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Sorting algorithms

• Iterative or recursive,
• Comparison-based or non-comparison 

based,
• Stable or not stable,
• In-place or requiring more memory
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Why review sorting algorithms?

• Usefulness - it’s much easier to work on 
sorted data.

• Sorting algorithms implement many 
approaches to solve problem.

• Lots of applications:
– Detecting duplicates,
– Counting frequency of symbols,
– Finding subsets,
– ...and colliding/joining them,
– Faster searching
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Thing we already know...

• Can we use a BST to sort items?

1. Insert items to BST
2. Traverse the BST in order.

• PROBLEMS:
– If a tree is not balanced, and we have a 

descending order of adding items, we will 
get a singly linked list instead  O(n→ 2).

– If we use self-balancing trees, we may 
enhance this to O(n log(n)).

– We need O(n) of memory space for it.
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Bubble sort

• We have a n-element unsorted/partially sorted array.
• The procedure:

 
For x [0..n-1]

     1. Compare pair of numbers n and n+1
      2. If out of order  swap them.→

3. Reduce n-1 by 1 and repeat.

• Notice how the biggest items „bubble” to the last 
positions of the array.
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Bubble sort

31 12 16 39 15

12 31 16 39 15

12 3116 39 15

12 3116 39 15

12 3116 15 39

Pass 1

12 3116 15 39

Pass 2

12 3116 15 39

12 3116 15 39

12 1516 31 39

Pass 3

12 1516 31 39

12 1516 31 39

12 1615 31 39

Pass 4

12 1615 31 39

12 1615 31 39

12 1615 31 39
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Bubble sort

• Can be implemented using two nested 
loops.
– The outer loop spins exactly n times.
– The inner loop’s iterations decrease by 1 

with each iteration of the outer loop.

• The complexity is O(n2)
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Let’s cheat a little

• Notice that the last pass was done without any 
swapping.

• If the set is sorter earlier, we will just fruitlessly and 
blindly compare the already sorted array.

• A good way to make things short is to terminate the 
algorithm when we see that the operation is 
completed.

• The test will look like this:
– If during the inner loop iteration no swapping has been 

made  end the algorithm as the set is sorted.→

• This will save some time.
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An altered version complexity

• Worst case is the array sorted backwards, 
our condition will not run and it will be still 
O(n2).

• Best case: A fully sorted array. Will end in 
a single pass - O(n).

• Practical application: We have to add the 
(small) performance impact of additional 
variable holding information was there any 
swapping or not.
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Selection Sort

• Find the largest item in 0..n-element array.
• Swap the largest item with the n-th item
• It’s in a proper place, so n=n-1 and repeat.
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Selection sort

31 12 16 39 15

31 12 16 15 39

31 12 16 15 39

15 12 16 31 39

15 12 16 31 39

15 12 16 31 39

15 12 16 31 39

12 15 16 31 39

12 15 16 31 39

12 15 16 31 39
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Selection sort

• The most important part is finding the 
index of the last item from the sub-array 
[0..n-x]

• The x is the iteration number then.

• So we still use two nested loops:
– Outer: Thru a whole array.
– Inner - Thru less and less elements in the 

array.

• So the complexity is still O(n2).
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Implementation considerations

• If our „swap” is more resource-consuming 
(we’re not using pointers, we have to re-
calculate something) the selection sort will 
significantly outperform bubble sort.

• ...but we cannot use the „cheating” we ued 
with bubble sort, so we won’t get O(n) in 
the best case.

• In practical applications, usually selection 
sort performs a bit better.
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Insertion sort

• Start with a single item. It is always 
sorted.

• Take the next item
• Determine the position in the „sorted” set 

in which it has to be inserted into.
• Insert the item in its proper position in the 

„sorted” set.
• Repeat for all unsorted items.
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Insertion sort

31 12 16 39 15

31 12 16 39 15

12 31 16 39 1512 31 16 39 15

12 31 16 39 1512 31 16 39 15

12 31 16 39 1512 16 31 39 15

12 31 16 39 1512 16 31 39 15

12 31 16 39 1512 16 31 39 15

12 31 16 39 1512 15 16 31 39

12 31 16 39 1512 15 16 31 39
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Insertion sort: Implementation

For every item of index i in the n-item array:
insertedItem = array[i]  the item to be inserted.←

j = i-1

while (j>0) and (array[j]>insertedItem)
array[j+1] = array[j]  shift sorted items to make space for a new one.←

j--

a[j+1]=insertedItem  insert the item in the correct location.←
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Insertion sort: Complexity

• The outer loop always executes n-1 times.
• If the array is already sorted, the inner 

loop will execute once per item.
• In the worst case, insertion will always 

occur - the loop will execute always at its 
full range.

• So the best-case complexity is O(n), and 
the worst-case O(n2).
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Sorting algorithms stability

• The sorting algorithm is stable when it does not 
change the relative order of two items with the 
same value.

• So, with bubble sort, if we swap only if items are 
in the wrong order, we get the stable algorithm. 
The same with insertion sort.

• Now, the selection sort is not stable - starting the 
largest item lookup from the beginning and 
inserting it to the end of the sorted set, it will 
swap the order of the largest items with the same 
value.
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Merge sort

• Assume we know how to merge two sorted sets into 
one sorted set:
– {2, 3, 10} and {5, 17}  {2, 3, 5, 10, 17}→

• Can we use it to sort any set?

• We can divide sets as we want.
• A set of 1 item is always in order.
• Now we can merge 2 1-item sets.

– Then we merge 2 2-item sets,
• Then we merge 2 4-item sets,

– Then we merge 2 8-item sets,
» ...

• Until we get a single sorted set. 20

Divide and conquer method

• First, we divide the problem to the smaller ones.
• Recursively solve the smaller problems.
• Combine the results of the solutions while coming 

back from the recursion to obtain solution for larger 
problem.

• So in the Merge sort:
1. Divide the set to two (equal) halves.
2. Recursively Merge sort two halves.
3. Merge two halves of the sorted array.

21

Merge sort

31 12 16 39 15

31 12 16 39 15

10

10

31 12 16 39 15 10

31 12 15 10

Divide phase
 (split arrays)

Conquer phase
 (merge arrays)

12 31 10 15

12 16 31 10 15 39

10 12 15 16 31 39 22

Merge - recursive function

MergeSort(array, start, end)
if (start<end)

middle=start+end/2
MergeSort(array,start,middle)
MergeSort(array,middle+1,end)

Merge(array, start, middle, end)

Start           end 

middle

Is there 0 or 1 item?
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Merging implementation (1)

Merge(array, start, middle, end)
n=end-start+1
buffer= n-element array
left=start
right=middle+1
index=0

while(left<=middle and right<=end)
if (array[left]<=array[right])

buffer[index++]=array[left++];

else
buffer[index++]=array[right++];

This part inserts 
new items to the 
buffer, item by item, 
it choses left-hand 
or right-hand side to 
insert from.
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Merging implementation (2)

while (left<=middle)
buffer[index++]=array[left++]

while (right<=end)
buffer[index++]=array[right++]

for every element with index i in buffer
array[start+i]=buffer[i]

All which remains in 
source sets is 
copied to the buffer.

Finally, the buffer is 
copied to the 
respective place in 
the array
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Complexity of Merge Sort

• Most of work is done in this Merge function.
• For a call of Merge(array, start, middle, end) we 

have:
– start-end+1 items
– At most number of items-1 comparisons
– At most Number of items moves to the buffer
– ...and the same number or moves back to the main 

array.
– So at most it’s 3* number of items - 1  O(n).→

• But we call it many times...
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When the Merge is called?

• For the single array of n items, we don’t call the 
function.

• When it’s divided to 2 sets, we have a single call with 
n/2 items in each half.

• When it’s divided to 4 sets, we have 2 calls, n/22 
items in each half (at most).

• When it’s divided to 8 sets, 22 calls, n/23 items in each 
half.

• The total time complexity of the method is O(n 
log(n)).
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Summing up

• This is considered an optimal comparison-
based method.

• Can operate on large data, requiring the buffer.
• It can be proven, that it is stable.

• ...but it is quite problematic to implement at 
first (recursion!).

• ...and is not an in-place method  requires a →
non-constant size of extra storage.

28

Quick Sort

• In the merge sort, we do most activities in 
the merge step.

• So in the „divide and conquer” 
methodology, we do most of activities after 
the problem has been divided to sub-
problems.

• Is it possible to shift the sorting activity 
into the divide part?

29

Quick Sort

• Dividing:
– Choose a specific item p known as pivot, 

and divide the set to two subsets:
• Smaller than p,
• Larger or equal than p.

– Perform the same thing for every part

• ...and nothing left to do after the recursive 
division.

30

Quick Sort

22 12 11 39 15 28

2212 11 3915 28

2212 11 3915 28

1211 15 22 3928

11 12 15 22 28 39
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Quick Sort

• Notice that the pivot, after executing the sorting 
round related to it, takes its final position in the 
given sub-set  it does not participate in further →
sorting and is in the proper position in this sub-set.

• So the implementation will be:

QuickSort(array, start, end)
if (start<end)

int pivotIndex = partition(array, start, end)
QuickSort(array, start, pivotIndex-1)
QuickSort(array, pivotIndex+1, end)
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The partitioning function - the most 
simple implementation

• Assume we will take the 0th item of the array to be 
partitioned.

• We define two sets (dynamic arrays for example)
– S1 - in which items are < pivot’s value.
– S2 - in which items are >= pivot’s value.

• Iteratively we compare all items against the pivot. 
If they are smaller, they got to S1, else  S2.→

• Finally, we return the S1, pivot and S2.
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Partitioning - can we optimize it?

• Instead of allocating the memory for two sets, we 
can use the array we have.

• The pivot is array[0] as usual.
• The next parts of the array can be:

– The first set (S1): <pivot.
– The second set (S2): >=pivot
– The last set: Not checked yet.

• We iterate thru items starting from array[0].
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Better partitioning approach

• We iterate on the array starting from pivot. 
• If the item is >=p, we increment the pointer to the 

S2 set’s end.
• Else, we have to increment the S1’s end pointer, but 

we have an item in ther S2’s range…
– ...so let’s just swap these items and extend S2’s end 

pointer too.

Items >=pp Items <p unknowns

S1’s end S2’s end
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The implementation

Partition(array, start, end)
int pivot = array[start]
int S1end=start
int S2end=start+1;

while (S2end<=end)
if (array[S2end]<pivot) //extend S1

S1end++
swap(S2end, S1end)

S2end++ //we always proceed with S2

swap(start, S1end) //correct pivot position
return S1end //return new pivot position 36

Quick sort: Summary

• The algorithm is not stable, but in-place.
• The best result is obtained if the problem is always 

divided to two equal halves.
– Then, depth of recursion is logarithmic,
– The complexity is O(n log(n)).

• The worst case is when the pivot gets always 
separated  we get a full S1 and empty S2 or full →
S1 and empty S1.
– Then, we get to O(n2)
– Notice this will happen is we try to sort the already 

sorted array!
– It can be fixed with different pivot initialization.
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Radix sort

• We have always used sorting algorithms 
for numbers.

• What if we want to sort strings?
– Convert strings to ASCII numerals?
– …?UTF-8 numerals?  trouble!←

• What if we want to develop a sorting 
method specifically for strings?
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Radix sort

• We consider each record of data as a string of 
symbols.

• We group string into sets according to the 
next symbol in each string.

• Concatenate the sets for the next iteration
• Repeat until sorted.

• Assume we have a constant-length strings.
– ...but if we stick to numerals, we can zero-pad.
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0123 2154 0222 0004 0283 1560 1061 2150

A well aligned example from Halim S. - „World of Seven” - https://www.comp.nus.edu.sg/~stevenha/

0123 21540222 000402831560 10612150 Grouped by the 4th symbol….
 

 

...and concatenated back.

Grouped by the 3rd symbol…
 

...and concatenated back.
 
 

Grouped by 2nd symbol…
 

 

...and concatenated back.

Grouped by the 1st symbol…

...and it’s a sorted set.

0123 21540222 000402831560 10612150

0123 215402220004 02831560 10612150

2154 10612150 028315600004 01230222

21541061 2150 0283 15600004 0123 0222

2154 02832150 156002220004 01231061

21540283 2150156002220004 0123 1061

21540283 2150156002220004 0123 1061
40

Radix sort

• How do we group items?
– We find the first item of the specified 

characteristics,
– Move it to the specific set.
– Go until the end of input data.
– Repeat for each symbol (or group).

So:
i=1;
for every symbol in the record length:

group the items by i-th item.
concatenate groups
i++
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Radix sort: Grouping and merging

• We can do grouping iteratively:

Given i = the position we use for grouping.
Create a set of vectors for every symbol.

for every symbol in the array:
add the symbol to the vector related to it.

• For the decimal numbers:

digit=0;
for every element of the array

digit=(element/i) %10
push(digitsList[digit], element) 42

Merging

• We can just copy the vectors to the array, 
symbol by symbol:

i=0
for every symbol in the alphabet

while symbol’s list not empty
array[i]=pop(symbol’s list)
i++
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Radix sort

• We can use any alphabet we want.
• For each iteration we go thru the whole 

array once to place them to groups, then 
we concatenate groups to the array.

• So the complexity is O(n).
• Number of iterations: number of symbols 

in the alphabet.
• So the complexity is O(dn).

• Not in-place, but stable.
• Requires more memory.
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Heap sort

• A binary heap is a data structure which is a 
binary tree with the following limitations:
– All its levels except the last one are completely filled 

(Shape property).
– The value stored in each node is greater (or less - 

depending on implementation) than its children.

• Thanks to shape property, we can serialize a BST 
into the linear array and retrieve it back without 
any pointers.

• Because it’s not a BST, we can shift elements 
down without any side effects.
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Heap sort

• If we are able to build a heap of the data, we can do 
the following:

1. Remove the topmost part of the heap (maximum) 
and append it to the sorted list part.
2. Re-create the heap.

• Because the n-element heap is serialized in the 
array, we can do the step 1 by moving the maximum 
to the place right after the end of the heap in the 
same array - the „heap” part will shrink, the „sorted” 
part will grow then.
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Heap sort

• [5,12,4,6,2]
– Not a heap

• As 5<12, we swap them

• And as 5<6, we swap 5 with 6.

• We have a heap property.

5

12 4

6 2

12

5 4

6 2

12

6 4

5 2
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Heap sort

• Remove the root - this is 
sorted

• We do it by swapping it 
with the last node and 
trimming it off from 
further processing.

•

• Then, we re-create the 
heap:
– Swap 6-2
– Swap 5-6

2

6 4

5 12

6

2 4

5

6

5 4

2
12 12

48

Heap sort

• Another round: 6

5 4

2 12 6

5 4

2

12 6

2 4

5

12

6

2 5

4

12 6

4 5

2

12

Pop the element

6

4 5

2

12

HeapifyPop the element to the end



49

Heap sort: Typical Implementation

• HeapSort(array, count)
start=count/2
end=count
while (end>1)

if (start>0)
start--

else
end--
swap(array[end],array[0])

//Moving the smaller elements down
root=start
while (2*root+1)<end

leaf=2*root+1
if (leaf+1<end and a[leaf]<a[leaf+1]

leaf++
if (a[root]<a[leaf])

swap(a[root],a[leaf])
root=leaf

else
break

Select the 
largest item 
and put it to 
the end

Restore heap 
properties.
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Heap sort

• Complexity (worst case): O(n log(n))
• Not a stable sort
• In-place algorithm

• In many practical cases a bit slower than 
Quick sort.
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Hybrid algorithms

• How can we get rid of O(n2) complexity in badly 
formed input data?
– Use a different algorithm, not so suitable for other 

alignments of data…

• Introspective sort variant:
– If the number of data is relatively small, go with 

InsertionSort.
– If the recursion depth of Quick sort is acceptable we 

can go with Quick sort.
• ...but we can just partition the array in 2 and go Intro 

Sort on them.

– Else, we go with Heap sort. 52

Estimating the depth of recursion

• Usually 2*log2n.
• This will „lock” the complexity to O(n 

log(n)).

• The total complexity of Intro sort will be 
then O(n log(n))

• ...however, it is not stable.
• ...and more difficult to implement.

53 54

A small interruption

• Stack machines
– A CPU that does not use registers, but 

(usually one) stack.
– Execution of operation means:

• Fetching operation code from the stack,
• Fetching operands from the stack,
• Pushing the result to the stack.
• With 2-operand command, stack is shorter by 

1 value or 2 items: instruction and value.
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Stack mahines

• Implementations:
• Separate stack and conventional instructions storage 

(Symbolics, 1970s).
• Single stack including instructions and operands 

(Ferranti, 1965-70s).
• Multiple stacks, switchable and shortable (Syeika, 

1970s, Multiklet project).

• Because it is quite difficult to program these CPUs 
and typical programming languages compilers 
don’t generate such code efficiently, they never 
got popularity.
– In 1970s, Symbolics LISP-programmable machines 

were implemented as stack CPUs. 56

Sorting using stacks

• Having a set of stacks it is possible to 
implement a sorting algorithm similar to 
insertion sort.

• It can be implemented using conventional 
programming techniques, but also with a 
stack-based processors.

• The „register-as-stack” architecture allow 
to obtain a very high performance in the 
implementation.
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Sorting using stacks

• Rules:
– No access different than stack-based,
– No registers, only stacks,
– The only moving-related operations are push and pop. 

Popped value must be pushed somewhere.
– We can compare top values from various stacks without 

popping.

• Given:
– Input, unsorted data stack
– Two working stacks: Left and right.
– Minimum and maximum element value.
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Sorting using stacks

• Initialization:
– Push the minimum to the left stack,
– Push the maximum to the right stack.

• Operation:
– Pop the value from input stack to the left stack.

– Until top of left stack is not larger than top of 
input stack:
• Pop the left stack to the right stack.

– Until top of the right stack is not smaller than top 
of input stask:
• Pop the right stack to the left stack.
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Example

10
6
3
2
10
7
4 121

6
3
2
10
7
4 12

10
1

Pop input→  left

6
3
2

10
7
4

10
121

Left>in so L→ R

3
2

10
7
4

10
12

6
1

Pop input->left

3
2

10
7
4

6
10
121

Left>in, so L→R

2
10
7
4

6
10
12

3
1

Pop input->left.

2
10
7
4

3
6

10
121

Left>in, so L→R 

10
7
4

3
6

10
12

2
1

Pop input->left

10
7
4

6
10
12

3
2
1

Left<in, so R->L

10
7
4

10
12

6
3
2
1

Left<in, so R→L
10!>10, so we don’t pop 
anymore. 60

Example (2)

10
7
4

10
12

6
3
2
1

7
4

10
12

10
6
3
2
1

Pop in->L

7
4

10
10
12

6
3
2
1

As 10>7, L→R 

4

10
10
12

7
6
3
2
1

Pop in→L 

4

7
10
10
12

6
3
2
1

7>4, so L->R

4

6
7

10
10
12

3
2
1

6>4, so L->R

6
7

10
10
12

4
3
2
1

Pop in->L

4
6
7

10
10
12

3
2
1

Transfer L->R

3
4
6
7

10
10
12

2
1

2
3
4
6
7

10
10
121

1
2
3
4
6
7

10
10
12
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Summing up

• This is an insertion sort.
• Insertion sort can be implemented on 

stack-like data structures.
• With specific stack machine architectures, 

it is possible to make it even more 
efficient.
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Mass-solving linear equations

• Any discretized set of differential equations 
can be described as a system of linear 
equations.

• The problem is that number of these linear 
equations may be VERY large.

• Is it possible to solve these equations with 
a computer?

63

Linear equations system

• A set of linear equations like:

• Can be described using matrix equation:

• Sometimes described as:

  A x X = B

Ax1+Bx2+Cx3+Dx4=U
Ex1+Fx2+Gx3+Hx4=V
Ix1+Jx2+Kx3+Lx4=W
Mx1+Nx2+Ox3+Px4=X

A B C D    x1   U
E F G H    x2   V
I J K L    x3   W
M N O P    x4   X

x =

64

Gauss method

• Allows to obtain solution of such equations 
system.

• Inspired by the method of solving these systems 
by eliminating unknowns until we get some 
xx=Y, a single unknonwn solved.
– It can be used to obtain the next equation’s 

unknown,
– And then, using two solutions, another one…
– Going this way, we can obtain all unknowns.

65

Elimination

• If we get a AxX=B matrix equations (in 
which X and B are vectors), we can write 
A|B matrix:

a1,1 a1,2 a1,3 ... a1,n b1

a2,1 a2,2 a2,3 ... a2,n b2

a3,1 a3,2 a3,3 ... a3,n b3

 .  .   .   ...  .  .
 .  .   .   ...  .  .
 .  .   .   ...  .  .
an,1 an,2 an,3 ... an,n  bn

66

Elimination (2)

• Next, we convert all elements under a1,1 to 
0.

• Then all elements under a2,2,
• Then, a3,3 etc. 

(the first row remains the same)
• So we can use a single solution to expand 

it to the rest.
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Elimination (3)

• Elimination of column 2 (so only a1,1 
remains):
– For all elements of the row i (2..n) we add 

the next elements of the row 1 multiplied by 
-1*(ai,1/a1,1).

– Notice that for a2,1, we will get:
• a2,1-(a2,1/a1,1)*a1,1 = a2,1-a2,1 = 0
• ...and that’s what we want!

– For a2,2 we will get:  a2,2-(a2,1/a1,1)*a1,2

– For a2,n we will get:  a2,n-(a2,1/a1,1)*a1,n

– For b column:  b2-(a2,1/a1,1)b1

68

Elimination

• We process it until we will get the matrix 
triangular:

a1,1  a1,2    a1,3   ...  a1,n   b1

 0   a’2,2 a’2,3  ...  a’2,n  b’2

 0   0    a’3,3  ...  a’3,n b’3

 .  .        .       ...  .     .
 .  .      .      ...  .     .
 .  .      .      ...  .     .
 0  0      0     ...  a’n,n   b’n
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Unpack it back

• We will then unpack the matrix to 
something that looks more like an equation 
system:

a1,1  a1,2  a1,3  ...  a1,n      x1   b1

 0  a’2,2 a’2,3 ... a’2,n    x2   b’2

 0   0   a’3,3 ... a’3,n     x3   b’3

 0   0   0  ...   a’4,n    x4   b’4

 . . .
 0   0   0  ...   a’n,n    xn   b’n

x =
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Find the unknowns

• Formula for the unknown xi:

For i=n-1, n-2, … 1:
xi = (b’i-a’i,nxn-...a’1,i+1xi+1)/a’i,i

• So:

xn = b’n/a’n,n

• Knowing that subsequent ‘-operations are recursive, 
it can be implemented recursively.

71

Pseudocode

Stage 1: Gaussian elimination

For i=1,2,...n-1
For j=1,2,...n

If AB[i,i]==0 
return 2 //Error! We are going to divide by 0!

multiplier = AB[j,i]/AB[i,i]
For k=i+1..n+1

AB[j,k]=B[j,k]+multiplier*AB[i,k]

WARNING! 
==0 is assumed to 
have some tolerance!

72

Pseudocode

Stage 2: Obtaining unknown values

For i=n, n-1, n-2 … 1
s=AB[i, n+1]
For j=n, n-1, n-2 … i+1

s=s-AB[i,j]*x[j]

if AB[i,i]==0
return 2 //ERROR - we are going to divide by 0

X[i]=s/AB[i,i]

• Unknowns are stored in X vector
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Crout’s enhancement

• Presence of any 0 in the dagonal of the 
matrix, or introduction of such 0, will cause 
the algorithm to divide by 0.

• Because A+B==B+A, we can swap 
columns in the array as we wish.

• Implementation of column swap can be 
done just using pointer swap.

• Can we swap columns to not get zeros in 
the diagonal, or better, get them in part we 
want?
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• Wa search for the element with biggest 
absolute value.

• Now, we swap columns: Column with this 
element with column with the part of the 
diagonal.

• It can minimize the division by zero errors.

• Instead of pointers, a lookup table can be 
used.
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Even better version

• In practical applications, frequently we 
have this Axx=b problem with various b 
values for the same, or similar, A values.
– Like the same discretized continuous 

problems, for the same equations, for 
different points in the medium.

• We can save the eliminated A-values and 
use them again.
– ...but there is a b-vector involved - the 

decomposition must be different. 
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A = LU

• We describe the converted A matrix as a 
matrix product of upper and lower 
triangular matrices:

A=LU

• Once we decompose A to LU, we can save 
them and substitute with any values of B 
we want.

• The complexity remains as in Gaussian 
elimination.

77

Why do we need this?

• A lot of physical, mechanical, structural problems can be 
converted into a linear equations system.

• There are even more efficient 
methods to do this.

• If we discretize the continuous 
media and interpolate in 
between, we can solve 
non-linear problems using linear 
equations!

• ...however, the typical method for 
an e.g. computer simulations has 
millions of columns and rows.
– ...fortunately it is a sparse matrix.
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Graph algorithms

• A graph is a data structure which consists of vertices 
and edges linking them.

• Both vertices and egdes may hold additional 
information.

• The graph order is a number of vertices in the graph.
• The graph size is a number of edges in graph.
• A null graph consists vertices, but no edges.

• Graphs are used in discrete mathematics, 
geometry/topology, and, in application, in 
engineering.
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Properties of graph elements

• Graph may allow a multi-edge 
connection, it means that two vertices may 
be connected by more than one relation.

• A loop is a connection to itself.

• The edge may be uni- or bidirectional.
• The graph is planar if we can daw it 

without crossing the edges.
– Finding planar graph of an existing graph is 

an important problem in design software 
algorithms.
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Properties of graph elements

• Graph’s edges may have their values, 
called weights. 

• A path is a series of vertex traversals from 
one vertex to another, usually thru other 
vertices.
– Finding the shortest path is an important 

problem in function optimization and 
logistics.

• A simple graph has no multi-edges or 
loops.
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Paths and cycles

• A Hamiltonian path is a path which goes 
thru all vertices of the graph.

• A Hamiltionian cycle is similarly, a closed 
path. The simple cycle must cross each 
vertex only once. Some edges may not 
be used.

• An Eulerian path goes thru all edges.
• In the Eulerian cycle the path must be 

closed. 
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Graph example

V1 V2

V4

V3

V5

A non-directed, simple but 
non-planar graph.

Not a complete graph as V5 is 
not directly connected to e.g. 
V1 or V2.

e1

e2

e3

e4e5

e6

e7
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Graph example

V1 V2

V4

V3

V5

A Hamilton cycle

e1

e2

e3

e4e5

e6

e7
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Graph example

V1 V2

V4

V3

V5

A V5 to V2 path.e1

e2

e3

e4e5

e6

e7
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How graph can be stored?

• Structures and pointers
– PROBLEM: If we may have any munber of 

edges from a vertex, we need dynamic data 
structure to hold pointers.

– PROBLEM: Lack of general overview of the 
graph.

– PROBLEM: Algorithms which look for specific 
vertex will have to traverse it almost blindly.
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Better way to store graphs?

• Adjacency matrix:
– For n vertices we create nxn matrix of binary values.
– 1 if there is a connection between column- and row-

related element.
– We can store directed and non-directed graphs.

V1 V2

V4
V3

V5

e1

e2
e3

e4e5

e6

e7

V1 V2 V3 V4 V5

V1 0 1 1 1 0

V2 1 0 1 1 0

V3 1 1 0 0 1

V4 1 1 0 0 1

V5 0 0 1 1 0
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Better way to store graphs?

• Adjacency matrix and directed graphs:
– Rows contain starting points
– Columns: End of edge.

V1 V2

V4
V3

V5

e1

e2
e3

e4e5

e6

e7

V1 V2 V3 V4 V5

V1 0 0 1 0 0

V2 1 0 0 0 0

V3 0 1 0 0 1

V4 1 1 0 0 0

V5 0 0 0 1 0
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Using the adjacency matrix

• A degree of the vertex, for a non-directed 
graph, is a count of 1s in the column or 
row related to this vertex.

• For a directed graph, we obtain, by 
counting in columns or rows, degree of 
„inputs” or „outputs” of the vertex.

• In a directed graph, if [x,y]==[y,x]==1, 
then these two vertices have two links (or 
one bi-directional, if we allow it).
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Incidence matrix

• Each row is a vertex,
• Each column is an edge,

• Each value is a relation:
– 0, if there is no relation between vertex and edge,
– 1 if a vertex is a start of the edge,
– -1 if a vertex is the end of the edge.

V1 V2

V4
V3

V5

e1

e2
e3

e4e5

e6

e7

e1 e2 e3 e4 e5 e6 e7

V1 -1 0 -1 0 0 0 1

V2 1 -1 0 0 0 -1 0

V3 0 0 0 0 1 1 -1

V4 0 1 1 -1 0 0 0

V5 0 0 0 1 -1 0 0 90

Properties of incidence matrix

• Much easier to add weights than in neighbourhood matrix.
• Each column must have one -1 and one 1 (integrity check).
• Number of 1s and -1s in rows  number of edges in and →

out.
• Finding neighbours is harder as we have to seek thru an 

entire row.
• All zeros in a row  insulated vertex.→

e1 e2 e3 e4 e5 e6 e7

V1 -1 0 -1 0 0 0 1

V2 1 -1 0 0 0 -1 0

V3 0 0 0 0 1 1 -1

V4 0 1 1 -1 0 0 0

V5 0 0 0 1 -1 0 0


