g(a, X), g(X, a), g(X, Y );
f(g(a, b)), g(X, f(X)), g(f(a), g(X, f(Z))).



PROLOG 7

Note that even for finite sets of constants, variables, and functions, it is possible
to build an infinite set of terms. Obviously, if the set of functional symbolsF is
empty, the set of termsTER = C ∪ V .

c©Antoni Ligęza



PROLOG 8

Interpretation and Applications of Terms

Terms can be used to represent various complex data structures, such as record-
like objects, lists, trees, and many other. For intuition, let us show how general
and flexible terms are when applied for structure construction. Lest us look at
the following examples.

Consider a book as an object having title, author, publisher, place and a year of
publication. Further, let the author be a man having first name and surname. A
book can be represented as a complex term of the form:

book (book_title,
author(first_name,last_name),
publisher_name,
year_of_publication

)

Note that many structures used in electronic documents, mathematics, formal
languages and other systems are in fact terms. For example, in XML the exam-
ple concerning the specification of a book can be representedas

<book>
<book_title> Learning XML </book_title>
<author>

<first_name> Erik </first_name>
<last_name> Ray </last_name>

</author>
<publisher_name> O’Reilly & Associates, Inc. </publisher_name>
<year_of_publication> 2003 </year_of_publication>

</book>

where each field is declared in an explicit way by its name, beginning and end
with a pair<name> contents </name> and the contents is either atomic
value or another XML structure. Note that the internal structure of a tree is
preserved.



PROLOG 9

Consider another example concerning specification of mathematical formulae.
The following formula

x

y
√

1 + x

y

,

is in fact defined in LATEX as

\frac{
\frac{x}{y}

}
{
\sqrt{1+\frac{x}{y}}

}

where\frac is a two-argument symbol of division and\sqrt is a single
argument symbol of

√

(.).

Next, consider a list structure, e.g.[red,green,blue,yellow]. A list
is constructed as an ordered pair of two elements: itshead, being the single
first element and itstail being the rest of the list (the definition is obviously
recursive). A list as the one above can be represented as the following term

list(red,list(green,list(blue,list(yellow,nil))))

wherenil is an arbitrary symbol denoting an empty list. Note that a list can
be used to represent a set, a multi-set (or a bag — a set with repeated elements)
and a sequence.

Finally, consider a binary tree, for example of depth 2; it can be represented by
a term according to the following scheme

tree (
tree (left_left, left_right),
tree (right_left, right_right)

)

More complex trees can be represented with the use of lists, e.g. with a structure
of the form



PROLOG 10

tree (root,list_of_subtrees)

Terms can be also used to specify graphs (e.g. as a list of nodes and another list
of vertices), forests, relations, matrices, etc. In fact, expressive power of terms
highly overcomes the immediate expectations following their definition. Some
further examples will be presented in the part concerning PROLOG program-
ming language.

c©Antoni Ligęza



PROLOG 11

Some Prolog Predicates: Term Types

var(+Term)
Succeeds if Term currently is a free variable.

nonvar(+Term)
Succeeds if Term currently is not a free variable.

number(+Term)
Succeeds if Term is bound to an integer or floating
point number.

integer(+Term)
Succeeds if Term is bound to an integer.

float(+Term)
Succeeds if Term is bound to a floating point number.

rational(+Term)
Succeeds if Term is bound to a rational number.
Rational numbers
include integers.

atom(+Term)
Succeeds if Term is bound to an atom.

atomic(+Term)
Succeeds if Term is bound to an atom, string,
integer or floating point number.

compound(+Term)
Succeeds if Term is bound to a compound term.
See also functor/3 and =../2.



PROLOG 12

callable(+Term)
Succeeds if Term is bound to an atom or a compound term,
so it can be handed without type-error to call/1,
functor/3 and =../2.

ground(+Term)
Succeeds if Term holds no free variables.

cyclic_term(+Term)
Succeeds if Term contains cycles, i.e. is an infinite term.
See also acyclic_term/1 and section 2.16.

acyclic_term(+Term)
Succeeds if Term does not contain cycles, i.e.
can be processed recursively in finite time.
See also cyclic_term/1 and section 2.16.

c©Antoni Ligęza



PROLOG 13

Some Prolog Predicates: Term Comparison and Unification

+Term1 = +Term2
Unify Term1 with Term2. Succeeds if the unification
succeeds.

+Term1 \= +Term2
Equivalent to \+Term1 = Term2.

+Term1 == +Term2
Succeeds if Term1 is equivalent to Term2.
A variable is only identical to a sharing variable.

+Term1 \== +Term2
Equivalent to \+Term1 == Term2.

unify_with_occurs_check(+Term1, +Term2)
As =/2, but using sound-unification. That is,
a variable only unifies to a term if this term
does notcontain the variable itself.
To illustrate this, consider the two goals below:

1 ?- A = f(A).

A = f(f(f(f(f(f(f(f(f(f(...))))))))))
2 ?- unify_with_occurs_check(A, f(A)).

No

I.e. the first creates a cyclic-term, which is
printed as an infinitely nested f/1 term
(see the max_depth option of write_term/2).
The second executes logically sound unification



PROLOG 14

and thus fails.

+Term1 =@= +Term2
Succeeds if Term1 is ‘structurally equal’ to Term2.
Structural equivalence is weaker than equivalence
(==/2), but stronger than unification (=/2).
Two terms are structurally equal if their tree
representation is identical and they have the
same ‘pattern’ of variables. Examples:

a =@= A false
A =@= B true

x(A,A) =@= x(B,C) false
x(A,A) =@= x(B,B) true
x(A,B) =@= x(C,D) true

The predicates =@=/2 and \=@=/2 are cycle-safe.
Attributed variables are considered structurally equal
iff their attributes are structurally equal.

+Term1 \=@= +Term2
Equivalent to ‘\+Term1 =@= Term2’.

+Expr1 =:= +Expr2
Succeeds when expression Expr1 evaluates to
a number equal to Expr2.

term_variables(+Term, -List)
Unify List with a list of variables, each
sharing with a unique variable of Term.
See also term_variables/3. For example:

?- term_variables(a(X, b(Y, X), Z), L).

L = [G367, G366, G371]



PROLOG 15

X = G367
Y = G366
Z = G371

term_variables(+Term, -List, ?Tail)
Difference list version of term_variables/2.
I.e. Tail is the tail
of the variable-list List.

c©Antoni Ligęza



PROLOG 16

Some Prolog Predicates: Term Composition

functor(?Term, ?Functor, ?Arity)
Succeeds if Term is a term with functor
Functor and arity Arity. If Term is a variable
it is unified with a new term holding only
variables. functor/3 silently fails on
instantiation faults If
Term is an atom or number, Functor will
be unified with Term and
arity will be unified with the integer 0 (zero).

arg(?Arg, +Term, ?Value)
Term should be instantiated to a term,
Arg to an integer between 1 and the arity of Term.
Value is unified with the Arg-th
argument of Term. Arg may also be unbound.
In this case Value
will be unified with the successive arguments
of the term. On successful unification, Arg
is unified with the argument number.
Backtracking yields alternative solutions.
The predicate arg/3 fails silently if
Arg= 0 or Arg > arity and raises the exception
domain_error(not_less_then_zero, Arg)if Arg <0.

?Term =.. ?List
List is a list which head is the functor of
Term and the remaining arguments are the arguments
of the term. Each of the arguments may
be a variable, but not both. This predicate
is called ‘Univ’.
Examples:



PROLOG 17

?- foo(hello, X) =.. List.

List = [foo, hello, X]

?- Term =.. [baz, foo(1)]

Term = baz(foo(1))

term_variables(+Term, -List)
Unify List with a list of variables, each
sharing with a unique
variable of Term. See also term_variables/3.
For example:

?- term_variables(a(X, b(Y, X), Z), L).

L = [G367, G366, G371]
X = G367
Y = G366
Z = G371

term_variables(+Term, -List, ?Tail)
Difference list version of term_variables/2.
I.e. Tail is the tail
of the variable-list List.

c©Antoni Ligęza


