

Hardware abstraction layer for microcontrollers

Lukasz Krzak
Department od Electronics,
Faculty of Computer Science, Electronics and Telecommunications
AGH University of Science and Technology in Kraków
lukasz.krzak@agh.edu.pl
www.wsn.agh.edu.pl

mailto:lukasz.krzak@agh.edu.pl

Outline

2

1. How the story began.

2. Important qualities of embedded software and how to reach them.

3. How others are doing embedded software.

4. What we did and what is already done.

5. What are the results.

6. What we still want to do.

7. How YOU can participate.

3

How the story began...

4

Wireless Sensor and Control Networks Laboratory

● Wireless communications (hardware and software)
● Embedded systems
● Resonant power supply and energy harvesting
● Electromagnetic compatibility

Many of these projects were commercially deployed in industrial applications.
The developed hardware and software solutions are licensed by AGH.

5

Our initial motivation (2007)

Question: What hardware/software platform to choose ?

6

Important qualities of embedded software

7

Important qualities of embedded software

AKA: How to distinguish good code from bad code

A good code:

● works! (but that's obvious)

● is reliable (works every time)

● is testable (we can easily proove that it works)

● is portable (to different hardware and build tools)

● is reusable (we can use it many times)

● is simple, user-friendly, and easy to maintain

● is feature-rich

8

Important qualities of embedded software

embedded
software

reusable

feature-richsimple

 speeds up the development
 (off-the shelf components)

 increases reliability
 (more applications, more confidence)

9

reusable == portable

10

Reusable == portable

source: ubmdesign.com / http://www.slideshare.net/MTKDMI/2013-embedded-market-study-final

11

Reusable == portable

source: ubmdesign.com / http://www.slideshare.net/MTKDMI/2013-embedded-market-study-final

12

Reusable <=> portable

source: ubmdesign.com / http://www.slideshare.net/MTKDMI/2013-embedded-market-study-final

because
changes

sucks!

13

How others are doing it?

14

AUTOSAR (AUTomotive Open System Architecture)
“Cooperate on standards,compete on implementation”

source: www.autosar.org

15

CMSIS (Cortex Microcontroller Software Interface Standard)

source: www.arm.com

16

Arduino

Arduino is an open-source electronics prototyping platform, based on flexible,
easy-to-use hardware and software. It's intended for artists, designers,
hobbyists and anyone interested in creating interactive objects or environments.

Arduino programs are written
in C or C++. The Arduino IDE
comes with a software library
called "Wiring" from the
original Wiring project, which
makes many common
input/output operations much
easier.

source: http://arduino.cc/

17

#include <stdio.h>

int main(void)

{

 printf(“Hello World!”);

 return 0;

}

Why reinvent the wheel? We have C stdlib!

 Standard C library is already
 portable (same with C++/STL)
 It supports I/O operations
 Works in embedded world too!

 Focused on batch processing and
 text communication
 Lack of support for multithreaded
 applications
 Lack of support for real-time
 Usually leads to large code
 MISRA says: no!

18

Component based software architecture

19

Component-based architecture

User Interface

Graphical User
Interface (GUI) Library

LCD driver

Hardware

Communication
port driver

Communication
stack

Data processing

20

How to design reusable/portable code?

My Precious Code

21

Important design choices

My Precious Code

Applications

What is the potential range of applications?

22

Important design choices

My Precious Code

Applications

Hardware

What is the potential range of hardware we need to run on?

23

Important design choices

My Precious Code

Applications

Hardware
RTOS

(Really Tricky
Operating System)

Will an OS be used? Which one(s)?

24

Important design choices

My Precious Code

Applications

Hardware
RTOS

(Really Tricky
Operating System)

Other libs

What is the level of integration with other software components?

25

Important design choices

My Precious Code

Applications

Hardware
RTOS

(Really Tricky
Operating System)

Other libs

Toolchain
(Complainer etc)

What programming language? What toolchains need to be supported?

26

Important design choices

My Precious Code

Applications

Hardware
RTOS

(Really Tricky
Operating System)

Other libs

Toolchain
(Complainer etc)

Standards

What standards must be obeyed?

27

How to design reusable software?

Component code

Application code

Hardware RTOS

Defines usability

Defines portability

28

How to design reusable software?

Component code

Application code

Hardware RTOS

OS glueHW glue

“egocentric” approach

29

How to design reusable software?

Component code

Application code

Hardware RTOS

OS glueHW glue

Component code

OS glueHW glue

“egocentric” approach
multiplied

30

Towards abstraction...

Component code

Application code

Hardware RTOS

 HW/OS
abstraction

 layer

RTOS interfaceHW interface

Component code

31

Hardware Abstraction Layer (HAL)

32

Bad reputation: HAL 9000

“Open the pod bay doors, HAL.”

33

Consequences of having HAL

Component code

Application code

Hardware RTOS

HW/OS Abstraction Layer

Component code

HW/OS-dependent code
(changes with hardware or operating

system used -in ex. peripheral drivers)

Application-dependent code
(changes with application)

Independent code = resusable
(does NOT change even when

hardware or OS or application changes)

34

Advantages of HAL: switching HW/OS

Component code

Application code

Hardware
(STM32)

RTOS
(FreeRTOS)

HW/OS Abstraction Layer

Component code

It is possible to more easily switch
to other microcontroller or other
operating system during
development:

 less risk in picking up wrong
tools

Hardware
(AT91SAM3S)

RTOS
(uC/OS-II)

35

Advantages of HAL: cross-development

Component code

Application code

Hardware
(STM32)

RTOS
(FreeRTOS)

HW/OS Abstraction Layer

Component code

It is possible to develop
component and application code in
a more convenient environment on
a PC:

 speeds up the development
 allows easier unit and

integration testing of components
 allows to build large scale

simulation environments

 stress tests not possible

Hardware
(PC)

OS
(Windows/Linux)

36

Advantages of HAL: less effort == less bugs

requirement
analysis

architecture

coding

testing

 deadline !
time

requirement
analysis

architecture

coding

testing

 deadline !
time

Effort ~ number of errors

Effort ~ number of errors

37

Advantages of HAL: cross platform testing

We can reuse the software across platfroms to enable communication between them.
This is useful for both the application development and testing.

software
under test

Embedded hardware PC

utilities (data analysis,
visualization)

communicationcommunication communication

utilities (data analysis,
visualization)

test case software

38

Advantages of HAL: automated unit testing

We can run the embedded software on a PC platform, extending the concept of
continuous integration with automated unit tests.

version control
repository

automated
build

automated
test

continuous integration system

39

Disadvantages of HAL – major concerns

Efficiency.

Our experiments show that handling HAL abstraction can have little or no overhead

compared to chip vendor libraries. We try to follow the “only pay for what you use”

paradigm. The efficiency depends heavily on the actual realization of HAL interfaces on

the target platform.

Limitation of functionality due to choosen abstraction.

Although HAL cannot cover 100% of all available functionality of a microcontroller, it shall

not limit the potential usage of additional functionality.

Conflicts with other frameworks / libraries / components.

Modular HAL design shall help with the integration of different libraries.

40

HALFRED
Hardware Abstraction Layer For Real-time Embedded Designs

www.wsn.agh.edu.pl/halfred

http://www.wsn.agh.edu.pl/halfred

41

 Universal layer acting as a bridge between hardware and reusable
 software components

 Unified interfaces covering as much microcontroller functionality as
 possible

 Clear line between hardware dependent and independent code,
 maximizing the second one

 No assumptions about the application style
 Built-in support for multithreaded applications
 Good support for real-time applications
 Included support for in-application diagnostics
 Modular, tunable architecture
 Compatible between modern compilers
 Good documentation
 Test driven development
 Written in C (C99)

HALFRED wishlist

42

HALFRED current modules

The up-to-date documentation can be found on the project webpage:

www.wsn.agh.edu.pl/halfred

http://www.wsn.agh.edu.pl/halfred

43

Design process example
(GPIO module)

44

 Choose microcontroler representatives

 Analyze architecture (core, peripherals, memory etc.)

 Design abstractions (UML)

 Generate interfaces

 Write test cases

 Implement code

 Test

 Repeat :)

HALFRED design process

45

STEP1: Analyze representative microcontrolers

STM32F1

46

STEP1: Analyze representative microcontrolers

EFM32LG

47

STEP2: Identify abstract model

output state
register (0/1)

peripherals
(USART, SPI etc.)

input state
register (0/1)

configuration
register

PORT.PIN

OD/PP

interrupts

48

STEP3: Design and generate interfaces

49

STEP4: Write test case

void testGPIO(void)
{
 int i;

// initialize GPIO module
GPIO_Init();

// configure test port
GPIO_ConfigurePin(TEST_PIN, DEFAULT_CONFIG);

// do some GPIO stuff
 for (i=0; i < 100; i++) {
 GPIO_TogglePin(TEST_PIN);
 }

// deinitialize GPIO module
GPIO_Deinit();

}

main.c

50

STEP5: Implement and test

#define TEST_PIN_PORT GPIOC
#define TEST_PIN_PIN 13
#define TEST_PIN_DEFAULT_CONFIG GPIO_Mode_Out_PP

hal_config.h

51

Results

52

● Identified the level of abstraction needed, identified key modules

● Designed a modular architecture (UML)

● Made first implementation supporting various microcontrollers

● Documented it.

● Prepared simple examples.

● Used it in several complex real-world projects

● Gathered test results, performance metrics and user remarks

● Updated architecture and implementation based on user reviews

What we've done so far

53

● STM32F1, STM32F4 from STMicroelectronics

● ATSAM3S from Atmel

● EFM32LG, EFM32GG from Silicon Labs (formerly Energy Micro)

● ATmega from Atmel

● PCs

 FreeRTOS

 uC/OS-II

 Linux (posix)

 Windows (win32 api)

 GNU Compiler Collection

 MS Visual Studio

Supported hardware / OS / toolchain

54

● STM32 turned out to be fine, we didn't have to make the switch

● Designing/implementing HAL took more time that I thought it will :)

● Having HAL positively influenced the architecture of other components

● It was easy to standarize components on HAL

● Components tested on STM32 worked out-of-the-box on AVR

● The project was deployed successfully in an industrial application

Feedback from our initial project

55

(not so) Unexpected outcomes

● Thanks to the PC port quite a lot of embedded software
was developed (coded/debugged) in a convenient PC
environment, and then just tested on the target hardware
platform. It was possible to run unit tests on a PC.

● Having ports for linux (posix) and Windows (WIN32 API)
allowed for easy writing of cross-platform utilities (for testing
purposes).

● It was easy to insert other general-purpose components into
HAL (buffer pools, heap managers, logging/diagnostic tools, data
structures)
● It was natural to incorporate build tools into HAL, which shifted
a lot of makefile horror away from application code.

HAL became more like a framework than just a bunch of drivers.

56

Emulating and developing distributed systems

discrete event simulator

HALFRED

OMNeT++

Component code

Application code

57

Emulating and developing distributed systems

discrete event simulator

HALFRED

EFM32

Component code

Application code

58

The future

59

Switch to C++11.

Depend on GNU tools with options to support other toolchains.

Do not depend on chip vendor libraries (efficiency, co-existence)

Make full usage of language and toolchain features (optimization, removal of
unused code sections, detection of ambigous constructs, etc.)

Gracefully degrade when there's no OS.

Follow reasonable safety guidelines, such as MISRA C++.

Consider certification options, such as IEC 61508 SIL.

Current design choices

60

HALFRED now tends not to use
libraries provided by chip vendor.

This is why these libraries can be
easily used by the application!
(no version conflicts)

Vendor libraries independency

Application code

Hardware

HALFRED

Component code

RTOS

Vendor libraries

61

We need your help!

Check out how can you participate on the project webpage
(link will be available soon)

