
1

Introduction to Computer Science
Part 5

Marek Wilkus Ph. D. http://home.agh.edu.pl/~mwilkus
Faculty of Metallurgy and Industrial Computer Science
AGH UST Kraków

Version: 2023

2

Back to the computer hardware

3

Computer system hardware basics

Central
Processing
Unit (CPU) Disk

controller

Printer
controller

Network
Controller

Memory
Management
Unit (MMU)

System bus

Random
Access

Memory (RAM)

I/O
controller

Expansion

Expansion

Expansion

4

What is a system bus?

• A set of lines responsible of transferring information
from/to the CPU.
– Address bus - A set of address lines to select the proper

place (address) in memory map.
– Data bus - A set of lines corresponding to bits of word

(byte, or multiple of byte), with which the information is
sent and obtained.
• These are bidirectional lines.

– Control lines - lines for notifying CPU about events and
setting the cimputer system to the correct state
depending on the task performed by the CPU.

5

A bus of a PC’s processor
(quite old one, but newer are just more complex)

DATA BUS, 64 bits wide

Parity of data bus for
checking, one bit for a
byte

The „Φ” - clock freq

ADDRESS BUS, 32 bits.

8 selectors of
address ranges.

Control
lines

Control
lines

6

CPU communicates with outside world

• Every computer has a memory map - an alignment of
memory locations. There are specific memory locations for:
– RAM
– Read-only memory containing the firmware (or BIOS).
– Different devices’ memory, I/O and configuration registers.

• To communicate with a device, CPU writes or reads the
information like from RAM or ROM, but addressing the
device’s address.

• The CPU shown previously
allows to „bank” the memory
having RAM in one range and
devices in another, saving RAM
which would be „shadowed”
by devices’ registers wasted. →

7

Control bus - important lines

• The clock - main frequency the system runs.
• RESET - puts the CPU back in the operation from the

beginning.
• READ/WRITE - as in the name.
• HOLD - The CPU holds off from mastering the bus and

devices on the bus may use it to communicate with
each other.

• DMA - Holds the MMU from talking with RAM so DMA
controller may freely use the RAM.

• INT… - Causes the interrupt.

8

The interrupt

• Presence of the interrupt signal causes the
CPU to stop executing currently executed
code and jump to the specific interrupt
handling code - the ISR Interrupt Service
Routine).

• After returning from the ISR, CPU has no
information that something like this
happened.

• Interrupts are used by devices to signal
different situations in the system to the
CPU.

9

Interrupts

• External interrupts are caused by devices, like:
– Timer counter overflown,
– I/O disk unit finished getting/saving the data,
– Network controller is ready,
– Sound chip finishes playing the current sample and CPU has

to get it the next one.

• Older systems have an
interurpt controller chip
that, when a device signals
interrupt, prepares the
memory unit to shove the
ISR address under
instruction pointer and
triggers the single CPU’s
interrupt. 10

 Internal interrupts

• ...are called exceptions and are issued by
the situations inside the CPU. For
example:
– ALU caused a divide by 0.
– A register has overflown.
– The opcode CPU tries to execute is not in

the instruction set.
– The memory area program tried to access is

not in the program’s memory range.
• ...so it’s ime to

11

Types of internal interrupts

• Faults are the interrupts with which we can
generally continue running some code as if nothing
happened (we can retry current instruction).
– Division by zero (we will get just no result)
– Invalid opcode (Intel) - operation will not be

executed.
– We try to do FPU instruction, but there is no FPU (no

result)
– Invalid memory request (segfaults),
– Memory refers to a page which is not there - time to

find it in the „swap”/paging area and restore it
somewhere.

12

Types of exceptions (2)

• Traps are triggered by specific instructions (Intel)
or with exceptional situations.
– In some Motorola architectures traps were fired

every time an unknown instruction occurred. This
has been cleverly hacked in early Macs.

– Injecting traps to the code allows to stop the code
any time and analyze its execution.

– Breakpoints.

• Continuing the execution from the trap causes
always the next instruction to execute

13

Types of exceptions (3)

• Aborts - Unrecoverable errors. We would continue,
but we can’t be sure even about instruction
pointer’s location. Further execution may lead to
undetermined state, I/O faults etc.
– Exception during an exception handler call (double

fault)
– CPU registers check failed.
– Exception during an exception handler call of double

fault exception (triple fault).

• We usually display a message and initiate a soft
reset in such cases.

14

The „A-trap” hack

• Early Macintosh had an interesting hack called a „A-trap”.
• ROM contained not only the most simple I/O routines

(BIOS), but more complex things like mouse support
routines, and even drawing windows, controls or buttons
on the screen. This was called a „Toolbox ROM”.

• The illegal instructions starting with 0xA… caused the trap…
• ...simultaneously, the MMU detected the instruction and

depending on its next bits pointed the address of the next
instruction to the proper location in the Toolbox ROM.

• CPU continued operation, but instead of the instruction it
executed code from the Toolbox, then it returned to
executing the program.

• This significantly sped up the GUI.

15

Exceptions generation

Fetch Decode

Execute

ALU Store

Bad
program
address

Invalid
opcode

Bad data
address

Div. By 0
Overflow
FPU?

16

Timer interrupts

• Modern operating system must have a regular timer interrupt.
– Switching actively running programs,
– Controlling the time of processes,
– I/O devices scheduling…

• In older systems, there was a PIT - Programmable Interrupt
Timer - a chip which
fired interrupts every
overflow of the built in
counter.
– The counter was increased

with clock pulses.
– Every interrupt, the counter

was re-set to some value.
– Not a very fast, or a very

precise thing, but still
useful.

17

Timer interrupts

• If PIT is not present or unreliable, it is possible to try with
TSC - Time Stamp Counter - a 64-bit counter counting CPU
cycles from the reset. Can be periodically read and fires an
interrupt at some value.
– Not very reliable in multi-core CPUs (if a core is suspended

for power saving, its TSC may not count).

– ...and hibernation/suspending freezes the TSC.
– Easier to program than HPET - Linux uses it by default.

• A HPET - High Performance Event Timer - Produces periodic
interrupts with better resolution and reliability. Built also
around a 64-bit up counter.
– More reliable in multimedia applications, harder to program.
– In some newer CPUs it takes long time to program it back.

– Not used in the newest Linux versions. 18

Timer - if all else fails

• Use an RTC which can fire interrupts at a
programmed time 2-32768 times per second, not a
very precise tool.

• Do we have anything else in the system?
– Measurement device, known measurement time,

interrupt triggered at the end of measure.
(some power management devices are used this way)

– Timers built in other devices (usually sampling
converters)

– ACPI timer - timer in modern power management
chip.

19

But why do we need it?

• Proper time measurement is a key factor
for modern operating systems to work.

• Without a precise timer, multitasking
operating systems usually have significant
problems.

• So how the operating systems work?

20

Operating system...

• ...is a program that manages computer
resources and works as a bridge between
the user (user’s programs) and a computer
hardware.

• Management of computer’s resources
includes memory, non-volatile storage,
access to devices, but also CPU time.

21

The 3-layer model

Kernel

Hardware

Shell

Applications

Users

The 3D depiction of this model in „The UNIX
operating system - AT&T Archives”, 1982

22

Components of the OS

• Kernel - communicates directly with hardware, or
using it device drivers, sometimes stacked in
abstraction layers. Controls memory,
scheduling and resources.

• Shell - is an interpreter of system’s functions
offering them to the user and user’s programs.

• Applications - executing user’s tasks in the
system.

23

Modern OS principles

• The main objective of the OS is to plan the usage
of system’s resources to maximize
effectiveness.

• Additionally, the Os should make the computer
system comfortable and efficient to use and
program.
– To do it, it offers various shells and may offer a

compatibility layers to run the same applications in
different computer systems.

• Applications and shell do not communicate directly
with hardware. They use kernel’s system calls
(or orther abstraction) to do it. 24

A quick remind about UNIXes

• UNIX is a multi-user, multitasking OS, initially developed as
kernel+shell+programs, developed since 1960s at various
universities. Available commercially in various
distributions like Solaris, AIX, HP-UX, Tru64 etc.

• GNU is a free-as-in-freedom
implementation of UNIX
(as GNU’s Not UNIX :))
developed part-by-part
when UNIX became
commercial.

• Linux is a kernel of OS, on which e.g. GNU can work.
• BSD - is another distribution of UNIX-like OS, based on

own kernel.

25

Distribution

• A kernel, shell and applications configured for specific task,
packaged in a single software set, is called a distribution.

• There are Linux distributions like Debian, SuSE, Fedora,
Arch, Gentoo or Ubuntu (and >100 more).

• BSD distributions are FreeBSD,
NetBSD, PC-BSD etc.

• Windows is also packaged in
various distributions, starting
from the same system with
different programs (Win7 Home,
Professional, Ultimate, etc.) to
versions with differently
configured kernels (FLP,
Server, Terminal Server). 26

Is Linux GNU-only?

• There is nothing limiting us from e.g. using Linux
kernel with BSD shell/applications. Debian had
such project (Debian GNU/kFreeBSD).

• In 1995, IBM put OS/2 shell on Mach kernel,
runnin an IBM PC OS on a RISC RS/6000 computer.
Was working, was not stable.

• It is possible to run Gnu on Solaris kernel (Nexenta
project).

• GNU on Windows? Cygwin or MinGW!→

• GNU kernel, HURD, is in development since 1980s.

27

History of operating systems

28

Batch OSes

Data

Program

Control

CPU computation

Results
/

Print-out

Data

Program

Control

CPU computation

Results
/

Print-out

Data

Program

Control

CPU computation

Results
/

Print-out

29

Batch OS

• Tasks executed in order.
• Every task is made of an input data/program

read, calculation, and results print-out/saving.
• Next task is started after the previous one ends.
• The order of tasks is dependent on operator.
• A similar requirements tasks are grouped in

batches (by operator).
• Rather operation methodology than operating

system.

30

Batch OSes

• Advantages:
– Simplicity - just executing task after task.

• Disadvantages:
– No interactive tasks.
– Only one task is executed in a specific time.
– During slow I/O, CPU is not doing any

productive work. During CPU calculation,
I/O devices do not do anything productive
too.

31

SPOOLing

• Simultaneous Peripheral Operation On-Line

CPU

Disk / Memory

Output
Input

32

Spooling

• When CPU is calculating one task, the I/O
unit loads another task to the other part of
the memory.

• More efficient task throughput by the cost
of larger memory.

• With a memory large enough, it is possible
to write results of a finished task, run
active task and fetch the next task at the
same time.

33

Spooling

• Advantages:
– More efficient usage of the computer.
– Smaller number of CPU „stops” for I/O.
– CPU and I/O work at the same time.

• Disadvantages:
– More memory required.
– There are better and worse orders of CPU-

intensive and I/O-intensive tasks. Still
operator decides.

34

Multi-program batch system

Nonvolatile memory

Tasks
pool

Memory

OSScheduling

35

1 2

3 4

36

Multi-program batch system

• Multiple tasks are loaded in the memory at
the same time.

• Tasks to be done are kept in nonvolatile
memory.

• When a currently executed task does an
I/O, a CPU can be used for another task.

• When the task finished its I/O, the system
returns to the task it paused.

37

Multi-program batch system

• Advantages:
– Even more efficient usage of CPU and I/O.
– Faster execution of a set of programs.

• Disadvantages:
– Tasks scheduling and CPU assignment

algorithms are complex.
– A computationally heavy task can seriously

block an entire system.
– Requires more efficient hardware.

38

Time sharing system

39

Time sharing systems

• CPU is executing multiple tasks, constantly
switching between them.

• With a high switching frequency, users do
not notice that the programs are multiplexed
- it looks like the computer is doing multiple
tasks simultaneously and users may interact
with multiple programs at the same time.

• With multi-user systems, it looks like every
user has own computer.

40

A popular OS history

• CP/M (G. Kildall, 197x-8x) - Text-based, single-task, single-
user…
– ...we can pretend that there are many users, but one logged in at

a specific time. But there was no protection and the „home
directories” were disk partitions…

– MS-DOS evolver from it.

• MS-DOS
– 08.1980: Tim Patterson, Seattle Computer Products - a

prorotype,
– 12.1980: QDOS, Microsoft buys non-exclusive license.
– 1981: Adapted to a new IBM PC computer as MS-DOS 1.0
– 07.1981: MS buys an exclusive license with all rights for $50 000.

Now it’s a MS-DOS.

41

DOS (2)

• When MS had non-exclusive license, IBM developed their
own DOS…
– PC-DOS 1.0 i 1.05 - 160kB disks support. COMMAND.COM

shell, with a full file operations support (in CP/M there was
a „PIP” program needed for file operations).

• 1983: PC-DOS 2.0, directories and simple I/O streams
supported, files can be opened and supported by
handles, device drivers can be resident. Support for
360kB disks.

• 1984: DOS 3.0 i 3.3 - FAT16, PC-AT, hard disk support
(20MB, more with custom drivers), additional tools.
1.2MB and 1.44MB disk support.

• DOS 6.22 - 1994/5 - the last DOS sold as separate
product.

42

DOS - 1990s - end of life

• DOS 7.0 - Part of Windows 9x.
• Caldera DOS, DR-DOS, MUDOS, DOS Plus - alternatives.
• FreeDOS - an open source DOS.

• A pseudo-multiprogram DOS
graphical shell called GEM -
a non-active program is
suspended.
Open source since mid-2000s.

43

MS Windows
”Visi-On looks nice, let’s make something similar”

• 1984 - Windows preview -
mostly semigraphics.

• 06.1985 - Windows 1.0, 1.01,

• 1987 - Windows 2.0 and
Windows/286 - windows
can overlap, multitasking,
Windows PE (exe)
standard, unified device
drivers standard.

44

MS Windows

• 1990 - Windows 3.0 - requires >=768kB
RAMu. Better GUI and multi-program
support. Inter-program interoperativity
(OLE, copy-paste in an entire system).

• 1993 - Windows for
Workgroups 3.11 -
OS-level network support.
Support for multimedia,
dynamically loaded drivers,
localization (3.2 supported
composing characters for
reading and writing).

45

Windows - next versions

• 1994 - Windows NT - Windows being not
an MS-DOS shell, more improvements.

• 1995 - Windows 95 - Even better shell,
DOS is still in the background.

• 1996 - Windows 95 OSR2 - „Give me my
Netscape back!”.

• 1997 - Windows NT 4.0 - A professional
OS for network and workstations.

• 1998 - Windows 98.
• 02.2000 - Windows 2000 - NT 5.0.
• 09.2000 - Windows ME (Millennium) -

the last Windows with DOS in it.
46

Windows (XP era)

• 10.2001 - Windows XP (NT 5.1) - requires 300MHz,
128MB RAM, 1.5GB HDD, one of the longest supported
Windows version.

• 2003 - Windows Server 2003.

• 2005 - Windows Vista,

• 2007 - Windows 7,

• 2012 - Windows 8,

• 2014 - Windows Server
 2012R2,

• 2015 - Windows 10.

47

ReactOS

• In Linux, it is possible to run
Windows programs using
WINE abstraction layer
which translates Windows
system/API calls to Linux/Unix
calls.
– So it looks like an API

re-written for a new
platform.

• If we could add a process scheduler, virtual memory and
drivers support, won’t it make an open source Windows?

• The ReactOS project (1996 - FreeWin95) - currently in
an early alpha version. 48

Mac OS

• An operating system for Macintosh
128K computer, called just
„System Software”, later Mac OS.

• Components:
– Kernel - monolithic, later with loadable

configuration and modules, with calls to
toolbox ROM.

– Finder - a file manager and graphics shell,
– Disk Utility - A disk subsystem driver pretending

to be just another disk diagnostic tool (delete
this and you’ll loose disk access :)).

– Applications: Multiplexed (non-active do not get
CPU), some resident running in background in
timer interrupts.

• Developed until late 1990s to version 9.2.2
• Later: Mac OS X, based on Berkeley Unix.

49

Other OSes: OS/2 (1990s)

• Initially IBM’s PC-DOS + „Presentation Manager” GUI shell.
• Later, IBM ??got?? Windows 3.x

code and embedded a
Windows 3.x API to it.

• Later versions implemented
Java at the kernel level
making it extremely
efficient in running Java
software.

• Developed until mid-2000s
as eComStation.

• Used in e.g. ATMs until
early 2010s.

50

Other Oses: BeOS

• Created by Be Inc. in 1995 for BeBox PowerPC-based mutlimedia
PCs.

• Lots of experimental features for multimedia-enabled operating
systems.

• CPU scheduler using heuristics.
• Memory assginment dependent

on devices used by program.
• Last version: R5 - 2001.

Later R5 Dan0 (from source
leak of version 6) and ZetaOS.

• Open source implementation: Haiku OS (currently beta)

51

UNIX

Denis Ritchie Ken Thompson Richard Stallman Linus Thorvalds

52

UNIX

• 1966 - Bell Labs, K. Thompson - MULTICS
multiplexed operating system.

• 1969 - The first Unix - AT&T/Bell Labs, D. Ritchie,
K. Thompson

• 1971 - Unix gets ported to PDP-11 - a computer
affordable by an average university in the USA,

• 1973 - Unix 4th edition - entirely in C.
• 1975 - Unix 6th Edition - freely distributed in

universitied and developed there. The beginning of
verious distributions, including BSD (Berkeley Unix)

53

UNIX (next)

• 1977 - The first BSD tapes get distributed,
• 1980 - SCO Unix, Microsoft XENIX, Coherent UNIX Preview.
• 1981 - DEMOS - BSD re-written to assembly gets performance

boost, but supports only a few computer architectures.
• 1982 - Silicon Graphics IRIX,
• 1983 - GNU (R. Stallman)
• 1984 - Hewlett-Prackard HP-UX,
• 1990 - IBM AIX,
• 1991 - Sun Microsystems:

 Solaris 2
• 1991 - Linux 0.01

 (L. Thorvalds)

CDE - A typical 1990s Unix GUI

54

UNIX (the Linux era)

• 1993 - FreeBSD 1.0
• 1993 - Debian GNU/Linux 0.x,
• 1994 - Red Hat Linux, Caldera Linux, beginning of various

Linux distributions,
• 13.03.1994 - Linux 1.0
• 1996 - Linux 2.0
• 1999 - Linux 2.2
• 2001 - Linux 2.4,
• 2002 - KDE 3 GUI for Linux and BSD,
• 2003 - FreeBSD 5.0,
• 2008 - OpenSolaris,
• 2010 - End of OpenSolaris development.
• 2011 - Oracle Solaris 11

55

Unix/Linux

• 2015 - Oracle
Solaris 11.3

• 2015 - FreeBSD 10.3
• 05.2016 - Linux 4.6
• 08.2016 - Android 7.0
• 08.2017 - Android 8.0
• 2015-17 - Init gets replaced by Systemd. System

starts in parallel, logs are binary files and the
amount of code to be rewritten is significant.

• 2020 - Linux 5.x,
• 2022 - Linux 6.x 56

Mobile OS

• 198x - PAL (DOS 3.x + extracodes)
• 199x - EPOC Symbian→
• Android:

– 1.x (2008) - An OS for digital
cameras.

– 2.x (2009) - A shell in a web browser
process.

– 3.x (2011) - Multi-core and
filesystems support, more efficient
UI.

– 4.x (2011)
– 5.x (2014) - Backporting features

from Linux kernel.
– 2017-23 - PostmarketOS - Desktop

Linux runnable on Android devices. Android
1.6

57

Mobile OS

• BSD + API kits mechanism (BeOS) + system services
fragmentation iOS (bigger energy saving and →
performance).

• 2022 - uses more memory-safe code written in Rust.
Better security by the cost of performance and memory
consumption.
– Linux is slowly rewritten a similar way.

• 2022 - Still some single-tasking OSes (qronOS, OmnOS,
SyMobi) - in a closed-source „feature phone” and
control systems.

58

Processes and threads

59

The program is running

• Programs cannot interface directly with computer
hardware.

• To read a file from disk, write to console or reserve
memory, they use system functions.

• These functions are standardized in API -
Application Programming Interface.

• In Unix, API is specified by POSIX standard.
• But how to call a function? How to send arguments

and get result?
– This is standardized in ABI - Application Binary

Interface.

60

API, ABI

• In Linux, API offered by GLIBC and POSIX ABI is
quite stable. Some programs will not work perfectly,
and they should be re-compiled.
– This is not a problem in open source world.

• In Windows, API and ABI must be stable. Most
programs are distributed in
binary form and re-compiling
is out of question.
– So there are thousands of

API functions for backwards
compatibility.

61

The Process

• ...is a program running in the system.
• Must be ran in a sequential way - in a

moment, one instruction is executed.
– This instruction is pointed with instruction

pointer.

• Consists of one or more threads - CPU
scheduling units.
– OS kernel schedules assignment of CPU with

specific threads.
– It is generally not possible to have process

without threads.

62

Process control block

• To manage process, OS has a data structure called
control block. It consists of:
– Unique Process Identifier - PID,
– Pointer to text section of the process,
– Instruction Pointer state,
– Dump of processor registers,
– Data/BSS section pointers,
– Process state (New/Running/Waiting for CPU/Waiting for IO/Finished),
– Open files, permissions, queues, scheduling info.

63

Queues used in scheduling

• Job queue - processes started and without
any CPU assignments.

• Ready processes queue - Processes which
are waiting only for CPU, because they
finished I/O, or got preempted and other
processes are running.

• Device queues - Proesses waiting for a
specific I/O device or resource.

64

Process states and their queues

CPU

I/O

Ready queue

I/O queue

Child process
Is running

Interrupt
happened

I/O operation
executed

Time quant ended

Spawning
child process

Waiting for interrupt

65

Schedulers

• Program which selects processes to ready queue is called a
long-term scheduler or job scheduler.
– Because processes enter the system relatively rarely, it may

not be fast.

• Program which choses the job from the ready queue and
sets it running on the CPU is called a short-term
scheduler.
– As programs are switched all time, it must be very fast.

• Program which suspends processes when they will wait for a long
time (e.g. for I/O) and swaps them to disk is called a medium-
term scheduler.

66

Context switching

• To suspend one process and resume another, the
scheduler performs a context switching.

1. Update process control block.
2. Update scheduling information.
3. Dump needed memory areas.
4. Save the updated control block to kernel memory.
5. Retrieve proper control block of resumed
processes.
6. Verify its integrity (anti-ROP mechanism).
7. Set CPU registers and instruction pointer.
8. Return control to the process.

67

Creating process

• UNIX: Fork and exec functions:

 Fork Exec

• Windows: CreateProcess/CreateThread functions
family.

P

P P’

P P’

68

Ending process

• Process calls a system function to be ended.

• ...or is killed by the system:
– Overwrite instruction pointer in the control block

with the pointer to the ending system function call.
– Switch the context.

– Preformed if process hangs, causes some interrupt
(segfault), parent process ends, or uses too much
memory (OOM killer).

69

When to switch context?

1. Process executes an I/O operation.
2. An active process became ready (e.g. by an interrupt).
3. A waiting process became ready (e.g. I/O operation
completed).
4. Process ends.

• If only the process can ask the system to switch context
(1 and 4), it’s a cooperative multitasking.

• If system can halt running process (2 and 3), it’s a
preemptive multitasking.

• Modern operating system kernels have preemptive
scheduling.

70

Cooperative scheduling

• Much simpler, does not need a clock interrupt.
• Dangerous - will the process give

the CPU back to the system?
– By default, CPU phases

frequency vs length is like →
– But process may hang in a loop.

• Older Windows system used it.
– ...so GUI programs had to execute „process events”

function every now and then.

• Later Windows used it only for drivers.
– NT almost does not use it.

71

Preemptive scheduling

• Better for interactive applications.
• More complex, needs better scheduling algorithms.

• But risky - what if the halted process is executing a
system call? Another process may break its kernel state!
– We may wait with context switching until the system call

ends,
– We can mask interrupts when system call is executed

(what with I/O then?)
– We can look for consistency of kernel structures and not

switch when they’re not OK.

• Windows NT, parts of 9x and UNIX use it.
72

Scheduling algorithms: FCFS
 (First Come, First Served)

3 processes entering the system:
1. P1 CPU time: 24 ms
2. P2 CPU time: 3 ms
3. P3 CPU time: 3 ms

Gantt diagram for FCFS in this example:

0 24 27 30Waiting time

Average waiting time:

(0+24+27)/3 = 17 ms

73

FCFS scheduling

But what if the order would be different:
1. P2
2. P3
3. P1

Gantt diagram is now:

0 3 6 30Waiting time

Average waiting time:

(0+3 +6)/3 = 3 ms
74

FCFS

• Works with cooperative multitasking.
• Is simple

– ...and that’s the end of advantages.

• Non-optimal.
• Highly dependent on the order of entering

processes.
– In modern systems it’s almost non-deterministic!

• The „Convoy effect” - lots of shorter processes wait
for one long process.

• Totally unusable in time-sharing systems.

75

SJF
Shortest Job First

1. P1 CPU time: 6 ms
2. P2 CPU time: 8 ms
3. P3 CPU time: 7 ms
4. P4 CPU time: 3 ms
Gantt diagram for SJF:

0 3 9 24

Average waiting time:
(3+16+9+0)/4 = 7 ms

For FCFS it would be:
(0+6+14+21)/4 =10,25 ms

16

76

SJF

• We can prove that this is an optimal method.
• Putting the short process before long one

decreases waiting time for it!
• Frequently considered (but rarely used) in long-

term scheduling.
• Works with cooperative and pre-emptive methods.

• Problem: This is good only theoretically!
We cannot predict the length of next CPU phase’s
time.

77

SJF - estimate the next CPU phase’s time

fn+1 = α tn + (1-α) fn

where:
α −weight (0÷1)
tn −n-th CPU phase length
fn - previous function value.
if α =0 - only older values are considered,
if α =1 - we consider only recent values.
Usually α =0,5

78

Enhancements to SJF

• Shortest Remaining Time First (SRTF)
– Expansion of SJF for pre-emptive.

• If a process with shorter CPU phase enters the system, we
can pre-empt currently running process.

• Context switching requires saving of scheduling/timing
information.

• Enhancement: Give priorities to processes.
– Problem: Process of the small priority may never get a CPU

(starvation).
– Example: In 1973 an IBM 7094 machine was phased out.

Operators found a low-priority process which got no CPU since
1967.

– Solution: Bump the priority for older processes.

79

Round-Robin (RR)
 A scheduling for time-sharing systems.

• Every process gets a quantum of time - a
small „time slice”.

• After the slice gets used, the next process
gets a new quantum.

• Processes are selected with FCFS.

• So n ready processes with quantum q,
each process waits no move than (n-1)*q
of time.

80

RR, quantum=25ms

1. P1 CPU time: 24 ms
2. P2 CPU time: 3 ms
3. P3 CPU time: 3 ms

Gantt diagram:

0 24 27 30Waiting time

Average waitinig time is:
(0+24+27)/3 = 17 ms
Context switches: 2

81

RR, quantum=4ms

1. P1 CPU time: 24 ms
2. P2 CPU time: 3 ms
3. P3 CPU time: 3 ms

Gantt diagram:

0 22 26 30

Average waiting time:
(17)/3 = 5,66 ms

Context switches: 7

4 7 10 14 18

82

RR, quantum=1ms

1. P1 CPU time: 24 ms
2. P2 CPU time: 3 ms
3. P3 CPU time: 3 ms

Gantt diagram:

0 30

Context switches: 29

83

RR scheduling

• Efficiency is highly depentend on time slice
q.
– For large q, algorithm becomes FCFS.
– For a very small q, the system uses too

much time for context switching.

• Generally 80% CPU phases should be
shorter than q.

84

Many queues

• Different types of processes can be scheduled
using queues with different scheduling algorithms.
– Foreground processes - or interactive - RR
– Background processes - FCFS

• Foreground processes have a priority against
background processes.

• To avoid background process starvation, OS can
allocate e.g. 20% of time for background queue.

85

Moving processes between queues

• We have a few (e.g. 3) queues.
– Q0 has q=8ms
– Q1 has q=16ms
– Q2 is a background queue and is FCFS.

• New process are scheduled in Q0.
• When it uses all quantum of Q0, it is moved to Q1.
• If it uses all quantum of Q1, it’s moved to Q2.
• Q2 is executed if Q0 and Q1 are used up.

• Currently it is one of most advanced short-time
scheduling algorithms.

86

Thank You for attention

87

Introduction to Computer Science
Part 6

Marek Wilkus Ph. D. http://home.agh.edu.pl/~mwilkus
Faculty of Metallurgy and Industrial Computer Science
AGH UST Kraków

Version: 2023

88

Memory management

89

Program is starting

• Program’s space is reserved in the
memory.
– Program binaries and constants
– Program’s variable space: Stack and heap.

• However the memory is organized, in
program’s code, it’s starting from 0 and is
continuous.

• All incontinuities are introduced later,
during memory operation.

90

Memory manegement

• Program loaded into RAM Process.→
• Process is executed from the RAM, using variables

in the RAM.
• Processes are relocatable - they can reside in

any part of RAM.
• Program has no knowledge where it is located -

addresses go from 0 - they have to be calculated
during operation by OS or MMU.

91

History

• 198x – CP/M – Memory
for OS, BIOS and
programs (TPA).
– TPA – Transient Program

Area - for programs.
– Running a new program

causes overwriting of TPA.
– If we can bankswitch TPA, we

can pretend 2 programs are
multiplexed.

– CP/M is a single-tasking OS -
no timesharing!

92

Source code Process→

Program
źródłowy Moduł

wynikowy
Moduł

ładowalny

Obraz
binarny

w pamięci

Other
Modules

Libraries

 Source
 code

 Binary
 Module
 (object)

Executable
Binary
image

Dynamically
Linked
Library

Compiler /
Assembler Linker Loader

Build
Time Load

Time Run Time

93

Program’s calls Memory addresses→

• Translation can be done at any stage:
– During building - if the memory addresses are hard-

coded, it’s an absolute code, for e.g. small
processors, DOS .com executables, some low-level
device drivers.

– During loading - OS may locate the program’s
image in a memory area, calculate and patch its
addresses then.

– During run time - If the code is dynamically located
and relocated during run, there must be some
mechanism to dynamically alter memory addresses.

94

Loading the program

• If the program is not loaded to the memory until it’s
needed to execute it, the program is loaded dynamically.
Most operating systems avoid loading programs „in
advance”, although some high-level methods for it exist.

• If some rarely used features of the program is compiled
into external binaries, they don’t occupy the memory but
are loaded when needed. It is also possible to relocate
some features to external dynamic link libraries or
shared objects (DLL, SO) and use them when needed by
one or many programs.
Additional advantage: Fixing a bug does not need to
recompile everything.

95

Overlays

• Historically used when programs required
more memory than it was in system.

• Example: Two-pass compiler:
We have 150kB of free RAM, program’s

components are:
– Pass 1 code: 70kB
– Pass 2 code: 80kB
– Additional symbols: 20kB
– Common functions: 30kB

• Total: 200kB

96

Overlays

• We can split the operation to two passes:
1. Symbols, common routines, Pass 1 code, overlay
support (10kB): 130kB total.
2. Symbols, common routines, Pass 2 code, overlay
support: 140kB Total.

• Both are under 150kB.
– Overlays are held as absolute binaries and are loaded

when needed by the overlay support module.
– Overlay-based program does not need any complex

memory management in the OS - it does these things
by itself.

97

Memory space - logical and physical

• Physical address - An address used in the
memory, of a specific word in the RAM.

• Logical address - An address generated by the
CPU running a program.

• To translate logiacl to physical addresses, modern
hardware uses programmable MMU - Memory
Management Unit.

• Usually, the translation works by adding an offset
to the logical address. The offset is stored per-
process in the offset register.

• Userspace program works only on logical
addresses.

98

Intel’s virtual address

• ...is between logical and physical addresses.

• It is an address in the memory, assuming an
entire memory is one, continuous space.

• It hides paging, memory banking, parallel access
ti multiple words or some aspects of dividing
memory to segments.

Logical address
Segmentation

Virtual address Paging,
banking

Physical addr.
RAM

99

Logical Physical address→

15000

Rejestr
przemieszczenia

 CPU RAM

Offset

MMU

+

15000
Logical
address

Physical
address

352 15352

100

Swapping

• A process can be temporarily swapped to the
disk to conserve memory.

• Then, another process may be swapped back to
RAM.

• Usually with swapping-only systems, processes
return to the same memory areas, so no re-
computations are necessary.

• Swapping != paging! Currently paging is used.

101

How to give memory to process?

• RAM is occupied by:
– OS - Usually redises near interrupt vector and I/O devices

adresses.
– User space processes, usually located „above”.

• To make user space processes not collide with each other,
MMU is programmed with offset register and boundary
register:
– Offset - a minimum physical address a process can address,
– Boundary - maximum logical address.

• In some MMUs, to make things faster, every process has
a context register to quickly switch the MMU to current
process context.

102

Controlling what process can do

Offset
register

Logical
Physical

Boundary
register

CPU RAM+
address

Addr.
Logical addr.
< Boundary?

Y

N
MMU interrupt!
→ Segafult

103

Multiple processes, continuous reserving

system

P1

system system system system system

P1 P1 P1 P6

P2

P3
Free

P3 P3

P4 P4

P5

P3

P4

P5

P3

P4

P5

P3
104

How to chose a „hole”?

„Hole” - a continuous area of free memory.

• First match - the first free space equal or larger
than process size. Searching can be done starting
from the beginning or match from previous
searching.

• Best match - chosen to leave as small leftover
„hole” as possible.

• Worst match - because maybe the largest „hole”
will be OK for some other program?.

• Usually, first (speed) or best (efficiency) match
approach are better.

105

Fragmentation

• External fragmentation - There is enough free
memory, but it is not continuous.

• Internal fragmentation - To minimize unusable small
„holes”, if a few byte leftover is left after reserving, it is
reserved too. Maybe it will fit some dynamic variables?
But certainly it will decrease number of „holes” to
search.

• To miminize external fragmentation, processes can be
re-located to occupy continuous area.
Or, memory can be divided to constant-size blocks -
then we have a tradeoff between external and internal
fragmentation.

106

Paging

• Physical memory is divided to frames of a 2n size (e.g.
4kB, generally 512B - 16 MB).

• Logical memory is divided to pages of the same size.

• Free memory is in the free frames list.

• N-page process is loaded into N frames. They may not be
continuous.

• The Page Table translates logical to physical addresses.

• External internal fragmentation tradeoff is present.→

107

Paging in the CPU

Every logical address is composed of two parts:
Number of page and offset in this page.

If page size is a power of 2 and:
– Address space is 2m,
– Page size is 2n,

then, m-n more significant bits of address point to
the page number (=2(m-n)),

• n less significant bits point to the offset.

108

Page table

• Is kept in RAM too.
• Its size is dependent on size of the memory or address space.
• So one memory access is in fact two memory accesses.

This is slow.

• To make things faster, we can store the most frequently used
table records in some fast memory - a cache.

• This cache is usually installed near CPU, has 8..32768 records.

• If page’s address is not found in cache, we have to perform 2
RAM accesses.
With a well designed buffering algorithm, we may get 80-98% of
page hits.

109

Cache memory

• Fastest: CPU Registers:
– Too small for cache.

• Dedicated L1 cache:
– Faster than RAM, connected directly to MMU.
– Expensive.

• Dedicated L2/L3/… cache:
– It is possible to make a paging hierarchy (page,

hierarchized page directories - Intel does this)
– Deeper levels are looked more rarely - can be

slower and less expensive.
– Some may be even expandable.

• RAM: Slowest in this comparison.

110

Effective access time

• An average time of accessing a memory address.
• For example:

 Cache lookup: 20ns
 RAM access: 100 ns

• Page hits - % of pages found in cache.
 For page hits: 20+100= 120 ns
 For page faults: 20+100+100=220 ns

• For 80% hits:
Eff. time=0,8*120+0,2*220=140 ns

• For 98% hits:
E.C.D.=0.98*120+0.02*220=122 ns

111

Memory protection

• With special protection bits, any frame can have
permissions to read, write or execute code from.

• Page access bit - if it is set, the page can be
accessed from the current context (process, mode).

 If not illegal access interrupt segfault.→ → →

112

Multi-level paging

• Address space in modern systems is very large.
• If page table has millions of entries, the page table

may be larger than a process!
– ...and lookup becomes too long.

• Large tables can be divided to smaller ones.

• For example, 32-bit address can be split to:
 20-bit page address and
 12-bit offset
or:
 10-bit page directory entry address,
 10-bit page address
 12-bit offset.

113

Going multi-level

• Every level has its own table, so getting the physical
address may require e.g. 4 memory accesses.
 E.g. access time may be 520 ns.

• But every level may have own cache which makes things
faster.

• So for 98% page hit:
 Access time is 0,98*120+0,02*520=128 ns.

114

Inverted page table

• One entry - one frame in RAM’s physical
addresses.

• Every entry has PID of process using the frame.

• Can be sped up using hashing tables.

• PROBLEM: Many processes cannot share the
same memory fragment.

• Currently quite experimental thing.

115

Shared pages

20 users use text editor in the same machine. Do
we really need 20 frames of the same editor’s
binary?

• If the code does not modify itself, we can point
multiple pages to the same frame.

• Every process than has own data memory, and
shared code area.

• Currently many programs and libraries use it.

• That’s, among other factors, why it’s hard to
determine memory usage in some Linux systems.

116

Zero page

• If a program reserves memory, it doesn’t matter it will use it right
now.

• So if we reserve a heap, at first, it does not point to the free memory,
but to the zero page.

• If the memory is read, it returns 0s.
• If the memory is written:

– System gets an interrupt,
– A free frame is found,
– The pointer is re-connected from zero page to the free frame,
– The page table is updated,
– Program is resumed.

• This way, it is theoretically for program to reserve e.g. 200GB of
memory in system with 128MB of RAM.
– The limit is page table size.

117

Segmentation

• How to keep which pages are for the shared binaries, which
are for external symbols, which are for data?

• Memory can be reserved in segments, which is a mechanism
running above paging.

• Logical addresses are a set of segments, so every address is
just a segment number and offet in this segment.

• This is then calculated to Page-Offset or similar method and
addressed.

• Modern MMUs support segmentation.
• Segments can be organized to:

– Program’s code,
– Functions segments,
– Program’s or function’s data,
– Specific routines,
– Etc.

118

Segmentacja

• Logical address: Segment ID + offset

• Segment table then has:
– base (physical address of the start of segment)
– length (of the segment)

• The segment table is kept in RAM.
• As segment count and sizes are different, memory

accesses can be verified using length of the
segment.
– Aren’t we trying to go past the segment?

119

Example

pod-
program

AAA
(0)

program
główny

(3)

Base Length
0 1400 1000
1 6300 400
2 4300 400
3 3200 1100

1000

2000

3000
function

(another)
(1)

stack
(2)

Main
program

(3)

Table of
symbols

(4)

Logical address space

3 3200 1100
4 4700 1000

Segment
table

3000

4000

5000

6000

Function

(0)

 1400 1000
 6300 400
 4300 400

120

PAE - Physical Address Extension

• 32-bit Intel’s Architecture’s addres space is:

2^32 = 4 294 967 296 bajtów = 4GB

How to support more?
• We will double the length of page table’s entry.
• So there is still 32 address lines, but address can be twice

long.
• So still every context (process) can address 4GB at max,

but these may not be the same 4GB than the other process
has!

• MMU supports it since Pentium 4.

• Supported by 32-bit Linux/Unix, Windows later than XP
(XP too, but it was intentionally disabled)

121

Intel 64-bit

• Even more complex and
multi-level.

• Two addressing modes:
– 4-level paging on 64-bit

addresses.
Maximum address space
is 256TB.

– 5-level paging - virtual memory
up to 128PB, but with less caching
(it takes longer to find an address)

122

Virtual memory

• Does the process use the reserved memory
efficiently?

• It was found that most processes use only
a small part of the reserved memory for
most of time.

• So what if we store some pages on disk
– Paging file
– Paging partition (Unix’ „swap”).

123

Swapping vs paging

• Swapping is for an entire process.
• Paging is for specific pages.

• In virtual memory approach, most
programs do not reside entirely in RAM.

• The paging routine predicts which pages
will be in use and transfers them from
paging device to the RAM.

124

Page fault - what to do?

• Page has not been found in RAM - interrupt fires
and it’s OS job to bring it from the disk.
– Process is halted and preempted,
– Checking is the page „legal” in the context of the

process,
– Disk I/O (very slow)

• ...a few processes may get CPU this time.

– Correcting of page table,
– Waiting for free CPU to restore the process.

• This is slow.
– According to some measurements it can be

250000 times slower than ordinary RAM access.

125

How to speed it up?

• Predicting of the needed page must be
done correctly to minimize page faults.

• Some pages may be marked that it’s
better to replace them than other.
– If the page has not been written to, it may

be replaced by other one faster than the
page which needs to be saved on disk.
• A „dirty bit” informs OS that the page has

been changed in RAM.

– If the page is unused for a long time, it may
stay this way for a bit longer.

126

Which page to replace?

• FIFO - Replace the „oldest” page in the
memory.

• Requires to store how long the page is in RAM.

• Problem: It may be used by some OS
programs.

• Problem: sometimes increasing page cound
for program increases page faults cound
(Laszlo Belady’s anomaly).

127

Which page to replace?

• Optimal: Rteplace the page which will not be
used for the longest time.

• This is the optimal way.

• Problem: we cannot predict how long the
page will stay unused.
– So it is used for theoretical comparisons.

• Least Recently Used:
– Store access counter for every page,
– Replace the page which has been unused for

the longest time.

128

LRU improvements

• We may store the information in two bits:
– Was the page used recently?
– Dirty bit.

• Then:
– 0,0 - not recently used, not modified - best page to

replace.
– 0,1 - not recently used, but modified - worse thing,

it’s needed to write it to disk.
– 1,0 - recently used - may be needed in a moment.
– 1,1 - recently used and modified - wirst page to

replace.

• We can use CPU’s instructions to find the lowest
value.

129

Process goes out of control

• Process’ heap goes from one side of the logical
memory area.

• Process’ stack goes from the other side.
• We can increase the stack by:

– Calling functions by functions,
– Using single’use „scratch” variables.

• We can increase the heap by:
– Reserving large memory areas,
– Using many variables,
– Creating duplicated of existing data structures.

• What will happen if they meet?

130

Overwriting

• We can overwrite the stack by the heap.
• This will cause return from the recent function point to

illegal address
 → segmentation fault (core dumped).

• What if we use this intentionally?

• How to break the stack?
– Make program reserve too much memory - e.g. by loading a

specifically crafted file.
– Or by executing user’s commands in a specific order.
– Or by misusing some unguarded functions.
– ...

131

„Where do you want to jump today?”

• By cleverly overwriting the stack, the return
from the function will jump to the place we
want.

• We can execute any part of the program’s
code this way!

• Now we disassemble the code and look for
some interesting parts - writing files, or
executing programs from the disk.

• If it is programmable by the data in the heap,
it is possible to craft this data too, and such
„gadget” is extremely useful.

132

Making program do unusual things

• This way we can e.g. force a program running on a level of
other user to „return” to the code which will spawn a shell
with this user’s privileges, but in our control.

• This technique is called a return-oriented programming
and is currently a serious security-related problem.

• The malicious data can be supplied as:
– A file - image, data, document - making program reserve a

lot of memory and write file contents to it,
– A user-supplied data - e.g. by abusing a form input,
– A malicious library patched into program,
– ...

133

Other solutions

• ASLR - Address Space Layout Randomization - what
if we cannot be sure where the „gadget” is?
The address space can be randomized.
If not hardware-accelerated, slows down the
program.

• Retpoline - every return, jump thru kernel’s function.
Kernel verifies is everything OK, and allows to return
or not.
This is AWFULLY slow.
Sometimes it’s >20% performance loss.

134

Windows NT kernel fix

(ctxswap.asm, Windows source tree: base/ntos/ke/$ARCHITECTURE$)

Prepare for context switching after issuing return
(lock interrupts, check do we chain returns using a return
list)

135

Windows NT kernel fix

Save registers for context switching and save
the return address!
If it won’t be on the list → Something modified
return address!

.

PROBLEM: Still „speculative” attacks are possible.

136

Thank You for attention

137

Introduction to Computer Science
Lecture Part 7

Marek Wilkus Ph.D. http://home.agh.edu.pl/~mwilkus

AGH Kraków

Version: 2023

138

File system

139

What is a file?

• File - a logical unit of data storage stored in a non-volatile
memory.

• File - an identifable collection (set) of information, stored
in a non-volatile memory.

• File - is a series of bytes, bits, lines or records in a device.

• File attributes:
– Identifier or name (made according to FS conventions),
– Type (if required),
– Location (...on a specific device),
– Size (in bytes, characters, words or blocks),
– Permissions and attributes,
– Time, date records, owner records,
– FS-specific metadada.

140

Two types of file usage

• Modern Computer operating systems use
filesystem as a primary data stroage. The
system usually is also stored in the
filesystem.
– It means that filesystem driver has to be

loaded very early.
– Problem with filesystem OS fails to run.→
– Usually support for many file systems is

present, and some OF may support adding
external ones (Linux, F.U.S.E.).

141

Two types of file usage

• Simple portable devices or proprietary
appliances (data collectors, measurement
systems, media players etc.) may use
filesystem for auxiliary purposes - for
getting additional data or writing data to.
– Filesystem implementations are usually much

more simple.
– Sometimes, only the simplest FAT is present.
– OS does not reside in the file system - it is

usually stored in a read-only memory.
– Theoretically, the device can run without a

disk.

142

History

• Tape-based computers: File is a device connected to I/O
channel.

• Later: There can be more files on a
device, but it is still about changing
tapes - manual or automatic
(Facit Carousel project),

• Later: There may be more files in a
single tape. It was needed to increase
tape reliability (vacuum, etc.)

• Later: Indexed tapes.

• Disk-based systems: A simple file list
(identifier-offset-length).

• Later: Complex file systems.

143

History of implementations

• 1970s-80s - microcomputers:
– Device (e.g. tape, printer, floppy drive - is a file)
– Later: On a random-access device there can be

more files. Previous approach is still in place for
devices.

– No place for disk OS - it is loaded from tape or
bootstrapped from disk drive’s ROM.

– CP/M-based machines: Disk drive is a computer.
Computer is a terminal.
(that’s why disk drives were so expensive - there
was a second complete computer inside!)

144

History - Hierarchical FS

• One of the first hierarchical FS - Unix FS (UFS).
• IBM PC (DOS 1.x) - Simple file list on a floppy disk.
• IBM PC (DOS 2.x) - Directories. Hard disks up to

20-30MB (or more - with drivers), no standard for
larger HDDs.

• DOS 3.x-6.x - FAT - Multiple partitions, nested
directories.

• Windows 95 - VFAT i 95 OSR2 OSR2 - FAT32 -
bigger disks support, extension of 8+3 naming.

• Windows NT - NTFS - New Technology File System -
Streams, extended attributes, sparse files, object
filesystem (never fully implemented).

145

File-related operations done by OS

• Creating file:
– Finding free place in the file list and reserving space
– Inserting entry.

• Writing to file - Identifier of a file and data is given.
It is important to keep the information where to write
(offset).

• Reading file - Identifier of a file, length and memory
buffer is given. The same offset can be used.

• Seeking position in a file - moving the offset.
• Removing a file - Removing of directory entry and, if

needed, discarding the space used by file.
• Truncating file - Discarding file’s data without

removing directory entry.
146

Other operations

• Appending - Adding new records to existing file.
• Renaming - usually done with the same

command as moving, manipulates metadata.
• Opening a file - Creating a handle to perform

other operations on file by other OS functions.
• Closing a file - Finishing working with a file by

discarding its handle.

• In mutli-tasking and multi-user OS, files
should be open the way to minimize
program’s interferences.

147

File Types

• OS can detect file types by:
– Extensions - in MS-DOS/Windows, 3 last characters

of the name, after the dot,
– Magic bytes - normal in Unix and modern Macs, by

contents of a file (see Unix command: file, and
/etc/magic information file),

– Creator/application attributes (Classic Mac OS) - A
specific ID of program to open soecific file is written
in its metadata.

– Mixed - e.g. Magic bytes + extension (GUI Linux) or
Megic bytes + Creator ID (early Mac OS X)

148

Accessing a file

• Sequential - Processed record-by-record in the
order the data is written to, used in early
implementations and sometimes forced in multi-
CPU software.

• Random access - Any order is possible, file can
be read backwards or seeked record by record.
Used in modern filesystems and database-
dedicated FS.

• Indexed access - There is an index file
specifying „what goes where” - used in older DB
systems.

149

Directories

• Single-level - Only name uniqueness has to be
maintained.

• Two levels - Every „user” has own directory with
files, no further hierarchy.

• Multi-level tree-like - currently used in most
systems.

• Non-cyclic graphs - There are many ways to reach
a file. Currently implemented, but rarely used.

150

Protection

• File systems allow to specify what an user can do:
– Reading file’s contents,
– Writing or overwriting a file,
– executing a file, or passing it to the Os’ loader,
– appending to file,
– removing file,
– Modifying metadata - including name and attributes.

• Typical UNIX user classes:
– Owner - by default, user which created a file,
– Group of users defined by OS rules,
– Other users.

151

How to reserve space for file?

• Continuous - no fragmentation, file after file.
– Advantages: Simple, minimal drive seeking, possible to

implement on a microcontroller.
– Disadvantages: Almost no way to append to file, hard to write to.

This is mostly useful in Read-only file systems (ROM memory of
embedded devices, BIOS modules, loaders, encryption systems).

• List-based - Every file block has a pointer to the next block,
like in a singly-linked list.
– Advantages: No external fragmentation, files can be appended

to, seeking forward is fast.
– Disadvantages: Random access is difficult, if a link breaks, the

„hanging” chain cannot be used anymore and is usually
discarded, pointers take much space.

152

How to reserve space for file?

• Index-based - like list-based, put pointers are in a single structure.
– Advantages: like in a list-based, the index can be buffered so seeking is

faster, no external fragmentation.
– Disadvantages: Pointers usually take more space than in a list-based

method, a single point of failure.

• Mixed implementation ideas:
– If the index overflows, a pointer to the next part is given like in a list-

based. This slows the seeking down.
– Multi-level indexing - Makes more sense, especially if first entries are

indexes and other are hierarchical continuation of the index. This is
used in Unix.

– Making things faster - organize blocks in a balanced BST by the offset -
sequential seeking goes faster then.

153

Performance!

• Having a list-based reservation and random access, the
performance will drop - accessing block n requires n
accesses to the disk.

• Increasing performance:
– When a file is created, its access mode can be declared - but

when it ends with direct access, the size must be known
(useful for VM disk images).

 For sequential access, a list-based or tree-based
 reservation is then used.
– It can be dependent on file size - small files may be reserved

as a continuous space, larger in e.g. tree-based.
– Some FS allow to use clusters (groups of sectors) of different

sizes - smaller files may get 4kB, larger - 64kB, then filled to
the end with 64kB. Efficient, but difficult to implement. 154

Management of a free space

• Bitmap - In a continuous bit vector occupied blocks
are 0, free are 1. There is a CPU command to find
the position of the first bit lit, so it is easy to find a
free block.

• Linked list - a „virtual” free space „file”.

• Grouping - A set of blocks is hierarchically defined
as a free space.

• Counting - An address of the first block and number
of free blocks following it is stored.

155

Increasing performance

• Disk caching - Entire fragments of files, records, or even disk tracks
are stored in unused RAM for reading or writing.

• Early freeing - In memory-constrained system, the buffered block
can be freed from the memory right after the file operation. If the
buffer is exactly the size of processed data structure, does not
decrease performance.

• Reading ahead - Reading and buffering next blocks of the file before
they will be needed.

• RAM-disk - A fast disk for operations, this is a volatile medium.

• Delayed writing – Flushing buffers as late as possible - preferably at
the program exit - to minimize unneeded writes.

156

Increasing performance

• Copy On Write - If making copy of the file,
create the metadata block, but reserve
space and copy data only when it is
modified.
– Things go much faster,
– ...however, it’s more difficult to implement in

multitasking and multi-user systems. Usually,
the „dirty bit” for a block is used.

– Problems: Nov. 2023, OpenZFS, „dirty” bit is
not forwarded to next blocks when they dirty.
• Result: Files corruption!

157

Operator actions

• Checking the FS - chkdsk (Windows), fsck
(Unix/Linux) - done periodically or after removing the
disk without unmounting (the „clear bit”).

• Backups and restoring - Copying the disk to the
backup media.
– Incremental - by using a previous backup as

reference.
– Disk imaging - by copying an entire disk to the file.

• Disk Compression - mounting the compressed file as
a „virtual” disk, the file is on the „real” disk.
– More space, slower access.
– Similar strategy is used with encryption. 158

Example - DOS FAT

 - Directory - records consist of file name (8 chr), extension (3 chr),
 length, attributes (h s r a), creation date, FAT offset/entry.
 - FAT (file allocation table) - elements of this table represent consecutive
 blocks (sectors, or clusters). Written at the beginning of partition in 2
 copies for safety.

 Example: File F1 is in blocks: 7,8,11,3, F2 is in 4, ang F3 is in: 1,2,5,6,9

No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 19 20
 02 05 ff ff 06 09 08 11 ff 00 03 00 00 00 00 00 00 00 00 00

 FAT 12 - each entry is 12 bit long, so 0-4096, with 8kB clusters (considered
large) gave maximum drive size of 32 MB

Later versions - FAT 16 (up to 2 GB) and FAT 32.

The biggest problem: Time to seek thru the FAT list.

159

Example – NTFS (Windows)

• Volume - a virtual representation of a partition - maty be
a disk, partition, mounted resource or a group of disks.

• Cluster - A base allocation unit - usually 4kB, smaller than
in FAT. Modern disks have sectors as large as clusters.

• File is written as an object consisting of attributes. File
metadata, location in the volume and data itself are
attributes.

• Master File Table (MFT) - Stores file records.

• File identifier - an unique identifier of each file, consists
of 48-bit MFT position and 12-bit „serial” number.

160

NTFS – What is stored in?

• MFT backup - first 16 or 32 entries are backed up for fixing the
rest of MFT,

• The Log file - ontains operations performed on the disk,
• Volume file - NTFS version, volume size and characteristics, the

„clear bit”,
• Attribute table - A table of available metadata attributes and

operations on them,
• Main directory
• Cluster bitmap - for storing info about free clusters,
• Loader - Windows loading code,
• Bad blocks log,

• If a problem occurs during disk operation, it is simple to recover
FS to working condition by rolling back the transaction.

161

NTFS – Inside the „System Volume
Information”

● $Mft - Table of file/directory records.
● $MftMirr - a backup of the first 4/16/32 MFT records - they store what

is in the „System Volume Information” directory.
● $LogFile - Transaction log.
● $Volume - Volume Information File.
● $AttrDef - Available attributes.
● $$ - Root directory definition.
● $Bitmap - Free Space bitmap
● $Boot - Boot program (only in Windows boot partitions)
● $BadClus - (?deprecated?) Bad clusters information.
● $Secure - Permissions definitions.
● $UpCase - Used for translating file names, maintaining sorting order.
● $Extend - All extended attributes for volume like per-user

permissions, quotas, network sharing etc.
162

NTFS – file operations

• Every operation is a transaction.
• At first, the operation is written to the transaction

log. Then, the operation is performed and
confirmed in the log.

• If there was a failure, the log is re-processed and
operations are recovered or discarded.

• This guarantees that operations will not damage
the filesystem. Data may be damaged, but
filesystem should allow to recover undamaged
data, not totally „fall apart”.

163

NTFS

• If the cluster does not store the information →
mark as bad, append to the bad clusters list, use
another cluster.

• There are more layers of protection against bad
blocks and this is one of the last ones.

• Repeating problems FS driver writes it to the →
system log, it’s a good time to look for a new hard
disk.

164

Classical Unix FS

• Directory: File names (up to 256 chars), inode pointer. Different from a
file by one attribute.

• I-node - contains information about object.

Mode
 Owner

 Time stamp
 File size
Licznik bloków

Data

Data

Data

 Blocks count

Direct Block Pointers

 Level-1 pointers
 Level-2 pointers
 Level-3 pointers

.

.

.

Data

Data

.

.

. .
.
.

.

.

.

Data
Data
Data
Data
Data

165

Unix filesystem

• Superblock - A record of static drive’s
parameters, filesystem size, block lengths,
access modes, quotas.

• Cylinder group - now deprecated - a small
„sub-filesystem” for faster single-file
operations:
– Have own superblock,
– Have a „cylinder block” (incl. free blocks list,

file links, quotas, attributes),
– I-nodes,
– Data blocks (to the end of the group).

166

Typical problems

• Classical UNIX/Solaris: Permanent FSCK and data loss at
boot-up:
– Operator partitioned the disk not according to documentation

and overwrote the superblock with partition start.

• Linux: FSCK continuously indicates non-existing i-node
removal:
– Part of the filesystem was synchronized from the network

and got a metadata from the future.

• FAT implementation: Directory record split in half:
– This is not present in most FAT documentation: Directory

record is a file too and must be read traversing thru FAT
structure.

167

Ext4 FS

• Default FS in modern Linux distributions.
• Successor of Ext3, Ext2, Ext, Minix FS…
• Capabilities:

– Devices up to 1EB (1 Exabyte=1024PB, 1PB=1024TB),
– Unlimited directory depth,
– Transaction log with checksums,
– API for on-the-fly disk encryption,
– Delayed writing of i-nodes from cache.
– Year 2038 problem is delayed by adding 2 bits (now it

is Year 2446 problem).
– FS-level quotas are more flexible than „hard”

partitioning.
168

Ext4 - Space management

• Blocks are purely „virtual” - space is
allocated in extents.

• There are 4 entries for 4 extents in
metadata of a file. Maximum size is then
128MB * 4 = 512MB

• Bigger file - multi-level storage in a self-
balancing binary search tree aligned the
way that it’s preferable to seek by offset.

169

Ext4 - External fragmentation minimization

• Allocate-on-flush - Blocks are allocated when the file
is finally written to disk.

• Preallocating - It is possible to pre-allocate blocks for
a specific file.

• New files are written the way that number of useless
holes is minimized.

• A small (1-5%) part of the disk is locked for better
holes management.

• For SSD - Trim support. 170

Ext4 - Directories

• A specific H-tree structure.

• To obtain all file entries from specific
directory, we llok for range of files, not a
specific value. The H-tree is optimized for
such searching.

• If we get to the directory entry, most of
time an entire content is stored in its
leaves.
– The exceptions are mostly links.

171

More Metadata! Apple HFS, BeFS

• Apple HFS and later: Every FS object has a
"resource fork" describing metadata like:
– Is the object a link, directory, file, or „non-object”,
– Icon and color,
– Program opening a file ("Creator"),
– Icon location,
– Is an object named,
– Text comment,
– Position/size of application window,

(OK, this was a bad idea)
– Many more, most are not used

anymore.

• In Mac OS X, it was slowly phased
out, replaced by attributes stored
in hidden dot-files.

172

BeFS

• Developed around 1996 for BeOS, used in Haiku OS.
• Extents based on disk blocks.
• Extents are packed in multiple

levels like in UFS.
• Every file may have an unlimited

number and types of
metadata…
– ...And it’s

user-configured.

• Metadata is identified by file
type.

• So the file system can be
used as a personal database.

173

MS WinFS, NewFS, OFS, ???

• Never released in Windows system, but developed since
NT3.51.

• Relative DBMS as file system,
• file: Data, Metadata, Resources, ways of accessing.

– Way of accessing: Program + conversion module.

• Incompatible file types problem solved? - NO! - small
number of these modules.

• ...Data and data-relation oriented.
• An application can generate FS on the fly - like Unix’ ProcFS,

/dev, mail, cloud disks etc.

• Problems:
– Formats are evolving and are incompatible.
– No interoperability between platforms.
– No backwards compatibility.

 Project Longhorn (Vista): Folder as calendar →

Windows 95: MS Exchange
Mail Client pretends to be a
folder

174

Shortcuts and links

• Most modern filesystems use hierarchical structures for
storing data (folders and files). However, there may be some
exceptions.

• In Windows, it is possible to mount a directory to another
directory - by using file system links. However, more popular
is just using an „LNK” shortcut file, they are interpreted only
by GUI shell (Explorer).

• Forcing to create a shortcut to a shortcut ends, depending on
versions, with Explorer error, nothing at all or crashing all
Explorer instances for all logged in users.
– This technique was frequently used to infect USB drives

when „autorun” became less popular.

175

Shortcuts in Linux/Unix

• Soft link - Used in the console and GUI, both get
information about it. It is a separate filesystem
object of a „link” type. By deleting the source we get a broken link and loose the data.
Creating: ln -s source destination

• Hard link - An entire filesystem entry for a file which already has an entry. File
„disappears” - its blocks are discarded - when the last link gets deleted. Programs
have no information that there are another links to the file.
Creating: ln source destination

• *.desktop file - A full description of an
appearance, interactions and opening
of a program. Used only in GUI shell,
and is created like a text file (which it
actually is). Some text-mode shells
may have support for starting desktop
files, but usually only in GUI mode
(when they are ran in a window, not
in a console-only system).

176

Thank You for attention

