Nprowadzenie 0000	Teoria 00000000000000	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura

Automaty komórkowe http://home.agh.edu.pl/malarz/dyd/ak/ v. 2.718281828459045235360287 Zastosowania w fizyce magnetyzmu

Krzysztof Malarz

1 maja 2024

Wprowadzenie ●○○○ **Wyniki** 00000000 Obliczanie Z

Lawiny dla J < 0

I → □ →

Literatura

Terry Pratchett, *Równoumagicznienie*, Prószyński i S-ka, 2006

Doskonale wiadomo, że istotnym warunkiem sukcesu jest brak wiedzy o niemożliwości tego, co człowiek próbuje osiągnąć. Osoba nie zdająca sobie sprawy z szansy porażki może być kijem wepchniętym w szprychy roweru historii.

Wprowadzenie ○●●●	Teoria 0000000000000	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Wprowad	zenie I				

Oryginalnie sformułowany przez Lenza [1] i rozwiązany dla jednowymiarowego ferromagnetyka w E. Ising. "Beitrag zur Theorie des Ferromagnetismus". *Zeitschrift für Physik* **31** (1925), 253–258.

Całkowita energia układu

$$E = -\frac{1}{2}\sum_{ij}J_{ij}S_iS_j - H\sum_i S_i,$$

gdzie zmienna spinowa S_i przyjmuje tylko dwie wartości $S_i = \pm 1$ (czasami $S_i = \pm 1/2$, czasami $S_i = 0, 1$)

(4月) キョン キョン

Wprowadzenie ○●●●	Teoria 0000000000000	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Wprowad	zenie II				

Całka oddziaływania wymiany

$$J_{ij} = \begin{cases} J_{ji} = J, & \text{dla } ij \text{ będących najbliższymi sąsiadami;} \\ 0, & \text{w przeciwnym wypadku.} \end{cases}$$

(W magnetyzmie jest to prawie zawsze prawdą.)

- J>0 sprzężenie ferromagnetyczne preferowane ustawienie $\uparrow \uparrow$ i/lub $\downarrow \downarrow$
- J<0 sprzężenie antyferromagnetyczne preferowane ustawianie $\downarrow -\uparrow$ i/lub $\uparrow -\downarrow$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Na H możemy patrzeć jak na energię oddziaływania spinów z zewnętrznym polem magnetycznym bądź wprost jak na pole **H**. Wówczas $H \sum_i S_i$ jest sumą energii zeemannowskich $\mathbf{H} \circ \mathbf{S_i}$. Pole **H** stara się ustawić spiny zgodnie ze sobą.

Reguła DAK = tendencja układu do zmniejszania energii:

$$S_i(t+1) = \operatorname{sign}\left(\sum_j J_{ij}S_j + H\right).$$
(1)

Fizycznie odpowiada to T = 0.

Wprowadzenie	Teoria ●●●○○○○○○○○○○○	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Dowód D)erridv I				

- Dla prostoty dowodu załóżmy H = 0.
- $g_i(t) = \sum_j J_{ij} S_j(t)$
- Funkcja pracy:

$$W(t) = -\sum_{ij} J_{ij} S_i(t) S_j(t+1)$$

• W(t) można zapisać na dwa sposoby:

$$W(t) =$$

$$= -\sum_{i} g_i(t)S_i(t+1)$$

$$= -\sum_{i} g_i(t+1)S_i(t)$$
(2)

Wprowadzenie	Teoria ●●●○○○○○○○○○○	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Dowód Γ)erridy II				

• Z reguły (1) DAK mamy:

$$S_i(t+2) = \operatorname{sign}(g_i(t+1))$$

• Z pierwszej równości w (2):

$$W(t+1) = -\sum_{i} g_i(t+1)S_i(t+2) = -\sum_{i} |g_i(t+1)|$$

• Z drugiej równości w (2):

$$W(t) =$$

$$= -\sum_{i} |g_i(t+1)| \cdot \operatorname{sign}[g_i(t+1)]S_i(t)$$

$$= -\sum_{i} |g_i(t+1)| \cdot S_i(t+2)S_i(t)$$

Wprowadzenie	Teoria	Wyniki	Obliczanie Z	Lawiny dla $J < 0$	Literatura
0000	●●●○○○○○○○○○○○	00000000	0000000	0000	
Dowód D)erridy III				

Różnica

$$W(t+1) - W(t) = -\sum_{i} |g_i(t+1)| \cdot [1 - S_i(t+2)S_i(t)]$$

jest niedodatnia.

- Z tego wnioskujemy, że W(t) jest nierosnąca.
- Dla układów skończonych wiecznie maleć nie może, więc $S_i(t+2)=S_i(t).$
- Mamy więc do czynienia z AK klasy II. A gdy $S_i(t \to \infty) \to \text{const} z$ AK klasy I.

 Do obliczania równowagowych wartości charakterystycznych wielkości układu opisanego modelem Isinga możemy się posłużyć

formalizmem sumy statystycznej:

$$Z = \sum_{\sigma} \exp[-\beta E(\sigma)].$$
 (3)

A (1) < A (1) </p>

Sumowanie odbywa się po wszystkich stanach układu σ .

• Odwrotność energii termicznej:

$$\beta = \frac{1}{k_B T}$$

- Dla układu N spinów mamy jednak 2^N możliwych stanów układu i tyle samo składników Z problem jest więc klasy NP.
- Ścisłe obliczenia (oprócz pracy doktorskiej lsinga dla 1D) powiodły się dla sieci dwuwymiarowej pod nieobecność pola magnetycznego [3].
- Dlatego w celu obliczenia *magnetyzacji* w zależności od pola *H* i temperatury *T* musimy posiłkować się *probabilistycznymi automatami komórkowymi*.

• Niech p_i będzie prawdopodobieństwem, ze i-ty spin jest zwrócony w górę.

• Zmiana tego p_i może być zapisana w czasie:

$$\frac{dp_i}{dt} = -p_i w_i(\uparrow \to \downarrow) + (1 - p_i) w_i(\downarrow \to \uparrow),$$

gdzie $w_i(\uparrow \rightarrow \downarrow)$ jest prawdopodobieństwem odwrócenia *i*-tego spinu z \uparrow na \downarrow .

• W równowadze

$$\frac{dp_i}{dt} = 0$$

.

• A samo p_i dane jest rozkładem Gibbsa $p_i \propto \exp[-\beta E(\uparrow)]$. • Skad

$$\frac{w_i(\uparrow \rightarrow \downarrow)}{w_i(\downarrow \rightarrow \uparrow)} = \exp\{\beta[E(\uparrow) - E(\downarrow)]\} = \exp[2\beta E(\uparrow)]$$

niezależnie czy w równowadze czy nie (bo w_i nie zależą od p_i).

W schemacie Metropolisa [4], prawdopodobieństwo akceptacji nowej konfiguracji jest dane poprzez

$$p_{\mu_i \to \eta_i}^M = \min\{1, \exp[-(E_{\eta_i} - E_{\mu_i})/k_B T]\}.$$
 (4)

W przeciwieństwie jednak do dynamiki glauberowskiej spiny są odwiedzane w losowej kolejności (losowa permutacja etykiet spinów strzeże by każdy spin był odwiedzony i to dokładnie raz na MCS).

- Wybieramy losowo komórkę *i*.
- Tworzymy konfigurację próbną z losowo wybranym spinem $S'_i = \pm 1$ i obliczamy z wiązaną z tym wyborem zmianę energii ΔE :

 $\begin{array}{l} \Delta E \leq 0 \ \mbox{\longrightarrow} \ \mbox{acceptujemy konfigurację próbną;} \\ \Delta E > 0 \ \mbox{\longrightarrow} \ \mbox{acceptujemy ją z prawdopodobieństwem} \\ \exp(-\beta \Delta E). \end{array}$

Dla każdego spinu i znajdującego się w otoczeniu (rozumianym "razem z nim") o konfiguracji μ_i , nowa konfiguracja η_i powstała poprzez wylosowanie $(S'_i=\pm 1)$ jest tworzona i akceptowana z prawdopodobieństwem

$$p_{\mu_i \to \eta_i}^G = \frac{\exp(-E_{\eta_i}/k_B T)}{\exp(-E_{\mu_i}/k_B T) + \exp(-E_{\eta_i}/k_B T)},$$
 (5)

gdzie E_{η_i} jest energią konfiguracji η_i , E_{μ_i} jest energią konfiguracji μ_i a k_B jest stałą Boltzmanna [5].

• Dla każdego *i* obliczamy:

$$r_i(t) = \frac{1}{1 + \exp\{-2\beta [\sum_j J_{ij} S_j(t)]\}}$$

- 4 同 ト 4 臣 ト 4 臣 ト

Teoria 0000000●●0000 Wyniki

Obliczanie Z

Lawiny dla J < 0

▲ 圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Literatura

Dynamika Glaubera II

- Losujemy liczbę $R \in [0; 1]$
- Jeśli $S_i(t) = -1$
 - $R \le r_i(t) \to S_i(t+1) = +1$ • $R > r_i(t) \to S_i(t+1) = -1$
- Jeśli $S_i(t) = +1$
 - $R \le 1 r_i(t) \to S_i(t+1) = +1$
 - $R > 1 r_i(t) \to S_i(t+1) = -1$

Wprowadzenie	Teoria ○○○○○○○○●○○○	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Kąpiel cie	plna				

- Komórki modyfikujemy jedna za drugą.
- Dla każdej obliczamy:

$$r_i(t) = \frac{1}{1 + \exp\{-2\beta [\sum_j J_{ij} S_j(t)]\}}$$

• Losujemy liczbę $R \in [0;1].$ Jeśli

$$\begin{cases} R \leq r_i(t) & \text{to } S_i(t+1) = +1; \\ R > r_i(t) & \text{to } S_i(t+1) = -1. \end{cases}$$

- Dla T = 0 wszystkie te trzy metody sprowadzają się do reguły deterministycznej (1).
- Dla niskich temperatur algorytm "lubi" się zawiesić na metastabilnej konfiguracji spinów (np. dla temperatury poniżej T_C i w polu równym zero H = 0 jeśli zaczniemy symulację od stanu z m = 0).
- Układ będzie dążył do stanu równowagi w sposób niewyobrażalnie powolny.
- Wprowadza się "demony Creutza" błądzące po siatce i odwracające "domeny" niezależnie od reguł.
- Najlepiej więc rozpoczynać symulacje zm = 1.

(D) (A) (A) (A) (A)

Kilka uwag natury technicznej II

- Dla najbardziej interesującego tj. 3D przypadku nie ma rozwiązań analitycznych i symulacja jest jedynym podejściem teoretycznym.
- "*Multispin coding*" jest techniką pozwalającą na przyspieszenie obliczeń poprzez operowanie na 32-bitach jednocześnie.
- Przy sprzężeniu antyferromagnetycznym w celu ominięcia przerzucania wszystkich stanów sieci z ↑ na ↓ przy początkowej m = 1 należy przechodzić przez siatkę rozsądnie (tj. co drugi węzeł).

Obliczanie Z

<u>Kilka uw</u>ag natury technicznej III

• Energia spinu na siatkach regularnych jest "skwantowana": nie ma co jej za każdym razem obliczać. To oznacza, że zmiana energii związana z odwróceniem spinu również przyjmuje kilka wielkości w zależności do liczby koordynacyjnej węzła sieci w której umieszczony jest spin. Wystarczy stworzyć tablice prawdopodobieństw akceptacji nowej konfiguracji/odwrócenia spinu r w zależności od "zwrotu" spinu i liczby spinów skierowanych w określoną stronę w jego otoczeniu (nie licząc jego).

Wprowadzenie	Teoria 00000000000000	Wyniki ●0000000	Obliczanie Z 0000000	Lawiny dla $J < 0$	Literatura

1d

Rysunek: Gęstość energii i ciepło właściwe

(四) (종) (종)

æ

Wprowadzenie	Teoria 00000000000000	Wyniki o●oooooo	Obliczanie Z 0000000	Lawiny dla $J < 0$	Literatura

Rysunek: Namagnesowanie i podatność

표 문 표

Wprowadzenie	Teoria 0000000000000	Wyniki ००●०००००	Obliczanie Z	Lawiny dla $J < 0$	Literatura
3d					

K. Malarz, KISiFK WFiIS AGH Automaty Komórkowe

T_C na sieciach regularnych z dodatkowymi sąsiadami

Rysunek: Wrócimy do tego [6] i nadamy wynikowi (nad)interpretacje socjologiczną...

Wprowadzenie

Wyniki

Obliczanie Z

Lawiny dla J < 00000

・ロト ・日ト ・ヨト ・ヨト

э

Literatura

T_C na sieciach Archimedesa I

T_C na sieciach Archimedesa II

Rysunek: Zależność $\langle m \rangle$ od temperatury T dla sieci Archimedesa $(3^4, 6)$, (3, 4, 6, 4), (4, 6, 12), $(4, 8^2)$ i (4^4) . $N \approx 6 \cdot 10^4$ spinów, po $N_{\text{iter}} = 2 \cdot 10^5$ [MCS]. $\langle m \rangle$ jest uśrednione po ostatnich 10^5 [MCS].

Tabela: Temperatury Curie T_C na sieciach Archimedesa [7–9]

z	sieć	$T_C [J$	$[/k_B]$	źródło			
3	$(3, 12^2)$	$1,\!25$		[10]			
	(4, 6, 12)	$1,\!40$		[10]			
	$(4, 8^2)$	$1,\!45$		[10]			
	(6^3)	$1,\!52$					
4	(3, 4, 6, 4)	$2,\!15$		[10]			
	(4^4)	$2/\operatorname{arc}$	$\sinh 1 \approx 2,27$				
	(3,6,3,6)	$2,\!27$					
5	$(3^4, 6)$	$2,\!80$	< □ >	[10]	> < ≣ >	æ	
K	. Malarz, KISiFK WF	IS AGH	Automaty Komórkowe	:			

Lawiny dla *J* < 0

∢ ≣⇒

Literatura

$\overline{T_C}$ na sieciach Archimedesa III

Rysunek: Zależność $\langle m \rangle$ od zredukowanej temperatury T/T_C dla sieci $(3^4,6)$, (3,4,6,4), (4,6,12), $(4,8^2)$ i (4^4)

$\overline{T_C}$ na sieciach Archimedesa IV

Dla każdej z rozważanych sieci, zależność $m(T/T_C)$ jest zgrubsza taka sama jak dla sieci kwadratowej [10]. W tym ostatnim przypadku znamy zaś przepis analityczny

$$|m(\kappa)| = \sqrt[8]{\frac{\cosh^2(2/\kappa)}{\sinh^4(2/\kappa)}} [\sinh^2(2/\kappa) - 1],$$

gdzie $\kappa \equiv T/T_C$.

W przeciwieństwie do półdokładnego wzoru Galama–Maugera na zależność T_C od wymiaru przestrzeni d i liczby koordynacyjnej sieci z, pokazujemy, że temperatura krytyczna dla IM różni się nieznacznie dla kilku AL (gdzie d = 2) z tymi samymi wartościami z. Podobnie jak w przypadku zjawiska perkolacji, także dla IM wymiar d i liczba koordynacyjna z nie są wystarczające do wyznaczenia punktu krytycznego T_C .

(本間) (本語) (本語) (二語

Efektywny algorytm obliczania sumy statystycznej I

- n liczba spinów do góry ($S_i = +1$)
- k liczba wiązań antyrównoległych ($S_i S_j = -1$)
- *L* rozmiar sieci
- $N = L^2$ liczba wszystkich spinów
- $\Omega(n,k)$ liczba konfiguracji siatki $L\times L$ o zadanej liczbienik
- $1/\beta = k_B T$

Efektywny algorytm obliczania sumy statystycznej II

$$E(n,k) = -J \sum_{\langle i,j \rangle} S_i S_j - H \sum_i S_i = 2J(k - L^2 + L) - H(L^2 - 2n)$$
(6)

$$Z = \sum_{n,k} \Omega(n,k) \cdot \exp[-\beta E(n,k)]$$
(7)

イロト イヨト イヨト イヨト

3

$$\langle A \rangle = Z^{-1} \sum_{n,k} A(n,k) \cdot \Omega(n,k) \cdot \exp[-\beta E(n,k)]$$
 (8)

$$\chi = \beta [\langle S_i^2 \rangle - \langle S_i \rangle^2] = \beta [\langle (2n - L^2)^2 \rangle - \langle 2n - L^2 \rangle^2]$$
 (9)

Efektywny algorytm obliczania sumy statystycznej III

metodą brutalnej siły								
	М	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	
	$t_{\rm CPU}$ [sec]	0,86	6,90	66,4	660	6648	65752	
na SG	$1 2800 \rightarrow 2^{6}$	$^4 \approx 10^3$	¹⁹ — 4	.6 milio	onów la	at!		

$$\Omega_{8\times4}(b^8, n_1+n_2, k_1+k_2+k') = \sum_{\substack{b_1^7, n_1, k_1 \\ b_2^7, n_2, k_2}} \Omega_{4\times4}(b_1^7, n_1, k_1) \cdot \Omega_{4\times4}(b_2^7, n_2, k_2),$$

gdzie $0 \le k' \le 4$ jest dodatkową liczbą wiązań antyrównoległych na "zgrzewie" dwóch sieci 4×4 a b^8 tworzy się na podstawie b_1^7 i b_2^7 .

Efektywny algorytm obliczania sumy statystycznej IV

Podobnie

$$\Omega_{8\times8}(n_1+n_2,k_1+k_2+k'') = \sum_{\substack{b_1^8,n_1,k_1\\b_2^8,n_2,k_2}} \Omega_{8\times4}(b_1^8,n_1,k_1) \cdot \Omega_{8\times4}(b_2^8,n_2,k_2),$$

i znów $0 \le k'' \le 8$ jest dodatkową liczbą wiązań antyrównoległych na złączu dwóch siatek $8 \times 4.$

Procedura ta pozwoliła określić $\Omega_{8 \times 8}$

na SGI 2800 w zaledwie 22 godziny, co daje przyspieszenie 1 831 636 363 $\approx 2\cdot 10^9$ [11].

WprowadzenieTeoriaWynikiObliczanieZLawiny dlaJ < 0Literatura000

Efektywny algorytm obliczania sumy statystycznej V

Podejście średniopolowe J < 0 i $\chi = (m_{\alpha} + m_{\gamma})/H \ (H \to 0)$:

$$\begin{cases} m_{\alpha} = \operatorname{tgh} \left(\beta (Jm_{\gamma} + H) \right) \\ m_{\gamma} = \operatorname{tgh} \left(\beta (Jm_{\alpha} + H) \right) \end{cases}$$
(10)

(日) (四) (三) (三) (三) (三)

 Wprowadzenie
 Teoria
 Wyniki
 Obliczanie
 Z
 Lawiny dla J < 0</th>
 Literatura

 0000
 0000000000
 00000000
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 <td

Efektywny algorytm obliczania sumy statystycznej VI

▲ □ ▶ < ≥ ▶</p>

< ∃⇒

æ

< (27) ▶ < 三

Efektywny algorytm obliczania sumy statystycznej VII

Lawiny odwróceń spinów w antyferromagnetyku

Sieci spinów ze sprzeżeniem antyfermognatycznym ($J<0)\,$ przemiatane wolnozmiennym zewnętrznym polem magnetycznym H.

Przykłady pętli histerezy m(H) dla małych grafów i obniżanego poła (ciągła czerwona linia) i zwiększanwego pola (kropkowana czarna linia) [12, 13].

Rysunek: Pętle histerezy

・ロト ・回ト ・ヨト

< ≣⇒

æ

Rysunek: Snapshots from simulation for scale-free tree (M = 1, left) and scale-free simple graph (M = 2, right) for N = 200 and magnetic field $H = 0 - \delta$. Spins $S_i = -1$ (red) and $S_i = +1$ (yellow) and their pairs $S_iS_j = +1$ (black) $S_iS_j = -1$ (blue) for all $1 \le i, j \le N$. (Figures using Pajek)

Wprowadzenie Teoria

Wyniki 00000000 Obliczanie Z

Lawiny dla J < 0

・ロト ・日ト ・ヨト ・ヨト

Э

Literatura

Rysunek: Histogramy rozmiarów s lawin odwróceń spinów

Wprowadzenie	Teoria 00000000000000	Wyniki 00000000	Obliczanie Z 0000000	Lawiny dla $J < 0$	Literatura

- W. Lenz. "Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern". Zeitschrift für Physik 21 (1920), 613–615.
- [2] E. Ising. "Beitrag zur Theorie des Ferromagnetismus". Zeitschrift für Physik 31 (1925), 253–258.
- [3] L. Onsager. "Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition". *Physical Review* 65 (3-4 1944), 117–149.
- [4] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
 A. H. Teller, and E. Teller. "Equation of State Calculations by Fast Computing Machines". *The Journal of Chemical Physics* 21.6 (1953), 1087–1092.

伺下 イヨト イヨト

- Wprowadzenie
 Teoria
 Wyniki
 Obliczanie Z
 Lawiny dla J < 0</th>
 Literatura

 [5]
 R. J. Glauber. "Time-Dependent Statistics of the Ising Model". Journal of Mathematical Physics 4.2 (1963), 294–307.
 1963
 - [6] K. Malarz. "Social phase transition in Solomon network". International Journal of Modern Physics C 14.5 (2003), 561–565.
 - J. M. Dixon, J. A. Tuszyński, and E. J. Carpenter.
 "Analytical expressions for energies, degeneracies and critical temperatures of the 2D square and 3D cubic Ising models". *Physica A: Statistical Mechanics and its Applications* 349.3 (2005), 487–510.
 - J. Adler. "Series expansions versus simulations". Annual Reviews of Computational Physics IV. Ed. by D. Stauffer. World Scientific, 1996, 241–266.

イロト イヨト イヨト イヨト

- [9] C. J. Thompson and M. J. Wardrop. "Critical points of two-dimensional Ising models". Journal of Physics A: Mathematical, Nuclear and General 7.5 (1974), L65.
- [10] K. Malarz, M. Zborek, and B. Wróbel. "Curie temperatures for the Ising model on Archimedean lattices". TASK Quarterly 9.4 (2005), 475–480.
- K. Malarz, M. S. Magdoń-Maksymowicz,
 A. Z. Maksymowicz, B. Kawecka-Magiera, and
 K. Kułakowski. "New algorithm for the computation of the partition function for the Ising model on a square lattice". *International Journal of Modern Physics C* 14.5 (2003), 689–694.
- [12] B. Tadić, K. Malarz, and K. Kułakowski. "Magnetization reversal in spin patterns with complex geometry". *Physical Review Letters* 94.13 (2005), 137204.

[13] K. Malarz, W. Antosiewicz, J. Karpińska, K. Kułakowski, and B. Tadić. "Avalanches in complex spin networks". *Physica A* 373 (2007), 785–795.

イロト イヨト イヨト イヨト

3