
1

Introduction to Computer Science
Lecture 04

Marek Wilkus Ph. D. http://home.agh.edu.pl/~mwilkus
Faculty of Metallurgy and Industrial Computer Science
AGH UST Kraków

Version: 2023

2

Sorting algorithms

• Iterative or recursive,
• Comparison-based or non-comparison

based,
• Stable or not stable,
• In-place or requiring more memory

3

Why review sorting algorithms?

• Usefulness - it’s much easier to work on
sorted data.

• Sorting algorithms implement many
approaches to solve problem.

• Lots of applications:
– Detecting duplicates,
– Counting frequency of symbols,
– Finding subsets,
– ...and colliding/joining them,
– Faster searching

4

Thing we already know...

• Can we use a BST to sort items?

1. Insert items to BST
2. Traverse the BST in order.

• PROBLEMS:
– If a tree is not balanced, and we have a

descending order of adding items, we will
get a singly linked list instead O(n→ 2).

– If we use self-balancing trees, we may
enhance this to O(n log(n)).

– We need O(n) of memory space for it.

5

Bubble sort

• We have a n-element unsorted/partially sorted array.
• The procedure:

For x [0..n-1]

 1. Compare pair of numbers n and n+1
 2. If out of order swap them.→

3. Reduce n-1 by 1 and repeat.

• Notice how the biggest items „bubble” to the last
positions of the array.

6

Bubble sort

31 12 16 39 15

12 31 16 39 15

12 3116 39 15

12 3116 39 15

12 3116 15 39

Pass 1

12 3116 15 39

Pass 2

12 3116 15 39

12 3116 15 39

12 1516 31 39

Pass 3

12 1516 31 39

12 1516 31 39

12 1615 31 39

Pass 4

12 1615 31 39

12 1615 31 39

12 1615 31 39

7

Bubble sort

• Can be implemented using two nested
loops.
– The outer loop spins exactly n times.
– The inner loop’s iterations decrease by 1

with each iteration of the outer loop.

• The complexity is O(n2)

8

Let’s cheat a little

• Notice that the last pass was done without any
swapping.

• If the set is sorter earlier, we will just fruitlessly and
blindly compare the already sorted array.

• A good way to make things short is to terminate the
algorithm when we see that the operation is
completed.

• The test will look like this:
– If during the inner loop iteration no swapping has been

made end the algorithm as the set is sorted.→

• This will save some time.

9

An altered version complexity

• Worst case is the array sorted backwards,
our condition will not run and it will be still
O(n2).

• Best case: A fully sorted array. Will end in
a single pass - O(n).

• Practical application: We have to add the
(small) performance impact of additional
variable holding information was there any
swapping or not.

10

Selection Sort

• Find the largest item in 0..n-element array.
• Swap the largest item with the n-th item
• It’s in a proper place, so n=n-1 and repeat.

11

Selection sort

31 12 16 39 15

31 12 16 15 39

31 12 16 15 39

15 12 16 31 39

15 12 16 31 39

15 12 16 31 39

15 12 16 31 39

12 15 16 31 39

12 15 16 31 39

12 15 16 31 39

12

Selection sort

• The most important part is finding the
index of the last item from the sub-array
[0..n-x]

• The x is the iteration number then.

• So we still use two nested loops:
– Outer: Thru a whole array.
– Inner - Thru less and less elements in the

array.

• So the complexity is still O(n2).

13

Implementation considerations

• If our „swap” is more resource-consuming
(we’re not using pointers, we have to re-
calculate something) the selection sort will
significantly outperform bubble sort.

• ...but we cannot use the „cheating” we ued
with bubble sort, so we won’t get O(n) in
the best case.

• In practical applications, usually selection
sort performs a bit better.

14

Insertion sort

• Start with a single item. It is always
sorted.

• Take the next item
• Determine the position in the „sorted” set

in which it has to be inserted into.
• Insert the item in its proper position in the

„sorted” set.
• Repeat for all unsorted items.

15

Insertion sort

31 12 16 39 15

31 12 16 39 15

12 31 16 39 1512 31 16 39 15

12 31 16 39 1512 31 16 39 15

12 31 16 39 1512 16 31 39 15

12 31 16 39 1512 16 31 39 15

12 31 16 39 1512 16 31 39 15

12 31 16 39 1512 15 16 31 39

12 31 16 39 1512 15 16 31 39

16

Insertion sort: Implementation

For every item of index i in the n-item array:
insertedItem = array[i] the item to be inserted.←

j = i-1

while (j>0) and (array[j]>insertedItem)
array[j+1] = array[j] shift sorted items to make space for a new one.←

j--

a[j+1]=insertedItem insert the item in the correct location.←

17

Insertion sort: Complexity

• The outer loop always executes n-1 times.
• If the array is already sorted, the inner

loop will execute once per item.
• In the worst case, insertion will always

occur - the loop will execute always at its
full range.

• So the best-case complexity is O(n), and
the worst-case O(n2).

18

Sorting algorithms stability

• The sorting algorithm is stable when it does not
change the relative order of two items with the
same value.

• So, with bubble sort, if we swap only if items are
in the wrong order, we get the stable algorithm.
The same with insertion sort.

• Now, the selection sort is not stable - starting the
largest item lookup from the beginning and
inserting it to the end of the sorted set, it will
swap the order of the largest items with the same
value.

19

Merge sort

• Assume we know how to merge two sorted sets into
one sorted set:
– {2, 3, 10} and {5, 17} {2, 3, 5, 10, 17}→

• Can we use it to sort any set?

• We can divide sets as we want.
• A set of 1 item is always in order.
• Now we can merge 2 1-item sets.

– Then we merge 2 2-item sets,
• Then we merge 2 4-item sets,

– Then we merge 2 8-item sets,
» ...

• Until we get a single sorted set. 20

Divide and conquer method

• First, we divide the problem to the smaller ones.
• Recursively solve the smaller problems.
• Combine the results of the solutions while coming

back from the recursion to obtain solution for larger
problem.

• So in the Merge sort:
1. Divide the set to two (equal) halves.
2. Recursively Merge sort two halves.
3. Merge two halves of the sorted array.

21

Merge sort

31 12 16 39 15

31 12 16 39 15

10

10

31 12 16 39 15 10

31 12 15 10

Divide phase
 (split arrays)

Conquer phase
 (merge arrays)

12 31 10 15

12 16 31 10 15 39

10 12 15 16 31 39 22

Merge - recursive function

MergeSort(array, start, end)
if (start<end)

middle=start+end/2
MergeSort(array,start,middle)
MergeSort(array,middle+1,end)

Merge(array, start, middle, end)

Start end

middle

Is there 0 or 1 item?

23

Merging implementation (1)

Merge(array, start, middle, end)
n=end-start+1
buffer= n-element array
left=start
right=middle+1
index=0

while(left<=middle and right<=end)
if (array[left]<=array[right])

buffer[index++]=array[left++];

else
buffer[index++]=array[right++];

This part inserts
new items to the
buffer, item by item,
it choses left-hand
or right-hand side to
insert from.

24

Merging implementation (2)

while (left<=middle)
buffer[index++]=array[left++]

while (right<=end)
buffer[index++]=array[right++]

for every element with index i in buffer
array[start+i]=buffer[i]

All which remains in
source sets is
copied to the buffer.

Finally, the buffer is
copied to the
respective place in
the array

25

Complexity of Merge Sort

• Most of work is done in this Merge function.
• For a call of Merge(array, start, middle, end) we

have:
– start-end+1 items
– At most number of items-1 comparisons
– At most Number of items moves to the buffer
– ...and the same number or moves back to the main

array.
– So at most it’s 3* number of items - 1 O(n).→

• But we call it many times...

26

When the Merge is called?

• For the single array of n items, we don’t call the
function.

• When it’s divided to 2 sets, we have a single call with
n/2 items in each half.

• When it’s divided to 4 sets, we have 2 calls, n/22
items in each half (at most).

• When it’s divided to 8 sets, 22 calls, n/23 items in each
half.

• The total time complexity of the method is O(n
log(n)).

27

Summing up

• This is considered an optimal comparison-
based method.

• Can operate on large data, requiring the buffer.
• It can be proven, that it is stable.

• ...but it is quite problematic to implement at
first (recursion!).

• ...and is not an in-place method requires a →
non-constant size of extra storage.

28

Quick Sort

• In the merge sort, we do most activities in
the merge step.

• So in the „divide and conquer”
methodology, we do most of activities after
the problem has been divided to sub-
problems.

• Is it possible to shift the sorting activity
into the divide part?

29

Quick Sort

• Dividing:
– Choose a specific item p known as pivot,

and divide the set to two subsets:
• Smaller than p,
• Larger or equal than p.

– Perform the same thing for every part

• ...and nothing left to do after the recursive
division.

30

Quick Sort

22 12 11 39 15 28

2212 11 3915 28

2212 11 3915 28

1211 15 22 3928

11 12 15 22 28 39

31

Quick Sort

• Notice that the pivot, after executing the sorting
round related to it, takes its final position in the
given sub-set it does not participate in further →
sorting and is in the proper position in this sub-set.

• So the implementation will be:

QuickSort(array, start, end)
if (start<end)

int pivotIndex = partition(array, start, end)
QuickSort(array, start, pivotIndex-1)
QuickSort(array, pivotIndex+1, end)

32

The partitioning function - the most
simple implementation

• Assume we will take the 0th item of the array to be
partitioned.

• We define two sets (dynamic arrays for example)
– S1 - in which items are < pivot’s value.
– S2 - in which items are >= pivot’s value.

• Iteratively we compare all items against the pivot.
If they are smaller, they got to S1, else S2.→

• Finally, we return the S1, pivot and S2.

33

Partitioning - can we optimize it?

• Instead of allocating the memory for two sets, we
can use the array we have.

• The pivot is array[0] as usual.
• The next parts of the array can be:

– The first set (S1): <pivot.
– The second set (S2): >=pivot
– The last set: Not checked yet.

• We iterate thru items starting from array[0].

34

Better partitioning approach

• We iterate on the array starting from pivot.
• If the item is >=p, we increment the pointer to the

S2 set’s end.
• Else, we have to increment the S1’s end pointer, but

we have an item in ther S2’s range…
– ...so let’s just swap these items and extend S2’s end

pointer too.

Items >=pp Items <p unknowns

S1’s end S2’s end

35

The implementation

Partition(array, start, end)
int pivot = array[start]
int S1end=start
int S2end=start+1;

while (S2end<=end)
if (array[S2end]<pivot) //extend S1

S1end++
swap(S2end, S1end)

S2end++ //we always proceed with S2

swap(start, S1end) //correct pivot position
return S1end //return new pivot position 36

Quick sort: Summary

• The algorithm is not stable, but in-place.
• The best result is obtained if the problem is always

divided to two equal halves.
– Then, depth of recursion is logarithmic,
– The complexity is O(n log(n)).

• The worst case is when the pivot gets always
separated we get a full S1 and empty S2 or full →
S1 and empty S1.
– Then, we get to O(n2)
– Notice this will happen is we try to sort the already

sorted array!
– It can be fixed with different pivot initialization.

37

Radix sort

• We have always used sorting algorithms
for numbers.

• What if we want to sort strings?
– Convert strings to ASCII numerals?
– …?UTF-8 numerals? trouble!←

• What if we want to develop a sorting
method specifically for strings?

38

Radix sort

• We consider each record of data as a string of
symbols.

• We group string into sets according to the
next symbol in each string.

• Concatenate the sets for the next iteration
• Repeat until sorted.

• Assume we have a constant-length strings.
– ...but if we stick to numerals, we can zero-pad.

39

0123 2154 0222 0004 0283 1560 1061 2150

A well aligned example from Halim S. - „World of Seven” - https://www.comp.nus.edu.sg/~stevenha/

0123 21540222 000402831560 10612150 Grouped by the 4th symbol….

...and concatenated back.

Grouped by the 3rd symbol…

...and concatenated back.

Grouped by 2nd symbol…

...and concatenated back.

Grouped by the 1st symbol…

...and it’s a sorted set.

0123 21540222 000402831560 10612150

0123 215402220004 02831560 10612150

2154 10612150 028315600004 01230222

21541061 2150 0283 15600004 0123 0222

2154 02832150 156002220004 01231061

21540283 2150156002220004 0123 1061

21540283 2150156002220004 0123 1061
40

Radix sort

• How do we group items?
– We find the first item of the specified

characteristics,
– Move it to the specific set.
– Go until the end of input data.
– Repeat for each symbol (or group).

So:
i=1;
for every symbol in the record length:

group the items by i-th item.
concatenate groups
i++

41

Radix sort: Grouping and merging

• We can do grouping iteratively:

Given i = the position we use for grouping.
Create a set of vectors for every symbol.

for every symbol in the array:
add the symbol to the vector related to it.

• For the decimal numbers:

digit=0;
for every element of the array

digit=(element/i) %10
push(digitsList[digit], element) 42

Merging

• We can just copy the vectors to the array,
symbol by symbol:

i=0
for every symbol in the alphabet

while symbol’s list not empty
array[i]=pop(symbol’s list)
i++

43

Radix sort

• We can use any alphabet we want.
• For each iteration we go thru the whole

array once to place them to groups, then
we concatenate groups to the array.

• So the complexity is O(n).
• Number of iterations: number of symbols

in the alphabet.
• So the complexity is O(dn).

• Not in-place, but stable.
• Requires more memory.

44

Heap sort

• A binary heap is a data structure which is a
binary tree with the following limitations:
– All its levels except the last one are completely filled

(Shape property).
– The value stored in each node is greater (or less -

depending on implementation) than its children.

• Thanks to shape property, we can serialize a BST
into the linear array and retrieve it back without
any pointers.

• Because it’s not a BST, we can shift elements
down without any side effects.

45

Heap sort

• If we are able to build a heap of the data, we can do
the following:

1. Remove the topmost part of the heap (maximum)
and append it to the sorted list part.
2. Re-create the heap.

• Because the n-element heap is serialized in the
array, we can do the step 1 by moving the maximum
to the place right after the end of the heap in the
same array - the „heap” part will shrink, the „sorted”
part will grow then.

46

Heap sort

• [5,12,4,6,2]
– Not a heap

• As 5<12, we swap them

• And as 5<6, we swap 5 with 6.

• We have a heap property.

5

12 4

6 2

12

5 4

6 2

12

6 4

5 2

47

Heap sort

• Remove the root - this is
sorted

• We do it by swapping it
with the last node and
trimming it off from
further processing.

•

• Then, we re-create the
heap:
– Swap 6-2
– Swap 5-6

2

6 4

5 12

6

2 4

5

6

5 4

2
12 12

48

Heap sort

• Another round: 6

5 4

2 12 6

5 4

2

12 6

2 4

5

12

6

2 5

4

12 6

4 5

2

12

Pop the element

6

4 5

2

12

HeapifyPop the element to the end

49

Heap sort: Typical Implementation

• HeapSort(array, count)
start=count/2
end=count
while (end>1)

if (start>0)
start--

else
end--
swap(array[end],array[0])

//Moving the smaller elements down
root=start
while (2*root+1)<end

leaf=2*root+1
if (leaf+1<end and a[leaf]<a[leaf+1]

leaf++
if (a[root]<a[leaf])

swap(a[root],a[leaf])
root=leaf

else
break

Select the
largest item
and put it to
the end

Restore heap
properties.

50

Heap sort

• Complexity (worst case): O(n log(n))
• Not a stable sort
• In-place algorithm

• In many practical cases a bit slower than
Quick sort.

51

Hybrid algorithms

• How can we get rid of O(n2) complexity in badly
formed input data?
– Use a different algorithm, not so suitable for other

alignments of data…

• Introspective sort variant:
– If the number of data is relatively small, go with

InsertionSort.
– If the recursion depth of Quick sort is acceptable we

can go with Quick sort.
• ...but we can just partition the array in 2 and go Intro

Sort on them.

– Else, we go with Heap sort. 52

Estimating the depth of recursion

• Usually 2*log2n.
• This will „lock” the complexity to O(n

log(n)).

• The total complexity of Intro sort will be
then O(n log(n))

• ...however, it is not stable.
• ...and more difficult to implement.

53 54

A small interruption

• Stack machines
– A CPU that does not use registers, but

(usually one) stack.
– Execution of operation means:

• Fetching operation code from the stack,
• Fetching operands from the stack,
• Pushing the result to the stack.
• With 2-operand command, stack is shorter by

1 value or 2 items: instruction and value.

55

Stack mahines

• Implementations:
• Separate stack and conventional instructions storage

(Symbolics, 1970s).
• Single stack including instructions and operands

(Ferranti, 1965-70s).
• Multiple stacks, switchable and shortable (Syeika,

1970s, Multiklet project).

• Because it is quite difficult to program these CPUs
and typical programming languages compilers
don’t generate such code efficiently, they never
got popularity.
– In 1970s, Symbolics LISP-programmable machines

were implemented as stack CPUs. 56

Sorting using stacks

• Having a set of stacks it is possible to
implement a sorting algorithm similar to
insertion sort.

• It can be implemented using conventional
programming techniques, but also with a
stack-based processors.

• The „register-as-stack” architecture allow
to obtain a very high performance in the
implementation.

57

Sorting using stacks

• Rules:
– No access different than stack-based,
– No registers, only stacks,
– The only moving-related operations are push and pop.

Popped value must be pushed somewhere.
– We can compare top values from various stacks without

popping.

• Given:
– Input, unsorted data stack
– Two working stacks: Left and right.
– Minimum and maximum element value.

58

Sorting using stacks

• Initialization:
– Push the minimum to the left stack,
– Push the maximum to the right stack.

• Operation:
– Pop the value from input stack to the left stack.

– Until top of left stack is not larger than top of
input stack:
• Pop the left stack to the right stack.

– Until top of the right stack is not smaller than top
of input stask:
• Pop the right stack to the left stack.

59

Example

10
6
3
2
10
7
4 121

6
3
2
10
7
4 12

10
1

Pop input→ left

6
3
2

10
7
4

10
121

Left>in so L→ R

3
2

10
7
4

10
12

6
1

Pop input->left

3
2

10
7
4

6
10
121

Left>in, so L→R

2
10
7
4

6
10
12

3
1

Pop input->left.

2
10
7
4

3
6

10
121

Left>in, so L→R

10
7
4

3
6

10
12

2
1

Pop input->left

10
7
4

6
10
12

3
2
1

Left<in, so R->L

10
7
4

10
12

6
3
2
1

Left<in, so R→L
10!>10, so we don’t pop
anymore. 60

Example (2)

10
7
4

10
12

6
3
2
1

7
4

10
12

10
6
3
2
1

Pop in->L

7
4

10
10
12

6
3
2
1

As 10>7, L→R

4

10
10
12

7
6
3
2
1

Pop in→L

4

7
10
10
12

6
3
2
1

7>4, so L->R

4

6
7

10
10
12

3
2
1

6>4, so L->R

6
7

10
10
12

4
3
2
1

Pop in->L

4
6
7

10
10
12

3
2
1

Transfer L->R

3
4
6
7

10
10
12

2
1

2
3
4
6
7

10
10
121

1
2
3
4
6
7

10
10
12

61

Summing up

• This is an insertion sort.
• Insertion sort can be implemented on

stack-like data structures.
• With specific stack machine architectures,

it is possible to make it even more
efficient.

62

Mass-solving linear equations

• Any discretized set of differential equations
can be described as a system of linear
equations.

• The problem is that number of these linear
equations may be VERY large.

• Is it possible to solve these equations with
a computer?

63

Linear equations system

• A set of linear equations like:

• Can be described using matrix equation:

• Sometimes described as:

 A x X = B

Ax1+Bx2+Cx3+Dx4=U
Ex1+Fx2+Gx3+Hx4=V
Ix1+Jx2+Kx3+Lx4=W
Mx1+Nx2+Ox3+Px4=X

A B C D x1 U
E F G H x2 V
I J K L x3 W
M N O P x4 X

x =

64

Gauss method

• Allows to obtain solution of such equations
system.

• Inspired by the method of solving these systems
by eliminating unknowns until we get some
xx=Y, a single unknonwn solved.
– It can be used to obtain the next equation’s

unknown,
– And then, using two solutions, another one…
– Going this way, we can obtain all unknowns.

65

Elimination

• If we get a AxX=B matrix equations (in
which X and B are vectors), we can write
A|B matrix:

a1,1 a1,2 a1,3 ... a1,n b1

a2,1 a2,2 a2,3 ... a2,n b2

a3,1 a3,2 a3,3 ... a3,n b3

an,1 an,2 an,3 ... an,n bn

66

Elimination (2)

• Next, we convert all elements under a1,1 to
0.

• Then all elements under a2,2,
• Then, a3,3 etc.

(the first row remains the same)
• So we can use a single solution to expand

it to the rest.

67

Elimination (3)

• Elimination of column 2 (so only a1,1
remains):
– For all elements of the row i (2..n) we add

the next elements of the row 1 multiplied by
-1*(ai,1/a1,1).

– Notice that for a2,1, we will get:
• a2,1-(a2,1/a1,1)*a1,1 = a2,1-a2,1 = 0
• ...and that’s what we want!

– For a2,2 we will get: a2,2-(a2,1/a1,1)*a1,2

– For a2,n we will get: a2,n-(a2,1/a1,1)*a1,n

– For b column: b2-(a2,1/a1,1)b1

68

Elimination

• We process it until we will get the matrix
triangular:

a1,1 a1,2 a1,3 ... a1,n b1

 0 a’2,2 a’2,3 ... a’2,n b’2

 0 0 a’3,3 ... a’3,n b’3

 0 0 0 ... a’n,n b’n

69

Unpack it back

• We will then unpack the matrix to
something that looks more like an equation
system:

a1,1 a1,2 a1,3 ... a1,n x1 b1

 0 a’2,2 a’2,3 ... a’2,n x2 b’2

 0 0 a’3,3 ... a’3,n x3 b’3

 0 0 0 ... a’4,n x4 b’4

 . . .
 0 0 0 ... a’n,n xn b’n

x =

70

Find the unknowns

• Formula for the unknown xi:

For i=n-1, n-2, … 1:
xi = (b’i-a’i,nxn-...a’1,i+1xi+1)/a’i,i

• So:

xn = b’n/a’n,n

• Knowing that subsequent ‘-operations are recursive,
it can be implemented recursively.

71

Pseudocode

Stage 1: Gaussian elimination

For i=1,2,...n-1
For j=1,2,...n

If AB[i,i]==0
return 2 //Error! We are going to divide by 0!

multiplier = AB[j,i]/AB[i,i]
For k=i+1..n+1

AB[j,k]=B[j,k]+multiplier*AB[i,k]

WARNING!
==0 is assumed to
have some tolerance!

72

Pseudocode

Stage 2: Obtaining unknown values

For i=n, n-1, n-2 … 1
s=AB[i, n+1]
For j=n, n-1, n-2 … i+1

s=s-AB[i,j]*x[j]

if AB[i,i]==0
return 2 //ERROR - we are going to divide by 0

X[i]=s/AB[i,i]

• Unknowns are stored in X vector

73

Crout’s enhancement

• Presence of any 0 in the dagonal of the
matrix, or introduction of such 0, will cause
the algorithm to divide by 0.

• Because A+B==B+A, we can swap
columns in the array as we wish.

• Implementation of column swap can be
done just using pointer swap.

• Can we swap columns to not get zeros in
the diagonal, or better, get them in part we
want?

74

• Wa search for the element with biggest
absolute value.

• Now, we swap columns: Column with this
element with column with the part of the
diagonal.

• It can minimize the division by zero errors.

• Instead of pointers, a lookup table can be
used.

75

Even better version

• In practical applications, frequently we
have this Axx=b problem with various b
values for the same, or similar, A values.
– Like the same discretized continuous

problems, for the same equations, for
different points in the medium.

• We can save the eliminated A-values and
use them again.
– ...but there is a b-vector involved - the

decomposition must be different.

76

A = LU

• We describe the converted A matrix as a
matrix product of upper and lower
triangular matrices:

A=LU

• Once we decompose A to LU, we can save
them and substitute with any values of B
we want.

• The complexity remains as in Gaussian
elimination.

77

Why do we need this?

• A lot of physical, mechanical, structural problems can be
converted into a linear equations system.

• There are even more efficient
methods to do this.

• If we discretize the continuous
media and interpolate in
between, we can solve
non-linear problems using linear
equations!

• ...however, the typical method for
an e.g. computer simulations has
millions of columns and rows.
– ...fortunately it is a sparse matrix.

78

Graph algorithms

• A graph is a data structure which consists of vertices
and edges linking them.

• Both vertices and egdes may hold additional
information.

• The graph order is a number of vertices in the graph.
• The graph size is a number of edges in graph.
• A null graph consists vertices, but no edges.

• Graphs are used in discrete mathematics,
geometry/topology, and, in application, in
engineering.

79

Properties of graph elements

• Graph may allow a multi-edge
connection, it means that two vertices may
be connected by more than one relation.

• A loop is a connection to itself.

• The edge may be uni- or bidirectional.
• The graph is planar if we can daw it

without crossing the edges.
– Finding planar graph of an existing graph is

an important problem in design software
algorithms.

80

Properties of graph elements

• Graph’s edges may have their values,
called weights.

• A path is a series of vertex traversals from
one vertex to another, usually thru other
vertices.
– Finding the shortest path is an important

problem in function optimization and
logistics.

• A simple graph has no multi-edges or
loops.

81

Paths and cycles

• A Hamiltonian path is a path which goes
thru all vertices of the graph.

• A Hamiltionian cycle is similarly, a closed
path. The simple cycle must cross each
vertex only once. Some edges may not
be used.

• An Eulerian path goes thru all edges.
• In the Eulerian cycle the path must be

closed.

82

Graph example

V1 V2

V4

V3

V5

A non-directed, simple but
non-planar graph.

Not a complete graph as V5 is
not directly connected to e.g.
V1 or V2.

e1

e2

e3

e4e5

e6

e7

83

Graph example

V1 V2

V4

V3

V5

A Hamilton cycle

e1

e2

e3

e4e5

e6

e7

84

Graph example

V1 V2

V4

V3

V5

A V5 to V2 path.e1

e2

e3

e4e5

e6

e7

85

How graph can be stored?

• Structures and pointers
– PROBLEM: If we may have any munber of

edges from a vertex, we need dynamic data
structure to hold pointers.

– PROBLEM: Lack of general overview of the
graph.

– PROBLEM: Algorithms which look for specific
vertex will have to traverse it almost blindly.

86

Better way to store graphs?

• Adjacency matrix:
– For n vertices we create nxn matrix of binary values.
– 1 if there is a connection between column- and row-

related element.
– We can store directed and non-directed graphs.

V1 V2

V4
V3

V5

e1

e2
e3

e4e5

e6

e7

V1 V2 V3 V4 V5

V1 0 1 1 1 0

V2 1 0 1 1 0

V3 1 1 0 0 1

V4 1 1 0 0 1

V5 0 0 1 1 0

87

Better way to store graphs?

• Adjacency matrix and directed graphs:
– Rows contain starting points
– Columns: End of edge.

V1 V2

V4
V3

V5

e1

e2
e3

e4e5

e6

e7

V1 V2 V3 V4 V5

V1 0 0 1 0 0

V2 1 0 0 0 0

V3 0 1 0 0 1

V4 1 1 0 0 0

V5 0 0 0 1 0

88

Using the adjacency matrix

• A degree of the vertex, for a non-directed
graph, is a count of 1s in the column or
row related to this vertex.

• For a directed graph, we obtain, by
counting in columns or rows, degree of
„inputs” or „outputs” of the vertex.

• In a directed graph, if [x,y]==[y,x]==1,
then these two vertices have two links (or
one bi-directional, if we allow it).

89

Incidence matrix

• Each row is a vertex,
• Each column is an edge,

• Each value is a relation:
– 0, if there is no relation between vertex and edge,
– 1 if a vertex is a start of the edge,
– -1 if a vertex is the end of the edge.

V1 V2

V4
V3

V5

e1

e2
e3

e4e5

e6

e7

e1 e2 e3 e4 e5 e6 e7

V1 -1 0 -1 0 0 0 1

V2 1 -1 0 0 0 -1 0

V3 0 0 0 0 1 1 -1

V4 0 1 1 -1 0 0 0

V5 0 0 0 1 -1 0 0 90

Properties of incidence matrix

• Much easier to add weights than in neighbourhood matrix.
• Each column must have one -1 and one 1 (integrity check).
• Number of 1s and -1s in rows number of edges in and →

out.
• Finding neighbours is harder as we have to seek thru an

entire row.
• All zeros in a row insulated vertex.→

e1 e2 e3 e4 e5 e6 e7

V1 -1 0 -1 0 0 0 1

V2 1 -1 0 0 0 -1 0

V3 0 0 0 0 1 1 -1

V4 0 1 1 -1 0 0 0

V5 0 0 0 1 -1 0 0

