iy
AGH

Introduction to Computer Science

Lecture 1-3

Version: 2023

s Ph.D. /home.agh.edu.pl/~muilkus.
Facaity of Setalirgy and Industia) Computer Seines
AGH UST Kraiow.

Historical introduction,
s and their architectures,
operation of modern CPUs
number systems, commands.
lgorthms:
eneral rules for description of aigorithms,
- Basic data structure:
- Basic algorithms and their implementations.
el programming - e
Introduction to NASM,
- Simple programming.
o yst

jement in ~ummg stems

Bibliography
+ Harel David - Algorithmics: The Spirit of Computing
n, David A. and John L. Hennessy. Computer

anization and Design: The Hardware/Software
Fourth edition

nal book:

+ Tamenboum, Wl - Operating
sign and Implementation (The.

Ach
« Positive grade of exercise cours
e lectures are not compulsory,

without documents are allowe
Positive grades of 3 tests during exercise courses
~ Final exercise grade ~ average of 3 grades from tests.

+ ALL ABSENCE-RELATED DOCUMENTS MUST C
H UST RU

SING TESTS MUST BE CORRECTED AT THE FOLLOWING

IS
COURSES

Exercise courses - laboratories

AGH
Introduction
Programming,
C++ simple prog
[test 1]

Implementing simple data structures in C+-+,
Implementing simple algorithms (C++),
It

0

Introduction

Computer Science - The interdisciplinary
study of computation, information and
automation.

- Algorithmics,

~ Computation theory

~ Information theory,
Mathematical modelling,

- Systems theory,

- Electronics,

- Engineering,

(i
AGH

. s STt TnAKGUE

Introduction to Computer Science
Lecture 1-3

Version: 2023

e wilkus Ph.0. https//home,agh.edu pl/ vmwilkus
By ol Metalinay and tndustrial Coimporer Selonce T
AGH USP Kraiaw

Topics

Historical introduction

Hodern computers and ther architectur
pri

2 Logle. nurmber systems, commans.

aigorithms,

reing systms desig and opertion
Memory management in oper tems
Data et in real-lfe applications.
Aditonal sepects of mocers

0

Harel David - Algorithm

Bibliography

The Spirit of Computing
Patterson, David A. and John L. Hennessy. Computer
Organization and Design v

Interface, Fourth edition

Additional books:

Tannenbaum, Woadhull -
Design and Implementatio

acH

Positive grade of exe

While lectures are not compulsory, exercise courses
ARE.
Two absences without documents are allowed

Positive grades of 3 tests during exercise cou

NTS MUST COMPLY WITH
T BE SUPPLIED IN 2 COURS|
URSE OF ABSENCE AT MAXIMUM
ECTED AT THE FOLLOW

Exercise courses - laboratories

.G!
Introduction

Introduction to proc
Programming,

C++ simple programming
[test 1]

NASM,

Implementing simple data st
Implementing simple algorithms (C-++),

s in C++,

Automation of tasks - high level languages,
Operating system administration — high-level languages,
test 3]

Introduction

« Computer Science - The interdisciplinary
study of computation, information and
automation.

~ Algorithmi

- Computatic

| modelling,
- Systems theory,
- Electronics,

mpy

AGH S s

Introduction to Computer Science
Lecture 1-3

arelc Wilkus Pho. http:/ /home,agh.edu.pl/~mwilkus
Fosty Py and Industrial Computer Science.
ittty

0

Historical introduction,
ers and thelr architectures,

Topics

cription of algorithms,

- Memory management in operating systems,
- Data management in real-life applications.

~ Additional aspects of madem

MI!

« Harel David - Algorithmics: The Spirit

Bibliography
Computing
= Patterson, David A. and John L. Henn

Organization and Design: The Hardware/
Interface, Fourth edition

omputer

« Additional books:

« Tonnenbaum, Woodnul - Oper
Dot and Tmplementation (1o Hime

not compulsory,

nces without documents are allowed.
sts during e

- Final exercise grade - average of 3 grades from test;
ALL ABSENCE-RELATED DOCUMENTS MUST COMPLY

UST RULES AND MUST BE SUPPLIED IN 2 COU
AFTER THE LAST COURSE OF AB
MISSING TESTS MUST BE CORRECTED AT THE FOLLC
COURSES

0

Introduction
Introduction to pro
Programming,

C++ simple programming

Exercise courses - laboratories

Implementing simple data structures in C++,
Implementing simple algorithms (C++),

[te:

Automation of tasks - high level languages,
Operating system administration ~ high-level languag:
[test 3]

Introduction

Computer Science - The interdisciplinary
study of computation, information and
automation.

- Algorithmics,

- Computation theory,

- Information theory,

- Mathematical modelling,

- Systems theory,

PART 0: What are computers made of?

W! Central Processing Unit basics

" lemoy

Instuction
Interface

Fetching

tors

¥ omn ¥

ALY

A oversimpified GPU diagram.

Wl"! Central Processing Unit basics

« A (very simple) real-world CPU (8088

Ne

Systembus
Memory -
I
Management N
Unit (ML) control

Ranom

Memory (RAM)

Im"ll CPU building blocks M"! Central Processing Ui

Instruction
Felching

To
Memory
Instuction
Docodor

- Program Counter o Instruction Counter s
r storing crrent posion i progrem.
- General-purpose r ring input and output
data.
Instrucion fetcher/decoer - i gttng isiuctionsfrom
memory, increasing PC, feeds them to ALU.
Memory Interface int

M"! Central Processing Unit basics
I-world CPU (8088,

« A (very simple)

: History of the computer

Network
Gonirolier
PART 0: What are computers made of?

—

Priter Netwar Prcssing
contler Controler unioe)
PART 0: What are computers made of?

Disk
contraller

amory Expansion o
Managomont o
e Ex controler

Random

M"! Central Processing Uni

Wl"! CPU building blocks

+ AL - dithmeticLogi Unt~ this boc executes arithmeti

< stored in Insirucion + " tamory
Fetching r’ Interfaco
Instniction

i re g Sooes Decoser
¥ own¥

ition in program, AW

isters are for storing input and output Gontor

- Generil -purpose r
Instruction fetcher/decoder - s getting instructions from Rosulot
memory, increasing PC, feeds them to ALL

Memory Interface interfaces the CPU to the outside worid. rsimplificd GPU ciag

W! Central Processing Unit basics

A (very simple) real-world CPU (8088):

tory of the computer

+ AL - ArtmeticLog

. Memurvlmerhne interfaces the

Network

Print
Gonirolier

o
oy contoler

Expansion
Expansion

Expansion

g blocks

ision, @
S apecaton an input arguments sase
acutpting the rasul o rvglnnm

 Saided
cial
oring input and output
getting instructions from
L

o them o ALL
PU to the outside world,

PART 1: History of the computer

AGH 1. Prehistory.

The main objective of computers was to automate
the calculation process.

Until 20t century the calculator was 2 positon of an
employee, who performed calc

arithmometer.

Calculations were performed according to the
“program" and the results were verified and
applied.

This situation was known since at least mid-1800s —
when simple arithmometers and calculating aids
became accessil

But is it possible to automate the process entirely?

i

AGH

+ 1837: Charles Babbage - "Analytical engine” -
design of mechanical general-purpose computer which

perforated cards as a program medium. Never
fully built (but reproductions exist)

« 19205 - algorithms designed to be used specifically in
programmable
arithmometers
(e.q. cracovian calculus,
numerical integration)

« Until 1940s - dedicated
partially-programmable

levices.

Controlling the a

=

Wl"! What Turing machine needs?

A finite set of states it can be in (q,, q,, d;)

Afinite set of symbols it can read and write to the tape,
(e.9. 0, 1, Blank)

A special blank symbol for non-used tape cel

The input symbols of the machine’s alphabet (e.g. 0, 1).

A transition function which determines how in the current
state and current tape symbol the machine will react:

The initial etata

+ ..is a devic ithmetic
operations on numbers
* Although operation on the
n that an algorithm can
descrlhed uslﬂg a list of
and conditionals
Which con be blindly executed
on the machine to get
the result.
+ So the machine has a set
of commands and the
operstor can extend It oy
ons like, for example
"repeat .

is quite demanding, it can be

e (19305-1940s)

smallest thing which makes a computer?

an unimited mermoy capsci obisinect i hoform of sn o o msrkod out
sl 3oy oo e o Ay o o eyt machns:

mory

* Registers

+ Instruction set
State

Wl"! What Turing machine can do?
When we decid on fu

If the function would replace symbols with prev
for example, sort ~ implement an algorithm

an program it.
s ones, it can,

. Tt /en that Turing machin
program on its data.

S0 every real-world det
on a Turing

ates and fnctions, This
easy to program.

Today, if a programmabl

18

AGH 1. Prehistory.

The main objective of computers was to automate

the calculation process.

Until 20th century the calculator was a position of an

employee, who performed calculations using

arithmometer.

Calculations were performed according to the
program"” and the results were verified and

applied.

This situation was known since at east mid- L8005 -

imple arithm Iculating aids
became accessible.
But is it possible to automate the process entirely?

M"! Controlling the arithmometer
7: Charles Babbage - "Analytical engine” - a
sign of mechanical general-purpose computer whic
used perforatad cards s 3 program medium. Never
fully built (but reproductions exist)
920s - algorithms designed to be used speci
programmable
arithmometers
(e.g. cracovian calculus,
numerical integration).
Until 1940s - dedicated,
partially-programmable
devices.

ifically in

0

A finite

What Turing machine needs?
set of states it can be in (q,, d,, q
A finite set of symbols it can r

p
The input sym alphabet (e.g. 0, 1).

A transition function which determines how in the current
state and current tape symbol the machine will react:

~ Move to new state
- Change tape symbol
~ Move the head left
The

ight.
ial ctata

« Although operation

evice which allows to perform basic arithm
Gperations on numbers

is quite demanding, it can be

hine has a set

+ sothem
of commands and the

Aqw Turing machine (1930s-1940s)
« What is a smallest thing which makes a computer?

n

v e s e ut ot e

oo and s b

. oy
achie. Ay Symbolon 12 ey

spocity abiined n e orm o

mmHm.‘...m "
ol Tho
e

i Taring, "Iteligent Machinery”, 1948

Nosice

M"! What Turing machine can do?

n fu we can program it
d replace symbols with pre,
implement an algorithm.

i s ones, it can,
for example, sort -

It can then be proven that Turing machine can execute a
program on its data.

S0 every real-world design of » computer can be simulated
a Turing m o with 3 very complex, but
States and fonch cthing to do with sp

easy to program.

or being

Today, if a programmable system or programming language can

AGH 1. Prehistory.

The main objective of computers was to automate
the calculation proc:
Until 20th century the calculator was a position of an
employee, who performed calculations using
arithmometer.
Calculations were performed according to th

“program” and the results were verified and
applied.

as known since at least mid-1800s —

when simple arithmometers and calculating aids
became accessible

But is it possible to automate the process entirely?

Controlling the arithmometer

37: Charle: bbage - "Analytical engine” - a
design of mechanical general-purpose computer which
used perforated cards as a program medium. Never
fully built (but reproductions exist)

19205 - algorithms designed to be used specifically in
pmgrammab\e

Until 1940s - dedicated,
partially-programmable
devices.

MI!

A finite set of states it can be in (dg, d,, q, -.)

A finite set of symbols it can read and write to the tape,
(e.9. 0, 1, Blank)

A special blank symbol for non-used tape cells.

The input symbols of the alphabet (e.g. 0, 1).

A transition function which determines how in the current
state and current tape symbol the m Il react:

What Turing machine needs?

~ Move the head e
The

device which allows to perform basic arithmetic
erations on numbers.
+ Although operation on these is quite demanding, it can be
seen that an algorithm can b
descr i
operations and conditionals
which can be blindly executed
n the t
fhe reaurt
* So the machine has a set
of commands and the
operator can extend it by
actions like, for exampl
unt

"repeat

Turing machine (1930s-1940s)

AGH
« What is a smallest thing which makes a computer?

an unimied

= i 2t maved back an ot i th
kv o o ko g . Ay o e o
erlors vonualy havo sn nring:

Alan Turing, Intligent Macrinery”, 1948
* Memor

« Reg

ers
 Insiruction set
1o

What Turing machine can do?

hen
If the function would replace symb 2
ot Sxampie, sort et an igonte.

about tray function, we can program it

It can the that Turing machine can e
program on

© every real-world design of a computer can be simulsted
onaTu ne with a very complex, but obtainable,
States and foncions. This has othing to d or being
casy to program.

do with spe

Today, if a programmable system or programming language can

. ting ph:
r electric voltage/curres
Continuous variabies and ate called analog.

ical properties, like length,

The pin-uheel arthmometer us
a di mber

computers ar
nt a digit in a form
igit - L or 0, O or Off.

Binary calculus
- Binary logic - “Boolean

937 - Claude Shannon - * A Symbolic Analysis of
Retay and Switching Circuits” - The initial theoretical
work of digital circuit design. s

1937 - Gearge Stibtz - Working

1-bit adder using electric

and 2 multi-contact relays

(Model K).

1953 - Maurice Karnaugh - The “Karnaugh Map

the method to describe any logic equation using
Iogic functons which can be bullt using logle bulding
blocl

IMHII

For some time, it was much s data with
v p agrammama in a very limited

Do we need a computer to process data?

nt, are using

computers

Relay-based, then tube-based, then transistor-based
a binary, decimal, or, more rare, biquinary
r 0..4, and one of two choosing is

5
implementation and the binary logi

- The first complete

known as Atanasoff-Berry

- Zuse Z-3 - the machine operates an high-!
1943 - Colossus Mark 1 - Not fully
pruardmmab\ﬂ

1943-45 - Iy
pmgmmmab\x tube-based,
decimal

]

Invention of a transistor allowed to abandon t
difficult bi-quinary or 2/5 coding, focusing on better
presentation of numbers in a word. Computers
became much smaller, more reliable and power-

ficient.

Further development

Theoretical description of an integrated ci
(Ambroziak et al, 1955) and its production (3. Kilby,
1958) allowed to make computers even smaller.

* In 1970s,

computers got more popular, however,

ploting physicalpropertes ke lengt
ol , are using

(20 per it 0.9),
g can be représen
ta

However, most current. re
binary - they represent a digit in a form
of binary digit - 1 o 0, On or Off.

Binary calculus

i

- Binary logic - “Boolean

1937 - Claude Shannon - * A Symbolic Analysi

Relay and Switching Circuits” - The initial theoretical

wmkuf digital circuit design -

1937 - George Stibitz - Working

1-| b\t adder using electric current

and 2 mu\t\ contact relays

(Model K

1953 - Maunre Karnaugh - The “Karnaugh Map'
method to descrine any logic equation

Do we need a computer to process data?

For some time, it was ier to process data with
non-programmable (or qurammab\e in a very limited
way) machines. B
These were much more

ible, easier to
om—.rare and were built

cific order.
Ammuqh these machines

matic, they are

Usually not considered

Finally, they became mor

e
AR
tErE

mml] Electronic computer:
nanl -onic computers
« Relay-based, then tube-based, then transistor-based
mputers used 2 binary, decimal, or, more rare, bi
five digit for 0..4, and
5) Aumber representation. [t s Just more Smple for
implementation and the binary lagic is well defined.
1936 - The first complete electronic ALU - Arithmeti
unit - known as Atanasoff-Berry
+ 1941 - Zuse 7-3 - the machine operates on high-
programming language.
+ 1843 - Colossus Mark 1 - Not fully |1
pmgrammauu
. 194 - fully
pruardmmab\ﬂ tube-bas:

0

« Invention of a transistor allowed to abandon the
difficult bi-quinary or 2/5 coding, focusing on better
representation of numbers in a word. Computers
became much smaller, more reliable and power-
efficient.

Further development

« Theoretical description of an integrated
(Ambroziak et al, 1935) and I production (1 Kilby,
1958) allowed to make computers even smalle:

« In 19705, computers got more popular, however,

two choosing is it 0..4 or

perties, like length

urrent, are using

However, most current
Binary ~ they reprasent a ciot i & form
of binary digit - 1 or 0, On or OFf

Aqn Binary calculus
18505 - George Boole - Binary logle - “Boolean
a\ge:

- c ude Shannon - A Symbolic Analysis of
Fﬂla\/ and Switching Circuits” - The initial thuarut\ca\
work of digital circuit design

1927 - George Stibitz - Working
1-bit adder electric current
and 2 mult-contact relays
(Hoda\ K). =

- Maurice Karnaugh - The “Karnaugh Map” -
the method to describe any logic equation using
logic functions which can be built using logic building
blocks. =

;

For some time, it was much easier to process dat:

non-programmabl (or programmable n a very imitea.
ay) machines.

These were much more

accessible, easier tc

operate and were built

to specific order.

Although these machines

were automatic, they are

Do we need a computer to process data?

T
%

ic ALU - Arithmetic-Logic
Aanasoft Berry Computer (ABC)
the machine operates on high-lev

us Mark 1 - Not fully
programmable.
- 194345

decimal

T

Ach

« Invention of a transistor allowed to abandon the
difficult bi-quinary or 2/5 coding, focusing on better
representation of numbers in a word. Computes
became much smaller, more reliable and power-
efficient.

« Theoretical description of an integrated
(Ambroziak et al, 1935) and is production (1 Kily,
1958) allowed to make computers even smalle:

« In 1970s, computers got more popular, however,

acH Sl

« The number of transistors in the IC doubles about
every 2 (or 1.5 - depending on interpretation) years.

]
v “‘.‘“J,‘“«“:

190 6 T

rocomputers

of the microprocessor 2 chp cortaining a
whole CPU, and sometimes even aditional ircuis,
allowed to make computers cheaper and
, they became more and more cheap
In 19805, popularization of home computers and BASIC
ming language allowed many peaple to have, use
omputers at home.

mml] mputer architecture:
agn Computer ai ures
In von Neuman computer, data and
program resides in the same

memory.

Itis then p

by program,

the machiné,

The Harvard computer's architecture has
separate memory for program and
for data. This way it is ically
simple to implement, h

less flexible.

This started an era of

minicomputers.

Minicomputers had or
nstructi

d as a programmable logic
processing machines

A case of the microcomputer

n - Experimental Systems Division,
redesigned an 1BM deta forminal 10 be used a3 & computer.
The design was open for expansions and well-described in
the documentation.
8-bit
and had 64k8
t, later expanded to

0k
It was called "IBM 5150
Personal Computer”

Later, lots of PC clones
dominated the market.

W ow tho compucers prones
acH Flynn's taxonomy (1)

Single Instruction, Single data (SISD)

- A sequential computer doing one program’s step a timi
with one data portion a time:

qu\e Instruction, Multiple Data (SIMD)
mputer doing a single instruction a time, but applies
el to \arger number of data.

A T s

« The number of transistors in the IC doubles about

every 2 (or 1.5 - depending on interpretation) years.

2005100

IMHII

[nvunt\on ofthe microprocessar - a chip containing a
ole 6 sometimes even sdditiona
omputers cheaper and more
rs, they became more and more cheap.
of home computers and BASIC
programming language allowed many people to have, u
and program computers at home.

Microcomputers

0

« In von Neuman computer, data and
in the same.

Computer architectures

« Itisthen p fy program
by program, o cynamically progrem
the machine, but it is more complex.

+ The Harvard computer’s architecture has
separate memary for pragrom and
| al

i mpement.bon
otprint and lexible.

aGH " AcH i i
In 19705, widely ible integ)

mputer of s * The number

every 2 (or 1.

ansistors in the IC doubles about

memory, initially ferrite-core,
feonductor e b e o
started to be used as a programmable
general-purpose data processing machines o foc 10000 T
e widely accessible. e i

I\HHII

« Towention of the mi roprocessor - s cip
whole CPU, and sometimes even additional ci
allowed to make computers

. [n a few years, they became more and more cheap.

n 1980s, popularization of home computers and BAS
Brograminig iongoage Biowad momy pos
ram computers at home.

IMHII

]n 19 31, IBM's

A case of the microcomputer Microcomputers

erimental Sy

It was called "IBM 5150
Personal Computer”

Later, lots of PC clone:
dominated the market.

I o the compurers praceemmeS R
AG)

Flynn’s taxonomy (1.

+ Single Instruction, Single data (SISD)
sequential computer doing one program’s step a time
with one data portion a time
« Single Instruction, Multiple Data (SIMD) B ek, bt are Compie
~ A computer doing a single instruction a time, but applies.
it in parallel to larger number of data
ommon CPU different memory units (Arrays),
« A set of CPUs, common memory unit (Pipelines),
* Setof independent CPUs commonly ontrlled
proc

« The Harvard computer’s architecture has.
separate memory for program and
i Ily

~ depending on interpretation) years.

AcH

ated circuis allol
ing bloc

In 19705, widely accessible i

ct an ent puter of base bui

ﬂﬂg—"ﬂ

tarted an era o
minicomputs

These machines started
control onits, Genera
nd were widely acc

M"! A case of the microcomputer

In 1981, 1BM’s ESD - Experimental Systems Divisi
redesigned an IBM data terminal to be used as a computer
s and well-

s open for ex; cribed in

was called "[BM 5150

oIt
Personal Computer”

Later, lots of PC clones
dominated the market.

(|
acH Flynn's taxonomy (1)
Single Instruction, Single data (SISD)
with one data portion a time.

Single Instruction, Multiple Data (SIMD)

ommon memory unit (Pipelines),
ommonly

aGn Flynn's taxonomy (2)
« Multiple Instructions, Single data (MISD)
- Many processing units perform various instruction on a
single data in the common memory.
- If the instructions are the same, we azt fault !olerance
— If the i ucti are different, w

cimilarities with s @ aspects ¢ modern AL solutions

« Multiple Instructions, Multiple Data (MIMD)
- Independent processors execute different instructio
different data.
- Used in distributed systems.
~ Applied in multi-core processors.
~ Units may have a shared memory, or other equivalent
communication method

W! So, how computers store numbers?
+ We use a decimal systerm - It has a base of 10, 50
0..9 - 10 digits.
C)mputn s operate on 2 states: 0 or 1, high or low

2 binary system is used there

« Most numbers in computers have a fixed bit
width. It means that the number may have a
specific number of non-significant zeros to fill the
pacs

AG
« How many bits do we need to encode 0..9?

-0, 1,10, 11, 100, 101, 110, 111, 1000, 1001 - 4 bits
ed on BCD seem to look

I! BCD

unusually wide.

—_—

« However:
= As we stll operate n decimal, the

ally, really, easy
to encode separate digits T
to, e.9. 7 o

Part 2: How computers store numbers?

Binary encodings can be different

0

« When it comes to large numbers, methods
of encoding can be different.
~ Historically, relay-based machines used
biquinary format frequently Drcau
easier to implement using relay-ba:
t

every decimal digit using its own binary
value!

i

« Many older machines (and newer encoders) used
switches to enter binary numbers. Switching, e.g., 1
to 2 required two flip
- 001 - 010 (rightm

During this switching, s
upting the macl

« Or when binary data is sent ana\ag way, is it possible
to detect errors when simply counting’

Gray code

« The main question it possible to use a binary
Pumeral System n which the number of bit flips

acH Flynn's taxonomy (2)
+ Multiple Instructions, Single data (MISD)
— Many processing units perform various inst
ingle data in the common memory.
— If the instructions are the same, we get fault tolerance.
~ If the instructions are different, we can see of
similarities with some aspects of modern Al solutions.

uction on a

« Multiple Instructions, Multiple Data (MIMD)
- Independent processors execute different instructions o
different data.
- Used in distributed systems.
~ Applied in multi-core pr
~ Units may have a shared memory, or other rquwa\rnt
0d

communication meth

M"! So, how computers store numbers?
* We use a decimal system - it has a ba
0..9 - 10 digits.
« Computers operate on 2 states: 0 or 1, high or low
binary system is used there.

« Most numbers in computers have a fixed bit
width. It means that the number may have a
specific number of non-significant zeros to fill the

spa

se of 10, so

m..
* How many bits do we need to encode 0..9?
-0,1,10, 11, 100, 101, 110, 111, 1000, 1001 - 4 bits
n

- The data bust stems based on BCD seem to ook,
unusually wide.

AGH Flynn's taxonomy (2)
« Multiple Instructions, Single data (MISD)
sing units perform various instruction on a
ata in the common memory.
~ If the instructions are the same, we gcY fault tolerance.

Part 2: How computers store numbers?
« Multiple Instructions, Multiple Data (MIMD)
~ Independent processors execute differe
different.
- Used in distributed systems.
- Applied in multi-core proc
- Units may have 5 shared memary, or other equivalent
ethod.

Binary encodings can be different So, how computers store numbers?

0 0

. \vmn it comes to large numbers, methods We use a deci mal system -
can be different. 0..9 - 10 digit:
- Hm oric auy relay-based machines used * Comput
biquinary format frequently because it was
easier to implement using relay-based
selectors.

it has a base of 10, so

s upmtn on 2 states: 0 or 1, high or low

ary system is used there.

* Most numbers in computers have a fixed bit
width. It means that the number may have a

If @ small device perform e specific number of non-significant zeros to fill the

may be more handy to us

every decimal digit using its
value

i

« Many older machines (and newer encoders) used
nitches to enter binary number
to 2 required two flips
~ 001 ~ 010 (rightmost bit, then mi g
~ Durin iitching, suddenly a stray 000 or 011 may
appear, disrupting the machine’s operation
en binary data is sent analog way, is it possible
to detect errors when simply counting?

W

« How many bits do we need to encode 0..9?
-0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001 - 4 bits
~ The data b s d on BCD seem to look
unusually wide.

Gray code

* However:

- 1tis rean, really, easy
de separate digits
the number of bit flips 7-segment

« The main question is: Is it possible to use a binary toe

I
numeral system in which displays.

How computers store numbers?

Binary encodings can be different

« When it comes to large numbers, methods
of encoding can be different.
Historically, relay-based machines used
biquinary format frequently because it w:
asier to implement using relay-ba

ult in de 'ma\ it
2 < BCD - encol
every decimal digit sing s own binary

i

Many older machines (and newer encoders) use
switches to enter binary numbers. Switching, e.
to 2 required two flips:
- 001> mu (rightmost bit, then middle are toggled)
~ During t ing, suddenly
Coneny derapting 1% machms aperaion
Or when binary data is sent analog way, is it pos
detect errors when simply counting?

Gray code

The main question is: Is it possible to use a binary
numeral system in which the number of bit

asiy consiruct Gray cose for any numoer
ina 2. s of perutators S
1o ;
00,01, 11.10110,11,01,0

O valuss sra staring it O
000, 001. 011, 010 |

New il startfrom 1
000,001,011, 010 | 10, 111. 101, 100

And

gota Gray code for
4,5, ois - re

0

« We don't have 0..9, we have only 1 and 0.
« So, let’s have a 8-bit byte: 11000001

Binary system

o
Positon

« We can add and subtract binary number
digit-by-diit. The carry will be
encountered more frequently than in
decimal.

~ Note that 1+1=10, so it's 0 and carry 1
- During subtraction it's 0-1=1 and carry
- Remember that limiting the value to e.g.
bits will trim the overflow!
- ...and subtracting larger value from
I result in underflow, and the
ill not disappear until the end of
subtracting

11
10200110
110011

11611001

193 number in base 10 is:
100 +

10° +
100 =193

Notice that we count the powers of the
base from the least signi
similar in many CPUs;

« Having a numeral system of a base b, the
value of any number composed of digits:

d,d,d,d,

can be described with the formula

d we can use this scheme to any
number system.

0

Operations on binary numbers

icant digit. 1t's

P ——
et et —
00, 01,11, 10 s

Nowreverse it

Oldvall

agw Binary system
« We don't have 0..9, we have only 1 and 0.
« So, let’s have a 8-bit byte: 11000001

1%277 + Positon

Operations on binary numbers

i

The multiplication is analogical, however, there is one * /e can add and subtract binary number

rick:

- Shifting bits by 1 to the
down)

~ Shift to the left » multiply by 2.

ht - division by 2 (rounds

In C/C++, the bit shift operators are >> and
(until they're overloaded by stream operators)

digit-by-digit. The carry will be
encountered more frequently than in
lecimal.
- Note th:
- During subtractic
- Remember that limiting the value to
bits will trim the overflow!
.and subtracting larger value from smaller
one will result in underflow, and the carry
appear until the end of

11
10200110

11611001

u
10100110
- 110021

00,01, 11,10 10,11, 01,00

« Notice that we count the powers of the
base from the least significant digit. It's
similar in many CPUs.

Oid values are starting vt 0

000, 001, 011, 010 |
artfrom 1

000,001, 011, 010 | 110, 11, 101, 100

P]

« Having a numeral system of a base b, the
value of any number composed of digits:

Binary system

« We don't have 0..9, we have only 1 and 0.
* So, let’s have a 8-bit byte: 1100

d, - d,d,d,d,

n be described with the formula:

this scheme to any

0

- - there is one * We can add and subtract binary number
« The multiplication is analogical, however, there is one d
witipl alog| digit-by-digit. The carry will be

more trick:

ncountered mor
decimal.

- Note that 1+1=10, o it's 0 and carry 1.

~ During subtraction it’s 0-1=1 and carry is 1
~ Remember that limiting the value to e.q. 8

bits will trim the overflow!

Operations on binary numbers W! Operations on binary numbers

11
10100110
requently than in + 110011

- Shifting bits by 1 to the right - division by 2 (rounds
down)

“11e11601
- Shift to the left » multiply by 2.

In C/C++, the bit shift operators are >> and <<
(until they're overloaded by stream operators)

.and subtracting larger value fr
one will result in underflow, an
will not disappear until the end
subtracting

om smaller 1111
10100110
- 11011

+
+
=193

ers of the

« Notice that we count the p
nificant digit. It's

base from the least
similar in many CPUs.

Summing up

Having a numeral system of a base b, the
value of any number composed of digits

And we can use thi
number system.

MI!

The multiplication is analogical, however, there is one
more tric

- Shifting bits by 1 to the right — division by 2 (rounds
down)

)
- Shift to the left > multiply by 2.

Operations on binary numbers

In C/C++, the bit shift operators are >> and <
(until they're overloaded by stream operator:

acH

Quite rarely
in’3 digits.

AR, and Ox...is a hex number, Ob... is a binary.
Wihen w robabilstic values, higher-ba
useful as it is possible to represent permutations ¢
inting in these systems.

0

A quick conversion base 10 - base ...

And now we divide without remainder.
Convert 18994 to hex
18994 / 16 18994 % 16 = 2
1187 /16 1187 % 16=3
6 74 %16 =10 (A)
4 % 16 =4

The hex number is:

0

The algorithm:

g
fenation

-is aqualta

acH

« A very popular hexadecimal system, is a base-16. Digits
« Generally, the maximum value of a non-negative are:
integer in binary of bit length n is 2°-1. 3,

Maximum value of byte (8 bits) is then 2 255.
Maximum value of an unsigned word (16 bits) is
then 2:5-1 = 65535.

Notice that OxFF = 255, which is also Ob11111111, and in
modern computers this 8-bit number is a byte.

Quite rarely used octal system, fits to e.g. describe a byte
- 3 digits.
If the value is signed, in modern programming in3 diet
languages it means that there must be a bit(s) Ah, and 0x
for the s .

obabiistic values, higher-base system:

ble to represent permutations or combinations

W! The algorithm: A quick conversion base 10 - base ..
« And now we divide without remainder.
Convert 18994 to hex:

18994 / 16 = 1187 18994 % 16

1187 /16=74 1187 %16

74 /16=4 74 %16 =10 (A)
4 /16=0 4 %16 =4

The hex number is: 0x4A32

i

AG

OK, that was for integers. M"! The algorithm:

can represent a number with o isbem
y siting
The most simple approach: Use some digits for

decimal part:

01010 107102

2137,45

Intocer part

Decimal part

acH

Generally, the maximum value of a non-negative
integer in binary of bit length n is 2°-1.

Maximum value of byte (8 bits) is then 2°-1=255
Maximum value of an unsigned word (16 bits) is
then 2:6-1 = 65535.

If the value is signed, in modern programming
languages it means that there must be a bit(s)
for the sign.

i

The algorithm:

0

* How computer can represent a number with

decimal part

« The most simple approach: Use some digits for
decimal part:

0K, that was for integers.

2137,451

Inteceroart Decimal part

v popular hexadecimal system, is a base-16. Digits
0,1,2,3,4,56,7,89,ABCDEF

Notice that OxFF = 255, which is also 0b11111111, and in
dern computers this 8-bit number s a byte.

Quite rarely used octal system, fits to e.q. describe a byte
in 3 digits.
Ah, and 0x...is a hex number, Ob...is a binary.

Nigher-base systes

When we calculate probabilstc val
useful as it iol o

A quick conversion base 10 - base

And now we divide without remainder.
Convert 18994 to hex:

18994 /16 = 1187 18994 % 16
1187 /16=74 1187 %16
74 /16=4 74 %1

4 /16=0 4 % 16

The hex number is:

MI!

The algorithm:

MI!

Generally, the maximum value of a non-negative
integer in binary of bit length n is 20-1.

Maximum value of byte (8 bits) is then 2-1=255
Maximum value of an unsigned word (16 bits)
65535.

then 2'6-1 =

If the value is signed, in modern programming
languages it means that there must be a bit(s)
n.

The algorithm:

OK, that was for integers.

computer can represent a number with
| part?

« The most simple approach: Use some digits for
decimal part:

09000 10710 10°

2137,451

Inteqer part Decimal part

acH

« Note that a base-10 digit in a decimal part is
usually not exactly a binary value.

« We usually have a fixed number of binary digits
for the remainder.

* It means that there are specific base-10 fixed-point
numbers which will not be reflected perfectly
using fixed-point binary.

eans that further i pogramiming, you should no
ting-point numbers using arbitrary comparisons I
i rolably

Aqn An example

« Convert decimal 37.21 to binary, 8 bits for the
remainder.
Integer 7 Remainder = 21

* 37 in binary is 100101

76 - 1 reached the precision. It's 00110101

i

The most simple - SM (Signed Magnitude): Make
one specific bit (e.g lhe most significant one)

rspam\bla or the si

Itislit (1) -it'sa negatwe It's not lit (0) - the

number is positive.

How about negative numbers?

A small problem: There is "-0" and "+0" and we
cannot do anything with it.

Because we symmetrically "mirror” the range, the
n-bit word has a range:

acH

« Convert decimal 37.21 to binary, 8 bits for the
remainder.

Integer Remainder = 21

37 in binary is 100101

Convert it back

0

00110101 =
0*

0.125 + 0.0625 + 0.00390625

Itis not possible to reflect some values using such
description methods. We ran out of precision.

0

With SM, you have to keep this "minus bit" all time
somewhere and calculate its value additionally. This
is time- and logic-consuming.

Can we store the information about the negative
number somewher

Problem with arithmetic

The solution is 1C system - one’s complement
system.

Let's assume that the most significant bit is a sign
bit (1 - negative), but if a number is negative,
other bits are stored negated.

. Cun\rert decimal 3

,19140625

acH o

« Note that a base-10 digit in a decimal part is
usually not exactly a binary value

« We usually have a fixed number of
for the remainder.

« It means that there are specific base-10 fixed-point
numbers which will not be reflected perfectly
Liing fixedpoint binary.

ary digits

furtnar i prograriming, you she
numbars using arbitrary comparisons i
This may not work relably.

|M|l|l

An example

7.21 to binary, 8 bits for the
remail

Integer

« 371 binary

0.21+

0.42%
4+ o take the % 1)

0.68 *

0.36 *

0.72

1.76 » 1 reached the precision. It's 00110191

AGh
The most simple - SM (Signed Magnitude): Make
one specific bit the most significant one)
responsible for the sign

It s lit (1) - it's a negative. It's not it (0) - the
number is positive.

How about negative numbers?

« Asmall problem: There is "-0" and "+0" and we
cannot do anything with it.

we symmetrically “mirror” the range, the
n-bit word has a range

acH

Convert decimal 37.21 to binary, 8 bits for the
remainder.
nteger = 37 Remainder = 21

NN N

Convert it back

i

0110101 =

o
0
0
1
1
[
1
[
1

*
.
*
.
*
* 1125 + 0.0625 + 0.00390625

Itis not possible to reflect some values using such
description methods. We ran out of precision.

0

With SM, you have to keep this “minus bit" all time
somewhere and calculate its value additionally. This
is time- and lo ming.

Can we store the information about the negative
number somewhere else

Problem with arithmetic

The solution is 1C system - one’s complement
system.

Let's assume that the most significant bit is a sign
bit (1 - negative), but if a number is negative,
other bits are stored negated.

« Convert decimal 37.21 to binary, 8

,19140625

AcH

« Note that a base-10 digit in a decimal part
usually not exactly a binary value.

« We usually have a fixed number of binary digits
for the remainder.

« It means that there are specific base-10 fixed-point
numbers which will not be reflected perfectly
using fixed-point binary.

s hat furthor in programming, you should not comy
t numbors using arbitrary comparisons ik

N2
bits for the
remainder.

Integer = 37 Remainde: 21

37 in binary is 100101

=088-0
1.76 - 1 reached the pre

i

The most simple - SM (Signed Magnitude): Make
one specific bit (e.g. the most significant one)
responsible for the sign.

Itis lit (1) - it's a negative. It's not lit (0) - the
number is positive

How about negative numbers?

A small problem: There is "-0" and "+0" and we
cannot do anything with it.

Because we symmetrically "mirr
n-bit word has a range

the range, the

» Convert decimal 37.21 to binary, 8
remainder.
37 Remainder = 21

bits for the

37 %2

Convert it back

0

00110101 =

0.125 + 0.0625 + 0.00390625 =0,19140625

Itis not possible to reflec
description methods. We

some values using such
ran out of precision.

MI!

With SM, you have to keep tis ‘minus bit all tme
where and calculate its velue additionally. This

s ime- and logle-consurming.

Can we store the information about the negative

number somewhere else?

Problem with arithmetic

The soluton i 1€ system - one's complement

assume that the most significant bit is a sign
bit (1 - negative), but if a number is negative,
other bits are stored negated.

AGH
« Its then easier to perform arithmetic
operations on these numbers:
~ The addition and subtraction can be done
just in columns including the sign bit, Gode Val
however, if we carry beyond the sign bit, gy o
1to'the result.
~ Subtraction is made by adding the bit-
negated value,

0

Now the numbers are out of order!

2 3
w oo on

L oow on
o1 oo on

Floating-point values

AGH
* We theoreticslly can emuate foating point operatons

ge

« The question where o
25 a Sub-prablem then
~ . which takes time!

« Modern computers have a hardware floating point unit
which allows late floating point variables

the decimal point”

* The measure o resuls sp

acH

« If we add 1 after negating the bits in 1C, we will
- Be able to have a negative weight on a sign bit —

arithmetic is a bit easier

- Instead of +0 and -0, the range
accordingly.

- EXAMPLE: For 8-bit byte, it w
127..0..+127, but -127.[0..1

0

System with bi

ill be shifted

. Nanre the order of er\g\v decoded

Let sh\& the values to the left to obtain the

order: 0,1,2,3,4,5,6,

To do it, we have to subtract the specific
con: S.

ant called

To process the values with bias, it is needed to

know:

- The width of the word (in our example 3 bits),
st.

- The bias value -

nﬂl

o IEEE754

a set of representations of numerical values

and symbole”
values.

means how to store numerical

« The number can be described using:

sign - written as a bit,
- A mantissa - written as p bits,

- An exponent written in the rest of bits for a word

« The standard also defines +00, -0

Number” descriptions rarely us

and two ,Not a

d as intended.

acH

« It is then easier to perform arithmetic
operations on these number:
- The addition and umrartmu can be done
the sign bit e Value
a

- Subtraction is made by adding the bit-
negated value

i

Now the numbers are out of order!

o 01 3

00 o0 o oo on
100 100 m oo oot o on
01 10 o1 o0 o

We dorit ha luos and many droquis
‘roudlesome sign decs

i

« We theoretically can emulate floating point operations
with integer operations.
*+ The question where to shift the decimal paint” is solve
sub-problem then.
~ ...which takes time!
+ Modern computers have a hardware floating point unit
which allow ulate fioating point variables.

Floating-point values

« The measure of results “spread” of the same value
representations is a precision. In floating point
arithmetic, we talk about precision as a measure of the

tail

Tt of 10 and 0, the
accordingly.

- EXAMPLE: For -bit byte, it wil be ot
127..0.+127, but -127.0

AaH System with bias

Notice th order of wrongly decoded

values: 4, 5, 6,7, 0,

Let's shift the values to tm left to obtain the

~ The width of the word (in our example 3
- The bias value - here 4 fits best

mmll IEEE754
AGH
+ Is ,a set of representations of numerical values
and symbols” - means how to store num
value
« The number can be described using:
i abit,
- A mantissa - written as p bits,
- An exponent written in the rest of bits for a word.

« The standard also defines +c, -0 and two ,Not a
Number” descriptions rarely used as intended

AcH

* It s then caster to perform arithmetic

operations on th mbe

- The addition and subtrmtmn can be done

Just in colum

however, if w

2dd 10 the r

- Subtraction is made by adding the bit-
negated value

eyond th

NGI! Now the numbers are out of order!
o 0 1z 3
1m0 101 00 000 oo 01 o
w10 0 o1 oo on
o m oo

ing baso10 numbe

i

Floating-point values

qu ‘where to shift the decimal point” is solved
25 & Sub-problem then
ich takes time!
m computers have hardware floating polnt unit
ich al culate g point variables.

f the same value
n. In floating point
measure of the

detail

« Is ,a set of representations of numes

ating the bits in 1C, we will
ative weight on a sign bt -

- Instead of +0 and -0, e ange will be shifted
accordingly.

~ EXAMPLE: For 8-bit byte, it will be not -
127..0..+127, but -127..0..128.

W,
G
+ Notice the order of wrongly decoded
values: 4, 6,7,0,1,
Let's shift the values to the left to obtain the
order: 0,1,2,3,4,5,6,7.
do it, we have to subtract the specific
constant called bias.

o pro
know

s the values with bias, it is needed to

of the le 3 bits),
~ The bias value - here 4 fits b

W! IEEE754

cal values
and symbols” - means how to store numerical

values.

» The number can be described using:

- A'sign - written as a bit,
- Amantissa - written as p bits,

- An exponent written in the rest of bits for a word

o The standard also defines +0, -co and two ,Not

Number” descriptions rarely used as intended.

2137.451 can be written as:
451%10°+ ~ -

Although there is an ambiguity in binary
description too, the value is chosen to fit
into the mantissa part.

Double

. Ifwe nem a better precision:
- 52 bit manti:
-1 b\t for exponent
~ 1 bit for sign

K review of bitwise operators

about 118107 347107

i i there Is lso & double precision (54-5t wide)
numters

0

Additional types

« 80-bit floating-point - internal for floatin
point operations inside Intel's FPU. Called
“Extended precision”.

« Afull 128-bits “long double” - available in
some compilers.

il

« Digital computers store and process information using
binary digits: bits. The operators performed on bits
are performed by the hardware on electric signals.

- HIGH level - usually represents binary 1
~ LOW level usually represents 0,

Bitwise operators

mmon with activation of an
ice can be "Active low”,

means something turns on when the signal is low, not
igh.

which has nothing in
ronic device. The d

And in the electronics. the voltaae levels of

 2137.451 can be= written

"~ exponent
- 213.7451*10'
* Althougn there is an ambiguity in inary

cription t0o, the value is chosen to fit
e the o part.

Double Additional types
« If we need a better precision:
- 52 bit for mantissa
- 11 bit for exponent
- 1 bit for sign

* 80-bit lating-point - internal for foating-
point operations insi s FPI

“Extended precision’

~ Why do we need more precision for
wﬁd\ate results?

e of 80 bits in

to orgar
memory? - uually 119 aligned to handy 96

or 128 bits.

« A full 128-bits “long double’

available in
me compilers

i

Digital computers store and process information using
binary digits: bits. The operators performed on bits
are performed by the hardware on electric signal

- HIGH level - nts binary 1,

- LOW level

Bitwise operators

usually repr
ually represent
quick review of bitwise operators ..which has nothing in common with activation of an
electronic dey The device can be "Active low",

means something turns on when the signal is low, not
high.

+ _.And in the electronics. the voltaae levels of "1" and

Although there is an ambiguity in binary
description too, the value is chosen to fit
into the mantissa part.

Double

« If we need a better precision:
~ 52 bit for mantissa
- 11 bit for exponent
- 1 bit for sign

PART 3: A quick review of bitwise operators

o
the range avout 1187

0

Additional types

80-bit floating-point - internal for floating-
point operations inside Intel’s FPU. Called
“Extended precision”.
- why do
intermediat
- How to organize storage
ory? - usually it is ahgned to handy 96

need more precis
e results?

o128 bits

« Afull 128-bits “long double” - available in
some compilers.

i

Digital computers store and process information using
binary digits: bits. The operators performed on bits
are performed by the hardware on electric signals.

~ HIGH level - usually repre:
- LOW level

Bitwise operators

nts binary 1,

ly represents 0

...which has nothing in comman with activation of an

electronic devic devi be "Active low"
amething turms on when the signal is low, not

...And in the electronics. the voltage levels of "1" and

AGH
A B AANDB
00 o
be 1if and only if all inputs are 1. o ; ¢

The NOT, bitwise complement is a binary
operator that returns the complementary
bit:

a{>o—a

« Two argument AND operator:
The result wil
10 0

-NOT1=0 alal

-NOTO =1

« Typical relations:

X AND y AND z = (x AND v) AND z = X AND (y AND 2
- NOT 0100 = 1011

Notice the leading zero!

« Notice the "ma:

In C++, we negate by !

In logic equations, usually with ~
AND

XOR

W

* The result is 1 if any of the arguments are 1.

I

« Exclusive OR:
1 only if inputs are different
that OR-ing a w

« Notic
allows to set bits without.

« Notice that "masking" use of XOR allows to

flip selected bit values in word. 1 becomes
0, 0 becomes 1 - without prior knowledge
about value of this bit.

XORYORZ=(xORY)ORZ=xOR (y ORZ]

but:

X AND (y OR) AND y) OR (x AND 2))

(|-
The NAND gate

Wl"! Functional completeness of NAND gate:
ANAND 8
« The output is 0 if and only if both inputs
are 1.
« Used very frequently.

« Notice the application of DeMorgan’s law
- A NAND

Ach
A8 AmDE
« Two argument AND operator: 00 o
The result will be 1if and only if all inputs are 1. o 1 o
- 10 0
~NOT1=0 A >o—ax « Typical relation: 111
-NOTO=1 D
X AND y AND 2 = (x AND y) AND z = X AND (y AND 2)

The NOT, bitwise complement is a binary
operator that returns the complementary
b

- NOT 0100 = 1011

Notice the leading zero! « Notice the

sking" usag b
. o
0110 a1 ®

is the 2th bit set?

In C++, we negate by !
In logic equations, usually with ~ or - o110
o010

« Exclusive OR:
1 only if inputs are different

= The result is 1 if any of the arguments are 1
* Noti
allow

that OR-ing a word using "masking"

to set bits without touching any 1: « Notice that "masking"” use of XOR allows to
flip selected bit values in word. 1 becom

- without prior knowledge

XORy OR , 0 becomes 1
about value of this bit.

X OR (y O
but:

A A A © XXORx =0
X AND (y OR 2) = ((x AND y) OR (x AND 2)) So a nice shortcut for zeroing a register

M"! Cates w'“‘;L?;:‘,’JB';: M"! Functional completeness of NAND gate:

ANANDD

« The output is 0 if and only if both inputs 1
are 1.

« Used very frequently.

« Notice the application of DeMorgan's law:
-~ ANANDB = 1AOR 1B
o

Bt

= Eunctinnal ramnlatanacel

A8 A
+ Two argument AND operator: 0o
The result will be 1 if and only if all inputs are 1. o ¢
10
11

The NOT, bitwise complement is a binary
operator that returns the complementary
bit:

o

- NOT 1 cal relations:

- NOT 0

* Typi
X AND y AND z = (x AND y) AND z = x AND (y AND 2)
- NOT 0100 = 1011
otice the zero! the "masking” usage: -
Notice the leading zero <D
0110 - is the 2th bi a—"0 "

In C++, we negate by |
In logic equations, usually with ~ or - o110
o010
0010 it is n

W

« Exclusive OR
1 only if inputs are different

..

« The result is 1 if any of the arguments are 1. E

1

* Notice that OR-ing a word using "masking’ 1
allows to set bits without touching any 1s set. 1 * Notice that "masking" use of XOR allows to
flip selected bit values in word. 1 become:
0, 0 become: hout prior knowledg
about value of this bit.

XORyORZ=(xORY) ORz = x OR (y OR z) ERs

but:

X AND (y OR 2) = ((x AND y) OR (x AND 2))

(|[P— m . _

Fot The NAND gat agn Functional completeness of NAND gate:

» The output is 0 if and only if both inputs 1
are 1. 1

» Used very frequently.

« Notice the application of DeMorgan's law:
- ANAND B

« Functinnal camnlatanacel

AGH AGH 1 AGH AGH AGH AGH

* Generally t'j“ HIGH is only when both SANORE . Many times it is needed to implement the switching. ~ * Generally, the HIGH is only when both A R ANSREL , Many times it is needed to implement the switching, ~ * Generally, the HIGH is only when both A FRAANSRE. , many times it is needed to implement the switching.
and B are LOW. The circuit used to do it is called a multiplexer. and B are LOW. The circuit used to do it is called a multiplexer. and B are LOW. The circuit used to do it is called a multiplexer.

« The 2-input multiplexer will pass the state from * The 2-input multiplexer wil pass the sat + The 2-input multiplexer will pass the state from

+ Also functional comolete: input 1 on s OUEpUL, or the state from mput 2 » Also functional comolete: input 1 on its output, or the state from input 2, s input 1 on its output, or the state from input 2,

depending on a state of input control line. = — depending on a state of input control line. * depending on a state of input control line.

+ Can be made of gate: . :D_Q « Can be made of gates: ;:D,_ « Can be made of gates:
i .

How to remember the state? How to remember the state? Implementation in electro

AGH AGH AGH Ach G
+ The most simple memory circuit is called a flip-flop. + Integrated circuis of 40 or 7400 series contain logic gates + The most simple memory circuit is called a flip-flop m»qmaa circuts of 40vx or 7400 series contain logic gates. « The most simple memory circut s called a Integrated circuits of 40xx o i in logic gates
Can be done using NOR or NAND gat ith various number or inpt Can be done using NOR or NAND gat |5 « Can be done using NOR or NAND gates: with various ”“mbtf or inpuf -

and various output and various output characteristics
a as well as trigg N\ ers, counters,
The negative pulse on /S, toggles multiplexers etc. i ||+ The negative pulse on S, togal The negative pulse on /S, toggles
one state. Another pulse will do - Used even today, as a "glue logic". | > one state. Another pulse will - Used even today, a5 "glue lo 4 5 one state. Another pulse will do
nothing on it. Modern CPUs - logic equation: : = nothing on it. - Modern CPUs - logic equations, i = nothing on it.
The state can be changed only ritten in HDL, are transferred to The state can be changed only | written in HDL, are transferred to 7 The state can be changed only
with a negative pulse on /R - ti the CPU core design. with a negative pulse on /R - then, the CPU core design.] 1 with a negative pulse on /R - then,
the state changes to the oth n is equipped with T the state changes to the other. Then, the design s equipped with the state changes to the other
Always /Q == 1Q. K rid Always /Q == 1Q. Yot d. & Always /Q == 1Q.
This is de‘mned asa =
processor.

How to remember the state? Implementation in electronics Implementation in electronics

Not very cheap/simple/efficient as computer’s e Not very cheap/simple/efficient as computer’s RAM, Not very cheap/simle/efficient as computer’s RAM,
but fast enough to work as some cache! s = but fast enough to work as some cache but fast enough to work as some

] i T

A 1970s CPU contained a few tens of these functional A 1970s CPU contained a few tens of these fur A 19705 CPU contained a few tens of these functional
boards made of 74xx TTL logic chips — boards made of 74xx TTL logic chi boards made of 74xx TTL logic chips
Py 9 gic chip
- On the right - Subtract 11-bit numbers i -bit numbers |8 = - On the nth - Subtrz
ith "carry". i h
- On the bottom, generate a FAULT signal 0
, but the parity | S8 =g Now we can try to build an ALU hen the numb en, but the parity e PART 4: Now we can try to build an ALU er's even, but the = PART 4: Now we can try to build an ALU

II A small bit of history A small bit of history A small bit of history

bit states otherv
(¥ou needed two of th

The adder/subtractor,

- CARRY/overflow generator.
The AND / OR module

The (remaining) multiplexers
The ZERO generating part,

We need the following features:
dd/subtract a 4-bit num
~ AND/OR the 4-bit words
- Be controlled using 2 bits.
- Generate a CARRY, OVERFLOW and ZERO
signals.

W! How to add W! 1-bit adder... M"! How to add bits?

« Single bits « With Carry in (C,)

AB C, A+E CARRY

« Single bits

AB ALD CARRY
0o o

00 o 6o o o
a1 a

ABA+E CARRY

11

This looks ke

T -
XOR gate AND gate AAND B OR C, AND (A XOR 8)

i R

AGH

4-bit adder is just
cascading the CARRY bits
now!

« We need the following features;
- Add/subtract a 4-bit numbers - CAl verflow gener

ontrolled using 2 bits
te a CAl

The adder/subtractor,

The AND / OR module
The (remaining) multiplexers

OVERFLOW and The ZERO generating part,

1-bit adder.
« With Carry in (C,)

Ae A+B CARRY

(ax0RE)

4-bit adder is just
cascading the CARRY bits
now!

0

« Single bits

« We need the following featu
- Add/subtract a 4-bit numbe
- AND/OR the 4-bit wort
- Be controlled using 2 bi
- Generate a CARRY, OVERFLOW and ZERO
signals.

How to add bits?

« With Carry in (C,))

AB G, A+D o

AB A+E | CARRY

0o

01

o

1

o

1-bit adder...

(AXCRB)XORC,

The AND / OR module
The (remaining) multiplexers
The ZERO generating part,

1-bit adder.

it adder is just
cascading the CARRY bits
now!

We know that A - B = A + (-B) We know that A - B + (-B) We know that A- B = A + (-B)

...So if we negate one of the inputs, w el CARRY a1, t il ...So if we negate one of the inputs, we o nl CARRY o 1. it wil work ke 1 ...S0 if we negate one of the input: e il CARRY fo 1, it wil vork ke 1

will get subtraction instead of addition. will get subtraction instead of addition. fhas been added! will get subtraction instead of addition.

In C2, we negate by inverting a bit and A carRY In C2, we negate by inverting a bit and AR carRY In C2, we negate by inverting a bit and

adding one. ad, ¥ o adding one.

Finally’ Finally: f Finally’
A-B=A+(B)=A+(B)+1 ~B=A+(-B)=A+(B)+1 A-B=A+(B)=A+(B)+1

 How to add 1 to our project? 7

i

« Now we will conveniently invert one
of the inputs using a X :

Switching the signals - multiplexer WG"I_! Connecting the dots Switching the signals - multiplexer M"! Connecting the dots M"!

* Now we will conveniently invert one %, Notice that depen
o SWITCH signal, the circuit passes o o of the inputs using a XOR gat ITCH signal, the circuit pas:
1 e Arb A 4 DR SUTTRACTOR states from A or B inputs. e . o states from A or B inputs.
* This way we can introduce control to) e can introduce control to o - « This way we can introduce control to
the ALU. * e u.

+ ...and decide what command the ALU gy + ...and decide what command the ALU .
Addod XOR gaes o will do with input words.

» Notice that depending on the l
SWITCH signal, the circuit passes
states from A or B inputs L

= Now we will conveniently invert one A 5, Notice that depending on the AB swTcn @
of the inputs using a XOR gate: otice that depending o

Switching the signals - multiplexer

and decide what command the ALU
will do with input words.

swrcH g
&8
A
Wl"! OR/AND? Wl"! Building blocks M"!
v

]
« The OR/AND block has the following pins: v e
- A-input.

X

Building blocks
« The OR/AND block has the following pins: |, Mltipleser lock
- A-input
- Brinput - Brinput
ntrol input (1 - AND, 0 - OR) -
- Result output

« The OR/AND block has the following pins
- A-input.
- B-input.
ontrol input (1 - AND, 0 - OR) - Control input (1 - AND, 0 - OR)
- Result output - Result output
« The Adder/subtractor has the following pins: « The Adder/subtractor has the following pins:
- A-input. i - A-input.

« The Adder/subtractor has the follo
- Beinput
- Control input (1 - subtract, 0 - add)

- A-input.
. - B-input
- Control input (1 - subtract, 0 - add)

- Control input (1 - subtract, 0 - add)

AGH b
For ADDER, we can introduce OVERFLOW - when the
operation caused the module to "turn again” like a
mechanical counter. It happens when
- 1Q, AND A, AND B,

ND 1A, AND 18,

0

« This is our "AND/OR" chip. It has a
complete AND/OR as shown in previous
slides.

Let's pack it up!

« This is our Adder-Subtractor chip. It has a
complete Adder/Subtractor with Carry an
Overflow outputs:

i

How are ALUs made?

« There is also an FPU - Floating-point unit
calculating floating-point numbers more
- In older systems (pre Intel 486) FPU
the CPU, as a

acH

« ZERO - which is lit when there is a zero
as the result.

« If it was used in a computer, it can e.g.
indicate an end of a loop which
subtracts a pre-defined variable every
iteration.

« ..or it can redundantly indicate that the
addition of non-zero number resulted in
a specific type of overflow.

his is a final ALU:
« The inputs are just
parallel
« The outputs a
multiplexed.

CTRU CTRL2 Fundion
A0

Thank you for attention

AGH =i
« For ADDER, we can introduce OVERFLOW - when the

operation caused the module to "turn again” like a
mechanical counter. It happens when
~1Q, AND A, AND B,

@m

] ...
gn Let’s pack it upt

« This is our "AND/OR" chip. It has a
complete AND/OR as shown in previous
slid

« This is our Adder-Subtractor chip. It has a
complete Adder/Subtractor with Carry an
Overflow outputs:

I\HHII

. In CPU an ALU is the integral part of the chip. It is
connected to the other parts in the silicon die.
« There is also an FPU - Floating-point unit - for
Iating floating-point numbers more effici
er systems (pre Intel 486) FPU was external to
the CPU, as a separate chip.

How are ALUs made?

« In pre-microprocessor designs,
there is a 4-bit ALU chip: The 74LS181.

RO - which is lit when there is a zero
as the result.

« If it was used in a computer, it can e.g.
indicate an end of a loop which
subtracts a pre-defined variable every
iteration.

« ...or it can redundantly indicate that the
addition of non-zero number resulted in
a specific type of overflow.

I cevs pack e ups

« So this is a final ALU;

« The output:
multiplexed.

CTRLY (CTRL2 Funcion
o A

Thank you for attention

AGH T

« For ADDER, we can introduce OVERFLOW - when the
operation caused the module to "turn again” like a
mechanical counter. It happens when
- 1Q, AND A, AND B,

M"! Let's pack it up!

« This is our "AND/OR" chip. It has a
complete AND/OR as shown in previous
slides.

« This is our Adder-Subtracto
complete Adder/Subtractor with
Overflow outputs:

ip. It has 2

Wo
« In CPU, an ALU is the integral part of the chip. It is
connected to the other parts in the silicon die.
« There is also an FPU - Floating-point unit - for
calculating floating-point numbers more efficient.
D [n?c\ 486) FPU was external to

« In pre-microprocessor designs,
there is a 4-bit ALU chij

« ZERO - which is lit when ther

as the result
If it was used in a computer, it can
indicate an end of a loop which
subtracts a pre-defined variable every
iteration

« ..or it can redundantly indicate that the
addition of ron-zero number resuled in

B e of 0

AGH
this is a final ALU:

« The inputs are just
parallel

« The outputs are
multiplexed.

GTRLT CTRL2 Functian

ADD

sus

Thank you for attention

