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Algorithms

• An Algorithm – A finite set of definitive instructions  
used to solve a class of problems or to perform specific 
computation.

– Finite – must have an end resulting in an output.
(compare with its implementation!)

– Definitive – each step is precisely stated.
– Computable – each step can be carried out by a machine 

executing it.

• Algorithm correctness means that a specific algorithm:
– Will finish with a correct result,
– With correct input data, will always finish.
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Algorithm description

• Block diagram,
• Pseudocode,
• Programming language code,
• Formulation,
• (precise!) description,
• ...
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Block diagrams

• Start, End:

• Data input/output:

• Operation:

• Conditional: 

• Label:

START

END

Read x Write x, y

X = x + y

Is y = 0 ?

Integer y

A

A

+  -

5

i > n ?

A simple problem

• We have an n-element array x of 
positive integers. Find the 
largest one.

• Looks simple, but we need
to assume something...

17 2 26 0 10 ...

0     1     2      3      4     …..    n

START

Read x[], n

y = 0; i = 0

x[i] > y ?
+ -

y = x[i]

i = i + 1

+  -

Return y

END
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A simple problem
  But more elegant solution

• We have an n-element array x of 
positive integers. Find the 
largest one.

• Notice this will:
– Work on empty arrays,
– Use less assumptions.

17 2 26 0 10 ...

0     1     2      3      4     …..    n

START

Read x[], n

y = x[0]; i = 0

i == n ?
+ -

Return y

END

y < x[i] ?
-+

i = i + 1

y = x[i]
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Flowcharting

• It has still some ambiguity related to blocks 
contents.

• Some pseudocode (or maths) may "leak" to blocks.
• Allows to define program calls.
• If the flowchart is too big to print on page, we can 

use labels to split it.
• ...or we can use labels to logically split complex 

algorithm to smaller "ways".

• Loops look quite poor on them.
• Case-type conditionals look even worse

– Usually, some kind of conditional is improvised for it. 8

A brief fixes for flowcharting

• If a lot of loop is needed, 
some description 
systems (e.g. DRAKON) 
supply "loop blocks".

• If a switch is needed, some description 
systems supply just 
branching of the line.
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Pseudocode

• Allows to quickly describe actions.
• Properly written, can be easier to implement.
• Allows to skip unneeded implementation details.
• ...but leaves significant ambiguity.

• So it is needed to maintain an unified, 
programming-language bias.
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Algorithms complexity

• The algoritam working on a specific data executes 
the specific operations on them.

• But what happens if the amount of data changes?

• The amount of resources (computational: CPU, or 
CPU’s time, or memory) changes.
– There is a computational complexity,
– And memory complexity.

• The change depends on a specific algorithm.

11

Which is the "specific operation"?

• The operation directly interfacing with the 
data, key to the algorithm operation.

• In sorting algorithm, it’s comparing of 
sorted values and changing their positions.

• In integration or optimization algorithms, it 
can be calculating the function’s values at 
a specific point.

• In parameters identification, it’s comparing 
the verified function to the source.
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Big O notation

• As the input data grows (n), the 
computational requirement (O) grow 
accordingly.

• The function describing dependency 
between input data vs computational 
requirements can be written in the Big O 
notation:

– O(1), O(n2), O(n), etc.
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A formal definition of Big O notation:

• The function f is at most O(g(n)) if and only if 
there exist n0>0 and c>0 constants so that
for every n≥n0   :   f(n)≤c*g(n)

• Domain of these nonnegative-valued functions 
are nonnegative integers.
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A typical O functions

• O(1) – the algorithm has a constant 
requirement for resources, nevertheless of 
the input.

• Example:
– Obtaining the n-th value in the array.
– Finding is a number even or odd.
– Determine the number of diagonal lines of 

the convex polygon having n vertices 
( which is ½(n*(n-3))  ).
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A typical O functions

• O(log n) – the value goes with the log (by 
default log2 ) curve.

• Such algorithms are definitely very 
efficient.

• Example:
– Find the item of the value x in 

a sorted array by binary search.
• Details: Divide the array by 2, 

then look into which half to 
perform this again until we 
get the element we’re looking for.
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A typical O functions

• O(n) – the complexity grows linearly with 
number of input data.

• Examples:
– Find maximum element of an n-number 

array.
– Calculating statistics of a text string.
– Any algorithm that iterates in an entire 

input data set.
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A typical O functions

• O(n log n) – linear-logarithmic complexity.
• For smaller data sets, behaves like linear.
• Then, it grows significantly.

• Example:
– Many algorithms which divide problem and 

perform operations on the divided parts,
– Quick sort, Merge sort.
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A typical O functions

• O(nx) where x is 2, 3, etc. - Quadratic (n2), 
 Cubic (n3).

• Examples:
– Nested loops iterating over entire data sets.
– Bubble sort,
– Find duplicate items in an array (the most 

simple version).
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A typical O functions

• O(2n) – Exponential curve
• As can be imagined, this is not an effective 

approach.

• Examples:
– Obtain all subsets of n-element set.
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A typical O functions

• O(n!) - Factorial – Each additional data 
record causes the number to increase 
significantly.

• Definitely not an effective approach.

• Examples:
– Finding all permutations of a given n-

element data.
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Summing up

• Solving a problem, it is 
important
to develop an algorithm that 
has the 
lowest growth of 
computational/time 
complexity.
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Simple data structures

• The array is the set of data which has a 
pre-defined size ans is accessed by an 
index.  random access.→

• The stack and queue are already known 
structures which have a specific access 
methods.

• The list’s elements, contrary to the array, 
can be freely arranged and moved, but the 
access is linear – there is no way to access 
n-th element without accessing n-1-th. 
There is no size limit except the memory 
limit of the program/machine.
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The linked lists

• A list’s item consists of its value and the 
pointer to the next item. 

• The last item has its pointer pointing to 
nullptr (or other predefined value) – then 
we know that we have reached the end of 
list.

• We cannot access it by the index – only 
sequentially. (not without cheating)

20  54  8  15  
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Adding an item

• Just point the item’s pointer to the first 
item of the list, now point the first item’s 
pointer to the item recently added.

• Pseudocode (next is the pointer, 
ListFirstItem is the starting item 
pointer):

New_item.next=ListFirstItem
ListFirstItem = *New_item
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Deleting an item

• To delete the item:
– To delete the first item, just point the list pointer to the 

first item’s next pointer and dispose the memory from 
the item omitted.

– To delete the n-th item, go to its previous item and 
put the pointer to its next item to the next item of the 
deleted item. Now, dispose the deleted item.

– To delete the last item, put the null value to the pointer 
of the one but last item. Then dispose the last item.

20  54  8  15  
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Inserting an item

• To insert the item at the n-th place, go to 
the n-1 item and save its next pointer in 
the new item.

• Now, set its next pointer to the new item.

20  54  8  15  

20  54  8  15  

3  
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Doubly-linked list

• It can be seen that it is impossible to move 
back in the single-linked list.

• Applications (like FAT filesystem) use 
buffering and look-up tables to support 
easier navigation in these lists.

• Is it possible to modify the structure so it’s 
possible to go back?

• It is possible to add a "previous" pointer 
pointing at the previous item. 
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Doubly-linked list

• Each item is made of its data, the next pointer 
and the previous pointer.

• Notice that it is possible to interpret this as 
two singly-linked lists, but one is processed 
in one direction, while the other in the reverse.
– One list uses next pointers only, while the 

second uses only previous.
– ...but it is possible to switch dynamically 

between directions!

20  8  17  64  
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Doubly-linked lists – typical operations

• Traversal: Can be done forwards and 
backwards. 
– ...so the starting point can be the first or the last 

item.
– It is always possible to go item previous.→

• Appending an item:
– Create a new node with two nullptrs as pointers,
– Append the node’s pointer to the first/last nullptr 

of the list,
– Modify the according pointers of the structure to 

point into the former first/last item.
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Doubly-linked lists – typical operations

• Inserting a node to the specific point (after the 
insertion item)
– Determine the insertion item,
– Create a new item, its pointers are nullptr.
– NewItem next = insertionItem next→ →

– NewItem previous = insertionItem→
– InsertionItem next previous = NewItem→ →
– InsertionItem next = newItem→

20  8  17  64  

80  



31

Doubly linked lists – typical operations

• Delete the item:
– deletetItem previous next = deletedItem next→ → →
– deletedItem next previous = deletedItem previous→ → →

20  8  17  64  
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Circularity

• Both singly and doubly linked lists can be 
implemented circular way.

• Then, the starting pointer should be present in 
the code. 

• It can be implemented as a ring buffer (with a 
singly-linked lists) or as a both FIFO and LIFO 
buffer (with doubly linked list).

• Remember that removing an item from a 
circular list should maintain the circularity and a 
pointer which holds it in the memory.
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Structures for easy searching of the data

• Imagine we have an array of numbers, 
but it is sorted increasing way:

• Is it possible to quickly find where is the 
specific number?

• If the array is not sorted, we would have to 
compare each value until the specific one 
is found. 

• If it is sorted, we can use bisection.

0 1 2 4 5 7 16 18 22 23 28 29 30 32 33 36 40 45 4738 50

0       1     2      3     4       5      6      7      8     9     10     11   12     13   14    15    16    17    18    19    20
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• At which index is the number 16?

• We will divide the array to halves:

• The middle (element 10, counting from 0) is 28. 
So to find 16, we have to process the left part 
holding smaller values.

• Now we will do it again.

0 1 2 4 5 7 16 18 22 23 28 29 30 32 33 36 40 45 4738 50

0 1 2 4 5 7 16 18 22 23 28 29 30 32 33 36 40 45 4738 50

0       1     2      3     4       5      6      7      8     9     10     11   12     13   14    15    16    17    18    19    20

0       1     2      3     4       5      6      7      8     9          10     11   12     13   14    15    16    17    18    19    20
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• In which place is the number 16?

• We will divide the array to halves:

• The middle (element 5, counting from 0) is 7. 
So to find 16, we have to process the right 
part holding larger values.

• Now we will do it again.

0 1 2 4 5 7 16 18 22 23

0 1 2 4 5 7 16 18 22 23

0       1     2      3     4       5      6      7      8     9    

0       1     2       3       4          5      6      7      8     9    
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• In which place is the number 16?

• We will divide the array to halves:

• The middle (element 2, counting from 0) is 18. 
So to find 16, we have to process the left part 
holding smaller values.

• Now we will do it again.

7 16 18 22 23

7 16 18 22 23
5       6     7       8       9 

5       6         7       8      9     
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• In which place is the number 16?

• We will divide the array to halves:

• The middle (element 1, counting from 0) is 16. 
If we’re out of luck, we would have to go the 
left part.

• We get the index of number 16: 6 counting from 
0 

7 16

7 16
5       6  

5              6  
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Recursion

• Notice that we can describe the algorithm with 4 steps:
0. If the given part of the array is a single number, it is 
the result (equal or closest), so we end.
1. Divide the array in half.
2. Determine the half in which the item to be found may 
be present.
3. Do the same thing with this half.

• Which means we can call the same function by 
itself.

• The algorithm that calls itself is a recursive algorithm.
• And these algorithms must have a clear stop condition.
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Conclusions, search trees

• So instead of 7 comparisons (pessimistic 21), it 
was possible to do it in 4 (pessimistic 5).

• For faster searching, it is possible to use a 
specific structures for storing ordered data.

• One of such structures can be a search tree.

• Its items, or nodes, have data and two pointers.
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Binary search tree

• Every node has two 
pointers: left and right.

• Such node can be 
presented as a 
hierarchical tree. 

• The items are ordered the 
way that all items on 
the left side of the node 
have smaller values than 
this node’s value. 
For the larger values, it’s 
the right node.

3

2 7

1 2 4 9

Pointers not shown are 
nullptr.
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Binary search tree

• In the implementation, BST nodes may also have an 
up pointer which points to the parent node.

• ...and they store more data in additional fields.

• Now, to find a node of specific number, we start from 
the root.
– If the root’s value is smaller than the value we’re looking 

for, we choose the right node to find larger values. Else - 
the left node.

– And now we are doing the same thing with the new node.
– We end this when the value is found…
– ...or we land with a leaf – a node with both child nullptrs.
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Shortcuts

• To get a minimum value, go left until we 
cannot go anymore.

• To get a maximum – go right.
• ...and we don’t have to compare anything!

• To get the minimum/maximum value from 
a range, compare until we reach the root 
of the specific range and then go left/right 
accordingly without comparing. 
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A sub-tree property

• In a properly made BST, a sub-tree has the same 
relations between numbers as the whole tree. It 
means that a sub-tree can be considered a separate 
tree.

• It means that it is possible
to easily implement 
BST operations 
using recursion.

53

51 60

48 52

20

14 32

12 16 27 40

40

This part has the same 
relations structure than 
a whole tree.
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Implementation: data structures

3

root

Node

nullptr nullptr

A tree of 1 node.
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Adding the data to BST

• The add function is recursive.
1. If the parent is nullptr, we create a new node of a 
specific value to it and return it.

2. If the parent’s data is larger than value, we have 
to insert the smaller item to the left side. 
So we add the node to the parent left.→

3. Else, we add the node to the parent right. →

• We always return the pointer to the parent node.
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Finding the minimum value

• A recursive way:
1. If current node is nullptr, we return 
nullptr (empty tree).

2. If current node’s left branch is nullptr, we 
cannot go left anymore  we return current →
node as it is minimum.

3. Else, we find the minimum of the node to 
the left.
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Traversal

• To traverse the BST in ascending order:
1. If the given parent is null, abandon 
traversal.

2. Traverse the left pointer as a parent.

3. Raturn the parent’s data.

4. Traverse the right pointer as parent.
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A specific case: Is it still a tree?

• Let’s add these items in order: 4, 3, 2, 1:
– The root will be 4,
– Left of it, 3 will get attached.
– To the left, 2 will be attached.
– And finally 1, to the left of 2.
– So it starts to look like a singly 

linked list, not a tree.

• We have to balance the BST:

4

3

2

1

3

2 4

1
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Balanced BST

• In the balanced BST, the height of left and right sub-
tree of any node is the same or different by 1.

• When we insert, delete or search for a node, in 
unbalanced BST we may run into a O(n) complexity 
(like a linked list). Balanced BST guarantees O(log n) 
complexity.

• In some implementations, balancing BST may impact 
efficiency during insertion, but make things faster 
during acquiring of information.
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Is the tree balanced?

• We measure the height of both sub-trees. The absolute 
difference between heights of left and right sub-trees must 
be less than 1.

• The node without leaves is balanced.
• For each node, its left sub-tree must be balanced.
• ...and the right sub-tree must be balanced too.

• This can be implemented recursively:
– If we got a null root  height = 0, balanced.→

– Check is the left subtree balanced. Not  return not-balanced.→

– The same with the right one.
– If the |leftHeight-rightHeight|>1  return not-balanced.→

– Return larger of heights+1.
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Self-balancing binary trees

• There are a few algorithms that guarantee that 
the item added to the will mke the tree balanced.

• Usually, some attribute like position of the node 
or its depth should be stored with node, as 
computing it all time causes uncontrollable 
increase of complexity.

• Example: AVL Trees.
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AVL Tree

• Every node has its balance factor BF stored 
in its contents:

BF = hL-hR

• If BF==0, both sub-trees have equal 
height. BF==1 - left one is higher, 
BF==-1 - the right one is higher.

• There must not be any other values of BF 
than these 3. This assures the balance of 
the tree.
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Inserting into AVL

• We start with inserting the value as usual.
• Then, we check are the newly calculated 

BF values correct (in [-1, 0, 1] set). 
If not - we need to rotate the tree 
elements.

• There are 4 types of rotation:
– Right-Right
– Left-Left
– Right-Left
– Left-Right
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Example: RR rotation

• We will rotate 5 with 3 in a part of the 
tree presented in the picture.

• BF of 5 is -1.
• But BF of 3 is -2. WRONG!←
• The height of 5’s left subtree is 1 

bigger than right one.
• The height of the 5’s tree is 

max(hL,hR)+1, which is right subtree 
height+1.
– ...so it’s left subtree’s height +1+1 = 

hL+2.
– Let this hL be now called h.

3

6

1

4

5

5

3

1

6

4
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Example: RR rotation (2)

• The height of the subtree starting at 5 
it its h+2.

• The BF of the 3’s tree is -2 (right 
subtree is 2 levels higher).

• Now it we replace 5 with 3, we will 
get:
– 3’s BF will be 0 (balanced)
– 5’s BF will be 0 too (balanced)

3

6

1

4

5

5

3

1

6

4 56

LL Rotation

• A mirror of the RR rotation.
• Performed for the situations of the 

opposite unbalancing.
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RL Rotation

• If we rotate LL, we can get the leaf in the 
position in which it will be easier to torare 
RR.

• It is possible to join these two rotations in 
a single algorithm.

• Executed when there is an imbalance of 3 
consequent (descending) nodes.

• Mirrored version: LR rotation.
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So when which rotation?

• Notice that LR and RL rotztions work on 3 
consecutive nodes.

• If there is an imbalance in left subtree’s 
left subtree, we rotate RR.

• If there’s in right sub-tree’s right subtree, 
LL.

• If there is an imbalance in the left 
subtree’s right subtree, LR.

• If in right sub-tree’s left sub-tree, RL.
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Summing up

• By increasing complexity of an 
insertion/deletion operations, we are able 
to get certain that the search time will be 
O(log n).

• This way, an efficient data storage can be 
designed.

• Applications: Operating system queues, 
indexing large records in databases.
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One more application of trees

• Most data is encoded in form of n-bit words, or 
bytes. 

• Modern computer systems use 8-bit bytes, rarely 7-
bit in data transfer.

• So as it is already known from programming, with 
8-bit byte we can encode a number 0..255.

• But if we store text in Latin alphabet, we almost 
never use more than half of this set!

• Is it possible to store the text more efficiently? 
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Selecting the proper encoding

• So, as the Latin alphabet has 26 characters, x2 - 
upper case, +space, + special characters, we can 
maybe fit in 7 bits?

• But what if we dynamically change the bit width of 
the character?
– See the Morse code: The letter e, the most frequent 

in English, is encoded with the shortest signal - a 
single dot.

• It is possible to develop such encoding for any data 
we have and store the key to decode it in a binary 
tree.
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Using a binary tree

• We construct the binary tree from the incoming 
data.

• The most frequent characters get the shortest bit 
lengths.

• The encoding must have a character uniqueness 
because...

Let A=0 and B=01
The bit stream:

0101000...

Does it start with A or B?
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Huffman algorithm

• Let’s simplify it to a known text. We have a text 
made of non-unique characters:

• We will write down the unique 
characters and their count in 
this 22-character (176 bit) line.

• Then, by dividing the count by 
the total count, we will get the 
probability of encountering the
specific character.

MARY HAD A LITTLE LAMB
Letter Count Probability

M 2 0.09

A 4 0.18

R 1 0.04

Y 1 0.04

[space] 4 0.18

H 1 0.04

D 1 0.04

L 3 0.14

I 1 0.04

T 2 0.09

E 1 0.04

B 1 0.04
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Huffman algorithm (2)

• Now, let’s build a tree items using their count/probability:

 

• We will start with the two most rare characters and bind 
them with a value-less tree node of frequency 1+1=2:

[ ]
4

A
4

B
1

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

Y
1

B
1

Y
1

2
[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2
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Huffman algorithm (3)

• Let’s now do this again: Link two most rare 
characters with a value-less tree item

B
1

Y
1

2
[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

B
1

Y
1

2
[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2 2
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Huffman algorithm (4)

• Let’s now do this again: Link two most rare 
characters with a value-less tree item

B
1

Y
1

2
[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2 2

B
1

Y
1

2
[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2 2

2
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Huffman algorithm (5)

• ...and again...

B
1

Y
1

2
[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

2

2

B
1

Y
1

2
[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2 22

3
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Huffman algorithm (6)

B
1

Y
1

2

[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

2

2

3 4

● I took a T now to have a nicely balanced tree...
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Huffman algorithm (7)

B
1

Y
1

2

[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
222

3 4

● Now the most rare are M and H+I...

4
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Huffman algorithm (8)

B
1

Y
1

2

[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3 M

2

I
1

T
22

2

3

4

● Now the most rare are L and D+E+R...

46
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Huffman algorithm (9)

B
1

Y
1

2

[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

22

3

4

● Now the most rare are A and M+H+I...

4

6 8
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Huffman algorithm (10)

B
1

Y
1

2

[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
222

3 4

● Now the most rare are space and T+B+Y...

4

6 8 8
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Huffman algorithm (11)

B
1

Y
1

2

[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

2

2

3 4

● Now the most rare are L+D+R+E and, equally to the 
other, this one with a space...

4 6

8

8

14
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Huffman algorithm (12)

B
1

Y
1

2

[ ]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

2

2

3 4

● There isn’t much 
choice now...

4 6

8

8

14

22
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The result and how to use it

• Now: Going left = 1, going right = 0.

• M=100
• A=11
• R=01101
• Y=00010
• [ ]=001
• H=1011
• D=0111
• L=010
• I=1010
• T=0000
• E=01100
• B=00011 B
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The result:

• 76 bits:
100110110100010001101111011100111001010101000000000010011000010101110000011

• We decode the first encountered valid sequence (we 
cannot go anymore in the tree).

• Then we go again from the root.

• This is a fully operating compression method used in 
practical applications - as one of the algorithms in 
Deflate (ZIP) or in one of JPEG encoding stage.
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Thank you for attention


