List of typical symbols

A_{i}	-component of reaction
A^{daf}	– ash amount (daf), %
$C_{\rm p}$	– heat capacity, kJ/(kg·K)
$\dot{E_a}$	- activation energy, kJ/kmol
E^*	– active complex activation energy, kJ/kmol
ΔE_{uk}	- system energy change, kJ
$E_{\rm prod}$	– products energy, kJ
E_{subs}	– substrates energy, kJ
$\Lambda_{-}G^{0}$	- standard Gibbs free enthalpy of reaction kI/kg
$H_{\rm f}$	- standard enthalpy of components kI/kmol
$\Lambda_1 H^0$	- standard enthalpy of components, ks/kmol
	standard onthalpy of combustion kI/kg
Δ_{c}^{II}	standard enthalpy of compution, kJ/kg
$\Delta_{\rm f} \Pi$	- standard entitlapy of formation, KJ/Kg
$\Delta_{\rm r} H$	- enthalpy of reaction, kJ/kg
$\Delta_{\rm vap}H^\circ$	– enthalpy of vapourisation, kJ/kg
k	- reaction rate constant, 1/s
k_{∞}	- frequency factor, 1/s
K _a	- thermodynamic reaction constant
m_h	– heating rate, K/s lub K/min
Μ	– mole mass, kg/kmol
Ρ	– pressure, Pa
$Q_{\rm s}$ (HHV	/) – heating value, kJ/kg
Q_s^{uar}	– heating value (daf), kJ/kg
$R_{\rm g}$	-gas constant, kJ/(kmol·K)
R_0	– vitrinite reflectance factor, %
$\Delta_{\rm r}S^0$	 standard entropy of reaction, kJ/(kg·K)
Т	– temperature, K lub °C
To	– reference temperature, K
$T_{\rm ot}$	– room temperature, K
$\Delta t, \Delta T$	– change of temperature, K
U	– internal energy, kJ
ΔU	- change of internal energy, kJ
V	– released volatiles, kg/kg wegla daf
$V_0^{\rm daf}$	– initial amount of volatiles, %
$V_{\rm p}$	- air stream, m ³ /s
Ŵ	– work, kJ
$W_{\rm d}$ (LHV)– lower heating value, kJ/m ³	
θ	$-$ oxygen amount (O_d^{daf}), used in correction factor for enthalpy of formation % mas
μ	– mean value
i Vi	- stoichiometric coefficient
τ	- time s
d.	– pipe diameter
а _р	– gas density
Pg O	– solid density
Ps 11	– gas velocity
ug F	- solid flux
л _s Ф	- sphericity
Ψ_{8}	- sphericity
States of coal:	
ar (r)	- as received
a (1)	- analytical
d	dan i

d - dry daf - dry & ash free