
1

Introduction to Computer Science
Lecture 03

Marek Wilkus Ph. D. http://home.agh.edu.pl/~mwilkus
Faculty of Metallurgy and Industrial Computer Science
AGH UST Kraków

Version: 2023

2

Algorithms

• An Algorithm – A finite set of definitive instructions
used to solve a class of problems or to perform specific
computation.

– Finite – must have an end resulting in an output.
(compare with its implementation!)

– Definitive – each step is precisely stated.
– Computable – each step can be carried out by a machine

executing it.

• Algorithm correctness means that a specific algorithm:
– Will finish with a correct result,
– With correct input data, will always finish.

3

Algorithm description

• Block diagram,
• Pseudocode,
• Programming language code,
• Formulation,
• (precise!) description,
• ...

4

Block diagrams

• Start, End:

• Data input/output:

• Operation:

• Conditional:

• Label:

START

END

Read x Write x, y

X = x + y

Is y = 0 ?

Integer y

A

A

+ -

5

i > n ?

A simple problem

• We have an n-element array x of
positive integers. Find the
largest one.

• Looks simple, but we need
to assume something...

17 2 26 0 10 ...

0 1 2 3 4 ….. n

START

Read x[], n

y = 0; i = 0

x[i] > y ?
+ -

y = x[i]

i = i + 1

+ -

Return y

END
6

A simple problem
 But more elegant solution

• We have an n-element array x of
positive integers. Find the
largest one.

• Notice this will:
– Work on empty arrays,
– Use less assumptions.

17 2 26 0 10 ...

0 1 2 3 4 ….. n

START

Read x[], n

y = x[0]; i = 0

i == n ?
+ -

Return y

END

y < x[i] ?
-+

i = i + 1

y = x[i]

7

Flowcharting

• It has still some ambiguity related to blocks
contents.

• Some pseudocode (or maths) may "leak" to blocks.
• Allows to define program calls.
• If the flowchart is too big to print on page, we can

use labels to split it.
• ...or we can use labels to logically split complex

algorithm to smaller "ways".

• Loops look quite poor on them.
• Case-type conditionals look even worse

– Usually, some kind of conditional is improvised for it. 8

A brief fixes for flowcharting

• If a lot of loop is needed,
some description
systems (e.g. DRAKON)
supply "loop blocks".

• If a switch is needed, some description
systems supply just
branching of the line.

9

Pseudocode

• Allows to quickly describe actions.
• Properly written, can be easier to implement.
• Allows to skip unneeded implementation details.
• ...but leaves significant ambiguity.

• So it is needed to maintain an unified,
programming-language bias.

10

Algorithms complexity

• The algoritam working on a specific data executes
the specific operations on them.

• But what happens if the amount of data changes?

• The amount of resources (computational: CPU, or
CPU’s time, or memory) changes.
– There is a computational complexity,
– And memory complexity.

• The change depends on a specific algorithm.

11

Which is the "specific operation"?

• The operation directly interfacing with the
data, key to the algorithm operation.

• In sorting algorithm, it’s comparing of
sorted values and changing their positions.

• In integration or optimization algorithms, it
can be calculating the function’s values at
a specific point.

• In parameters identification, it’s comparing
the verified function to the source.

12

Big O notation

• As the input data grows (n), the
computational requirement (O) grow
accordingly.

• The function describing dependency
between input data vs computational
requirements can be written in the Big O
notation:

– O(1), O(n2), O(n), etc.

13

A formal definition of Big O notation:

• The function f is at most O(g(n)) if and only if
there exist n0>0 and c>0 constants so that
for every n≥n0 : f(n)≤c*g(n)

• Domain of these nonnegative-valued functions
are nonnegative integers.

14

A typical O functions

• O(1) – the algorithm has a constant
requirement for resources, nevertheless of
the input.

• Example:
– Obtaining the n-th value in the array.
– Finding is a number even or odd.
– Determine the number of diagonal lines of

the convex polygon having n vertices
(which is ½(n*(n-3))).

15

A typical O functions

• O(log n) – the value goes with the log (by
default log2) curve.

• Such algorithms are definitely very
efficient.

• Example:
– Find the item of the value x in

a sorted array by binary search.
• Details: Divide the array by 2,

then look into which half to
perform this again until we
get the element we’re looking for.

16

A typical O functions

• O(n) – the complexity grows linearly with
number of input data.

• Examples:
– Find maximum element of an n-number

array.
– Calculating statistics of a text string.
– Any algorithm that iterates in an entire

input data set.

17

A typical O functions

• O(n log n) – linear-logarithmic complexity.
• For smaller data sets, behaves like linear.
• Then, it grows significantly.

• Example:
– Many algorithms which divide problem and

perform operations on the divided parts,
– Quick sort, Merge sort.

18

A typical O functions

• O(nx) where x is 2, 3, etc. - Quadratic (n2),
 Cubic (n3).

• Examples:
– Nested loops iterating over entire data sets.
– Bubble sort,
– Find duplicate items in an array (the most

simple version).

19

A typical O functions

• O(2n) – Exponential curve
• As can be imagined, this is not an effective

approach.

• Examples:
– Obtain all subsets of n-element set.

20

A typical O functions

• O(n!) - Factorial – Each additional data
record causes the number to increase
significantly.

• Definitely not an effective approach.

• Examples:
– Finding all permutations of a given n-

element data.

21

Summing up

• Solving a problem, it is
important
to develop an algorithm that
has the
lowest growth of
computational/time
complexity.

22

Simple data structures

• The array is the set of data which has a
pre-defined size ans is accessed by an
index. random access.→

• The stack and queue are already known
structures which have a specific access
methods.

• The list’s elements, contrary to the array,
can be freely arranged and moved, but the
access is linear – there is no way to access
n-th element without accessing n-1-th.
There is no size limit except the memory
limit of the program/machine.

23

The linked lists

• A list’s item consists of its value and the
pointer to the next item.

• The last item has its pointer pointing to
nullptr (or other predefined value) – then
we know that we have reached the end of
list.

• We cannot access it by the index – only
sequentially. (not without cheating)

20 54 8 15

24

Adding an item

• Just point the item’s pointer to the first
item of the list, now point the first item’s
pointer to the item recently added.

• Pseudocode (next is the pointer,
ListFirstItem is the starting item
pointer):

New_item.next=ListFirstItem
ListFirstItem = *New_item

25

Deleting an item

• To delete the item:
– To delete the first item, just point the list pointer to the

first item’s next pointer and dispose the memory from
the item omitted.

– To delete the n-th item, go to its previous item and
put the pointer to its next item to the next item of the
deleted item. Now, dispose the deleted item.

– To delete the last item, put the null value to the pointer
of the one but last item. Then dispose the last item.

20 54 8 15

26

Inserting an item

• To insert the item at the n-th place, go to
the n-1 item and save its next pointer in
the new item.

• Now, set its next pointer to the new item.

20 54 8 15

20 54 8 15

3

27

Doubly-linked list

• It can be seen that it is impossible to move
back in the single-linked list.

• Applications (like FAT filesystem) use
buffering and look-up tables to support
easier navigation in these lists.

• Is it possible to modify the structure so it’s
possible to go back?

• It is possible to add a "previous" pointer
pointing at the previous item.

28

Doubly-linked list

• Each item is made of its data, the next pointer
and the previous pointer.

• Notice that it is possible to interpret this as
two singly-linked lists, but one is processed
in one direction, while the other in the reverse.
– One list uses next pointers only, while the

second uses only previous.
– ...but it is possible to switch dynamically

between directions!

20 8 17 64

29

Doubly-linked lists – typical operations

• Traversal: Can be done forwards and
backwards.
– ...so the starting point can be the first or the last

item.
– It is always possible to go item previous.→

• Appending an item:
– Create a new node with two nullptrs as pointers,
– Append the node’s pointer to the first/last nullptr

of the list,
– Modify the according pointers of the structure to

point into the former first/last item.

30

Doubly-linked lists – typical operations

• Inserting a node to the specific point (after the
insertion item)
– Determine the insertion item,
– Create a new item, its pointers are nullptr.
– NewItem next = insertionItem next→ →

– NewItem previous = insertionItem→
– InsertionItem next previous = NewItem→ →
– InsertionItem next = newItem→

20 8 17 64

80

31

Doubly linked lists – typical operations

• Delete the item:
– deletetItem previous next = deletedItem next→ → →
– deletedItem next previous = deletedItem previous→ → →

20 8 17 64

32

Circularity

• Both singly and doubly linked lists can be
implemented circular way.

• Then, the starting pointer should be present in
the code.

• It can be implemented as a ring buffer (with a
singly-linked lists) or as a both FIFO and LIFO
buffer (with doubly linked list).

• Remember that removing an item from a
circular list should maintain the circularity and a
pointer which holds it in the memory.

33

Structures for easy searching of the data

• Imagine we have an array of numbers,
but it is sorted increasing way:

• Is it possible to quickly find where is the
specific number?

• If the array is not sorted, we would have to
compare each value until the specific one
is found.

• If it is sorted, we can use bisection.

0 1 2 4 5 7 16 18 22 23 28 29 30 32 33 36 40 45 4738 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

34

• At which index is the number 16?

• We will divide the array to halves:

• The middle (element 10, counting from 0) is 28.
So to find 16, we have to process the left part
holding smaller values.

• Now we will do it again.

0 1 2 4 5 7 16 18 22 23 28 29 30 32 33 36 40 45 4738 50

0 1 2 4 5 7 16 18 22 23 28 29 30 32 33 36 40 45 4738 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

35

• In which place is the number 16?

• We will divide the array to halves:

• The middle (element 5, counting from 0) is 7.
So to find 16, we have to process the right
part holding larger values.

• Now we will do it again.

0 1 2 4 5 7 16 18 22 23

0 1 2 4 5 7 16 18 22 23

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

36

• In which place is the number 16?

• We will divide the array to halves:

• The middle (element 2, counting from 0) is 18.
So to find 16, we have to process the left part
holding smaller values.

• Now we will do it again.

7 16 18 22 23

7 16 18 22 23
5 6 7 8 9

5 6 7 8 9

37

• In which place is the number 16?

• We will divide the array to halves:

• The middle (element 1, counting from 0) is 16.
If we’re out of luck, we would have to go the
left part.

• We get the index of number 16: 6 counting from
0

7 16

7 16
5 6

5 6

38

Recursion

• Notice that we can describe the algorithm with 4 steps:
0. If the given part of the array is a single number, it is
the result (equal or closest), so we end.
1. Divide the array in half.
2. Determine the half in which the item to be found may
be present.
3. Do the same thing with this half.

• Which means we can call the same function by
itself.

• The algorithm that calls itself is a recursive algorithm.
• And these algorithms must have a clear stop condition.

39

Conclusions, search trees

• So instead of 7 comparisons (pessimistic 21), it
was possible to do it in 4 (pessimistic 5).

• For faster searching, it is possible to use a
specific structures for storing ordered data.

• One of such structures can be a search tree.

• Its items, or nodes, have data and two pointers.

40

Binary search tree

• Every node has two
pointers: left and right.

• Such node can be
presented as a
hierarchical tree.

• The items are ordered the
way that all items on
the left side of the node
have smaller values than
this node’s value.
For the larger values, it’s
the right node.

3

2 7

1 2 4 9

Pointers not shown are
nullptr.

41

Binary search tree

• In the implementation, BST nodes may also have an
up pointer which points to the parent node.

• ...and they store more data in additional fields.

• Now, to find a node of specific number, we start from
the root.
– If the root’s value is smaller than the value we’re looking

for, we choose the right node to find larger values. Else -
the left node.

– And now we are doing the same thing with the new node.
– We end this when the value is found…
– ...or we land with a leaf – a node with both child nullptrs.

42

Shortcuts

• To get a minimum value, go left until we
cannot go anymore.

• To get a maximum – go right.
• ...and we don’t have to compare anything!

• To get the minimum/maximum value from
a range, compare until we reach the root
of the specific range and then go left/right
accordingly without comparing.

43

A sub-tree property

• In a properly made BST, a sub-tree has the same
relations between numbers as the whole tree. It
means that a sub-tree can be considered a separate
tree.

• It means that it is possible
to easily implement
BST operations
using recursion.

53

51 60

48 52

20

14 32

12 16 27 40

40

This part has the same
relations structure than
a whole tree.

44

Implementation: data structures

3

root

Node

nullptr nullptr

A tree of 1 node.

45

Adding the data to BST

• The add function is recursive.
1. If the parent is nullptr, we create a new node of a
specific value to it and return it.

2. If the parent’s data is larger than value, we have
to insert the smaller item to the left side.
So we add the node to the parent left.→

3. Else, we add the node to the parent right. →

• We always return the pointer to the parent node.

46

Finding the minimum value

• A recursive way:
1. If current node is nullptr, we return
nullptr (empty tree).

2. If current node’s left branch is nullptr, we
cannot go left anymore we return current →
node as it is minimum.

3. Else, we find the minimum of the node to
the left.

47

Traversal

• To traverse the BST in ascending order:
1. If the given parent is null, abandon
traversal.

2. Traverse the left pointer as a parent.

3. Raturn the parent’s data.

4. Traverse the right pointer as parent.

48

A specific case: Is it still a tree?

• Let’s add these items in order: 4, 3, 2, 1:
– The root will be 4,
– Left of it, 3 will get attached.
– To the left, 2 will be attached.
– And finally 1, to the left of 2.
– So it starts to look like a singly

linked list, not a tree.

• We have to balance the BST:

4

3

2

1

3

2 4

1

49

Balanced BST

• In the balanced BST, the height of left and right sub-
tree of any node is the same or different by 1.

• When we insert, delete or search for a node, in
unbalanced BST we may run into a O(n) complexity
(like a linked list). Balanced BST guarantees O(log n)
complexity.

• In some implementations, balancing BST may impact
efficiency during insertion, but make things faster
during acquiring of information.

50

Is the tree balanced?

• We measure the height of both sub-trees. The absolute
difference between heights of left and right sub-trees must
be less than 1.

• The node without leaves is balanced.
• For each node, its left sub-tree must be balanced.
• ...and the right sub-tree must be balanced too.

• This can be implemented recursively:
– If we got a null root height = 0, balanced.→

– Check is the left subtree balanced. Not return not-balanced.→

– The same with the right one.
– If the |leftHeight-rightHeight|>1 return not-balanced.→

– Return larger of heights+1.

51

Self-balancing binary trees

• There are a few algorithms that guarantee that
the item added to the will mke the tree balanced.

• Usually, some attribute like position of the node
or its depth should be stored with node, as
computing it all time causes uncontrollable
increase of complexity.

• Example: AVL Trees.

52

AVL Tree

• Every node has its balance factor BF stored
in its contents:

BF = hL-hR

• If BF==0, both sub-trees have equal
height. BF==1 - left one is higher,
BF==-1 - the right one is higher.

• There must not be any other values of BF
than these 3. This assures the balance of
the tree.

53

Inserting into AVL

• We start with inserting the value as usual.
• Then, we check are the newly calculated

BF values correct (in [-1, 0, 1] set).
If not - we need to rotate the tree
elements.

• There are 4 types of rotation:
– Right-Right
– Left-Left
– Right-Left
– Left-Right

54

Example: RR rotation

• We will rotate 5 with 3 in a part of the
tree presented in the picture.

• BF of 5 is -1.
• But BF of 3 is -2. WRONG!←
• The height of 5’s left subtree is 1

bigger than right one.
• The height of the 5’s tree is

max(hL,hR)+1, which is right subtree
height+1.
– ...so it’s left subtree’s height +1+1 =

hL+2.
– Let this hL be now called h.

3

6

1

4

5

5

3

1

6

4

55

Example: RR rotation (2)

• The height of the subtree starting at 5
it its h+2.

• The BF of the 3’s tree is -2 (right
subtree is 2 levels higher).

• Now it we replace 5 with 3, we will
get:
– 3’s BF will be 0 (balanced)
– 5’s BF will be 0 too (balanced)

3

6

1

4

5

5

3

1

6

4 56

LL Rotation

• A mirror of the RR rotation.
• Performed for the situations of the

opposite unbalancing.

57

RL Rotation

• If we rotate LL, we can get the leaf in the
position in which it will be easier to torare
RR.

• It is possible to join these two rotations in
a single algorithm.

• Executed when there is an imbalance of 3
consequent (descending) nodes.

• Mirrored version: LR rotation.

58

So when which rotation?

• Notice that LR and RL rotztions work on 3
consecutive nodes.

• If there is an imbalance in left subtree’s
left subtree, we rotate RR.

• If there’s in right sub-tree’s right subtree,
LL.

• If there is an imbalance in the left
subtree’s right subtree, LR.

• If in right sub-tree’s left sub-tree, RL.

59

Summing up

• By increasing complexity of an
insertion/deletion operations, we are able
to get certain that the search time will be
O(log n).

• This way, an efficient data storage can be
designed.

• Applications: Operating system queues,
indexing large records in databases.

60

One more application of trees

• Most data is encoded in form of n-bit words, or
bytes.

• Modern computer systems use 8-bit bytes, rarely 7-
bit in data transfer.

• So as it is already known from programming, with
8-bit byte we can encode a number 0..255.

• But if we store text in Latin alphabet, we almost
never use more than half of this set!

• Is it possible to store the text more efficiently?

61

Selecting the proper encoding

• So, as the Latin alphabet has 26 characters, x2 -
upper case, +space, + special characters, we can
maybe fit in 7 bits?

• But what if we dynamically change the bit width of
the character?
– See the Morse code: The letter e, the most frequent

in English, is encoded with the shortest signal - a
single dot.

• It is possible to develop such encoding for any data
we have and store the key to decode it in a binary
tree.

62

Using a binary tree

• We construct the binary tree from the incoming
data.

• The most frequent characters get the shortest bit
lengths.

• The encoding must have a character uniqueness
because...

Let A=0 and B=01
The bit stream:

0101000...

Does it start with A or B?

63

Huffman algorithm

• Let’s simplify it to a known text. We have a text
made of non-unique characters:

• We will write down the unique
characters and their count in
this 22-character (176 bit) line.

• Then, by dividing the count by
the total count, we will get the
probability of encountering the
specific character.

MARY HAD A LITTLE LAMB
Letter Count Probability

M 2 0.09

A 4 0.18

R 1 0.04

Y 1 0.04

[space] 4 0.18

H 1 0.04

D 1 0.04

L 3 0.14

I 1 0.04

T 2 0.09

E 1 0.04

B 1 0.04

64

Huffman algorithm (2)

• Now, let’s build a tree items using their count/probability:

• We will start with the two most rare characters and bind
them with a value-less tree node of frequency 1+1=2:

[]
4

A
4

B
1

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

Y
1

B
1

Y
1

2
[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

65

Huffman algorithm (3)

• Let’s now do this again: Link two most rare
characters with a value-less tree item

B
1

Y
1

2
[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

B
1

Y
1

2
[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2 2

66

Huffman algorithm (4)

• Let’s now do this again: Link two most rare
characters with a value-less tree item

B
1

Y
1

2
[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2 2

B
1

Y
1

2
[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2 2

2

67

Huffman algorithm (5)

• ...and again...

B
1

Y
1

2
[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

2

2

B
1

Y
1

2
[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2 22

3

68

Huffman algorithm (6)

B
1

Y
1

2

[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

2

2

3 4

● I took a T now to have a nicely balanced tree...

69

Huffman algorithm (7)

B
1

Y
1

2

[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
222

3 4

● Now the most rare are M and H+I...

4

70

Huffman algorithm (8)

B
1

Y
1

2

[]
4

A
4

H
1

E
1

D
1

R
1

L
3 M

2

I
1

T
22

2

3

4

● Now the most rare are L and D+E+R...

46

71

Huffman algorithm (9)

B
1

Y
1

2

[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

22

3

4

● Now the most rare are A and M+H+I...

4

6 8

72

Huffman algorithm (10)

B
1

Y
1

2

[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
222

3 4

● Now the most rare are space and T+B+Y...

4

6 8 8

73

Huffman algorithm (11)

B
1

Y
1

2

[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

2

2

3 4

● Now the most rare are L+D+R+E and, equally to the
other, this one with a space...

4 6

8

8

14

74

Huffman algorithm (12)

B
1

Y
1

2

[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

2

2

3 4

● There isn’t much
choice now...

4 6

8

8

14

22

75

The result and how to use it

• Now: Going left = 1, going right = 0.

• M=100
• A=11
• R=01101
• Y=00010
• []=001
• H=1011
• D=0111
• L=010
• I=1010
• T=0000
• E=01100
• B=00011 B

1
Y
1

2

[]
4

A
4

H
1

E
1

D
1

R
1

L
3

M
2

I
1

T
2

2

2

3 4

4 6

8

8

14

22
1 0

1

1

1

1

1

1

1
1

1

1

0

0

0

0

0

0

0

0

0

0

76

The result:

• 76 bits:
100110110100010001101111011100111001010101000000000010011000010101110000011

• We decode the first encountered valid sequence (we
cannot go anymore in the tree).

• Then we go again from the root.

• This is a fully operating compression method used in
practical applications - as one of the algorithms in
Deflate (ZIP) or in one of JPEG encoding stage.

77

Thank you for attention

