mpy

AGH

Introduction to Computer Science
NASM Assembler

Version: 2023

Marek Wilkus, h hitp://home.agh.edu.pl/~mwilkus
P SRy and Incustrint Computer Setonca*
AGH UST Krakow

]

» With growing complexity of software, it was needed
to encode the program the way that it would be
easier to modify o adapt.

Jl‘ Introduction

« The machine-spe
commands have been
described using handy
abbreviations called oo B e
onics. i

* Usually, the mnemoni
had some arguments, like
value to put into the register.
These mnemoni
o

with the

m

Intel CPUs

i

1
1985: Intel 80386:

- 468 of address e, more.

FPU built-n

AGH
Firs programmatie compu
programmed by adapting the
Rardware memory o the program
Usually by plugs or switc

When the program memory became
andor

addresses. —

The programmer had to know what bit alignment do

write it in ¢ ds, then translate It to machine co
n the "console’.

The objective of this lecture

Introduce with general knowledge of Intel
x86 assembler principles,

Present some of problems during assembly
programming,

Show general structure of assembly
programs, and how to make one.

, Intel is not a good assembler to begin
with, but the platform is widely used.

lu"“u Intel architecture

AGH

Lots of backward compatibility.

Quite troublesome because it was never redesigned
from s - it extends previous versions.

The initial arc mracturs had the following registers:
neral- -purpose 16-bit registe
cor b used 20 two 851 AH, AL, BH, BL, etc.
S1 and DI general purpose 1 it registers, for intention
to be used as indexes or pointe

BP and SP poin ers (Base Pointer, St
- CS, DS, E5, S5 segment registers (we will not use them),

u“"uJ Meaotsn Sémiczo-tuicza

AGH . s e nawomie

Introduction to Computer Science
NASM Assembler

Version: 2023

0/ ome,agh-edu.pl mikus
ESEity o Matatirgy and Industriat Camporer
pesiitate i P

Introduction

I

« With growing complexity of software,

to encode the program the way et twould ke
easier to modify or adapt

The machine-specific
command

described using hand
abbreviations called
mnemonic

Usually, the mi
had some arguments, une

value to put intc

These mnemonics were e

with them to form one-line assemb

MHIJ

m mt 705 Ite created 8038 and
registers, 1MB of address spac
1982: Intel 80286

Intel CPUs

more instructions.

instruction

- 1989: Intel 486:

for ORI

AGH
First programmable computers were
prog

hardware memory to the program.
Usually by plugs or switches.

memory, It was p g
program the computer by

to the specific memory
addresses.

The programmer had to know what bit alignment d
wite it in own wrds, then translate it to machiny
enter the commands on the "console’

agn The objective of this lecture
Introduce with general knowledge of Intel
6 assembler principles,
ent some u[problems during assembly
program
Show qenera\ structure of assembly
programs, and how to make one.

Yes, Intel is not a good assembler to begin
with, but the platform is widely used.

i

Lots of backward compatibility.
Quite troublesome because it was never redesigned
from scratch - it extends previous versions.

Intel architecture

The initial architecture had the following registers
- AX, BX, CX, DX - General-purpose 16-bit re
can be used as two 8-bit: AH, AL, BH, BL, et
- Sland DI aenPr;\ purpose 16-bit register:
e us indexes or pointers.

- BPand SP pom[r registers (Base Point

etc.
for intentior

Stack Point

),
S5 segment registers (we will not use them),

()

AGH

Introduction to Computer Science
NASM Assembler

Version: 2025

Marek Wilkus
Eotty ot Metailirgy and Industria

hitp:/ /home.agh.edu.pl/~mwilkus
ot Computer eimes
AGH UST Krakow

agu Introduction
« With growing complexity of software, it was needed
to encode the program the way that it would be
asier to modify or adapt.

« The machine:
commands have beer
described using handy
abbreviations called
mnemonics.

« Usually, the mnemonic
had some arguments, like
value to put into the register.

These mnemonics were expanded
with them to form one-line

I\HIIIU

. mm 05, Intel created 8088 and8086 pr
- 16-bit registers, 1M8 of address space.

« 1982: Tntel 80286
- 16M8 of addres:
8: 6

Intel CPUs

Space, more instructions
3201t protected m
Intel 486

- More address space, more commands
Pentium

-bit registers, FPU built

- Incrementa changes, pon
5, 1997, 199

Nt
parine

er management.

- MMX, 3DNow!, SSE instruction enhancement

+ The pro

AGH

First programmable computers were
programmed by adapting the
hardware memory to the program.,
Usually by plugs or switches

When the program me
andom-access

to the specific memory.
addresses.

rammer had to know what bt signment
write tin own then translate It to machine
e commands on the “console”

code and

The objective of this lecture

i

« Introduce with general knowledge of Intel
x86 assembler principles,
Present some of problems during assembly
programming,

+ Show general structure of assembly
programs, and how to make one.

* Yes, Intel is not a good asser
with, but the platform

nbler to begin
widely used.

Intel architecture

Lots of backward compatibility.
Quite troublesome because it was never redesigned
from scratch - it extends previous versions

The initial architecture had the following registers:
CX, DX - General-purpose 16-bit registers (each
can be used as two 8-bit: AH, AL, BH, BL, etc.)
- Sl and DI general purpose 16-bit re
to be used as indexes or pointer:
- BP and SP pointer registers (Base Pointer, Stack Pointer),
CS, DS, ES, SS segment registers (we will not use them),

s, for intention

AGH
« With 16 bits, you can address 2%
* How they addressed 1MB with its 2-

4k8 of memory!
bits?

* Selector + Offset:
- First group of bits defines a segment.
- Second - offset in that segment.
- This way, both of these numbers cound from 0

Facter again and again as
- For 20-bit addresses, we need 16 bits for off
Bt for Seqment eclertns:

Acu The Assembler
Because we are working directly with CPU's
commands, this is a really fast language.

On the other side, it is more difficult to align a
complex program, it is platform-specific,

pect of being platform-specific is important when

looking for information about solving a specific problem!

There are many assemblers for the same
architecture. They differ by used mnemonics or their
order, or some macro-mnemonics (mnemonics which
are substituted by specific blocks).

@Lﬂw Netwide Assembler (NASM)

An assembler/disassembler for x86-64 architecture.

Operates under Windows, DOS, Linux and a few other

0s,
Outputs object files which have to be tl

Assembler code files traditionally have an .asm
extension.
Object files -.0,

utables in Unix have no extension or have a

n linked into

AGH

« It’s good that we will use a 64-bit assembler in
this course.

« If you program something under 64kB, you don't
neet to think about segment:
« Ifitis larger, you constantly need to make sure
you have chosen the correct segment. If not,
witch back and forth which is troublesome,

acn The assembly process
« First, the mnemonics are detected and translated to
the machine code "object file’

* Then, object files are]omei Dror:zer\v by the linker,
proper headers and de: ons are added and the
executable file you can run is generated,

7

nasm -felf6d program.asm
1d program.o
./a.out

Build the program.asm in Linux:

Or in an one-liner:

nasm -felf64 program.asn; 1d program.o; ./a.out

s 270 bits?

« Selector + Offset:
- First group of bits defines a segment,
- Second - offset in that segment
- This way, both of these numbers cound fi
upwards.
croling throush the memory, the
same for a longer time, and the offset
Taster, again and again 58 sel
~ For 20-bit addresses, we need
bit for segment selecto

bits for offset and 4

536*16=1048576=1M8)

acn The Assembler
« Because we are working directly with CPU's
commands, this is a really fast language.

On the other side, it is more difficult to align a
complex program, it is platform-specific,
ect of being platform-specific is impor

looking for information about solving a specifi

nt when
problem!

There are many assemblers for the same
architecture. They differ by used mnemonics or their
order, or some macro-mnemonics (mnemonics which
are substituted by specific blocks)

i

An assembler/disassembler for x86-64 architecture.
Operates under Windows, DOS, Linux and a few other

Outputs object files which have to be then linked into
the exec.

Netwide Assembler (NASM)

Assembler code files traditionally have an .asm
extension
Object files -.0,

xecutables in Unix have no extension or have a

Aafarlt narmn = muk fouan if thov ara nb acearfinn b

good that we will use a 64-bit assembler in

It
this course.

« If you program something under 64kB, you don't
neet to think about segments.

« Ifitis larger, you constantly need to make sure
you have chosen the correct segment. If not,
switch back and forth which is troublesome.

I@I"J‘ The assembly process.

« First, the mnemonics are detected and translated to
the machine code "object file".
- Note that if you make a mistake, but mnemonics are
correct and their arguments are possible (could be a
total nonsense), there will be no error shown.

« Then, object files are joined properly by the linker,
proper headers and designations are added and the
executable file you can run is generated.

AGn Build the program.asm in Linux:
nasm -felf64 program.asm

1d program.o

./a.out

Or in an one-liner:

nasm -felf64 program.asm; 1d program.o; ./a.out

4k8 of memory!
bits?

* With 16 bits, you can address 2
« How they addressed 1MB with its 2

« Selector + Offset:

- First group of bits defines a segment.

- Second - offset in that segment.

~ This way, both of these numbers cound from 0
upwards.

- Scrolling through the memory, the selector stays the

e t cf < uch

faster, again and again as ectecior slowly increases.

- For 20-bit addre

Agn The Assembler
« Because we are working directly with CPU's
commands, this is a really fast language

On the other side, it is more difficult to align a
complex program, it is platform-specific,

- The aspect of being platform-specific is important when
ing for information about solving a specific problem

There are many assemblers for the same
architecture. They differ by used mnemonics or their
order, or some macro-mnemonics (mnemonics which
are substituted by specific blocks). Y

m

Jw Netwide Assembler (NASM)

An assembler/disassembler for x86-64 architecture.

Operates under Windows, DOS, Linux and a few other

Outputs object files which have to be then linked into

the exec.
Assembler code files traditionally have an .asm
xtension
t files -0,

Executables in Unix have no extension or have a
Aafault mama 2 At (o

vian i tha ara aat arearfine fa

AGH
« It’s good that we will use a 64-bit a;
this course.

« 1If you program something under 64kB, you don
neet to think about segment:

« Ifitis larger, you constantly need to make sure
you have chosen the correct segment. If not,
switch back and forth which is troublesome.

Agw The assembly process
« First, the mnemonics are detected and translated to
the machine code "object file".
- Note th ou make a rmtrﬂ"_. but mnemonics are
correct and their arguments are possible (could be a
total nonsense), there will be no error shown.

« Then, object files are joined properly by the linker,
proper headers and designations are added and the
executable file you can run is generated

Build the program.asm in Linux:

T

nasm -felf64 program.asm
1d program.o

. ./a.out

Or in an one-liner:

f64 program.asm; 1d program.o; ./a.out

0

The program

« Directives - these inform about general
conditions of assembling the program.

Labels - work as a "chekcpoints” in
program’s memory. Program can use their
address (if we label some data) or jump to
them (if we label program’s part).

+ Sections - contain instructions. There
should be a code section and a data
section, as in the example.

W!‘ Intel’s backward compa

of compatibility...

t 16 bits of these are also av
est 8-bits of them can be used
the highest bits are: ah, ch, dh,

AGH

= mov xy - moves y to x. Y can be a constant, register or
memory location. Both operands must be the same size.

« xor x y - xor-5 x with y, writing the output to the x. Like
and, or, .
..but also add or sub ~ add or subtract,

« syscall - a macro! Calls the operating system's routine.
- The routine’s number is stored in ra
~ The arguments may be stored In other regls

« db - declare bytes - put bytes in the memory. The label
works then as bytes’ addre:

T

« We used the following registers: rax, rdi, rsi, rdx.
There are also rcx, rbx, rsp and rbp.

The registers

« There are 16 basic integer registers available, and
the 8 remaining registers are called just 8, 9, r10,
.. r14, r15.

Memory operands

As some command’s operand, we can use data from the
memory. Then, registers hold the address and we instruct
the assembler to obtain dat: e specific memory
location.

« Itis very rare for a command to allow two memory
operands.

« The following operands c
~ [] - arbitrary memory addre:
~ [reg] - the memory addr
- [reg-+x] - base register + displ
= Tran-tren*el - wher > dncn

Labols Instructions _ Oporands.

0

+ Directives - the:

Labels - work as a "chekcpoints” i
program’s memory. Program can use their
address (if we label some da
them (if we label programs

Sections

The program

contain instruction:
should be a code section and a data

section, as in the

i

« Because of compatiblli
9

b

t 8-bit:
And then, the high

Intel’s backward compatibility

ity.
ch of t

of them
est bits are:

RAX /RO

se inform about general
conditions of assembling the program.

AGH *
mov x y - moves y to x. Y can be a constant, register or
ry location. Both operands must be the same size.

XOr X y - X0r-5 X with y, writing the output to the x. Like
and, or, ..

...but also add or sub - add or subtract.

syscall - a macro! Calls the operating system’s routine.
- The routine’s number is stored in rax.

- The arguments may be stored in other registers
db - declare bytes - put bytes in the memory. The label
works then as bytes’ address.

an The registers
We used the following registers: rax, rdi, rsi, rdx.
There are also rcx, rbx, rsp and rt

There are 16 basic integer registers available, and
the 8 remaining registers are called just 8, 9, ri
r14, r15.

agn Memory operands

« As some command's operand, we can use data from the
memory. Then, registers hold the address and we instruct
the assembler to obtain data from the specific memory

very rare for a command
operands.

« The following operands can be used
arbitrary memory address, x is a number
- [reg] - the memory addn in a register
~ [reg-+x] - base register + displacement (offset).
~ frentren

= where 1 when navinatinn

il

Agw The program
« Directives - these inform about general
conditions of assembling the program.

« Labels - work as a “chekcpoints" in
program’s memory. Program can use their
ome data) or jump to
them (if we label program’s part).

« Sections - contain instructions. There
should be a code section and a data
section, as in the example.

il
AGH
« Because of compatibility

~ The lowest 32 bits of each of the:
d , edi, esi

Intel’s backward compatibility

its of them can be used too - al, d, sil et
And then, the highest bits are: ah, ch, dh, bh.

RAX /RO

EAX/ROD

AGH

* mov xy - movesy tox. Y

can be a

memory location. Both operands must be the same size.

© XOr Xy - XOr-S X with y, wr
and, or,
but also add or sub - ad

iting the output to the . Like

id or subtract.

« syscall - a macro! Calls the operating s)
- The routine’s number is stored in rax.

- The arguments may b

« db - declare bytes - put byt
works then as by

The registers

i

red in other registers.

ftes in the memory. The label

* We used the following registers: rax, rdi, rsi, rdx.
There are also rex, rbx, rsp and rbp.

« There are 16 basic integer
the 8 remaining registers
ri4, ris.

T

r registers available, and
are called just 8, r9, r10,

R Re R0 R R RS R RS

Memory operands

mmand's operand, we can use

embler to obtain data from the specific memory

« Ttis very rare for a command
operand:

to allow two memory

« The following operands can be used

- [] - arbitrary memory addre:
- [reg] - the memory addre:

, X is 2 number

- [reg#+x] - base register + displacement (offs:

= Treasrentel - whera

2 @ .or 8 - useful when navinating

0

« inc - increment the register

« emp - compare two operands. The result can be
checked by.

« jne - jump if not equal - jumps to label if
comparison gave "not equal” result.

« ing - jump if not greater than.

Commands used in tl

« resb - reserve one (or more - here 44) bytes
« equ - defines a constant

]
w
B - byte - 1 byte,

‘W - word - 2 bytes,

D - double word - 4 bytes,
Q - quad word - 8 bytes.

Data ,types”

So we can dd, dq, resq, et

Now for the future:
Multi-byte value in registers is described as Little endian,
hile the memory uses Big Endian!

T

Notice we used .bss segment in the
second example, and .data in the first
on:

.bss and .data segments

cota
(ritoized dta)
Generally, the data segment is used
for initialized memory, while bss is
used for uninitialized variables we will
overwrite during program’s execution.

b
(unintiazod data)

uninitialized area
s the memory initializing it

ing arbitrary values to the memory.

* We write
mov [rdx], 10

¥ill nd with

« The assembler does not know what is this
10. Byte? Word? Double? Quad?

* We must show it what size we want:

mov byte [rdx], 10

« There are 5 size soecifiers: bvte. word.

0

nc - increment the register.

+ emp - compare two operan
checked by.

+ jne - jump if not equal - jumps to label if
‘comparison gave "not equal” result.

« jng - jump if not greater than

‘Commands used in this example

The result can be

« resb ~ reserve one (or more - here 44) bytes.
« equ - defines a constant.

]
B - byte - 1 byte,

W - word - 2 bytes,

D - double word - 4 bytes,
Q - quad word - 8 bytes.

Data ,.types”

So we can dd, dq, resq, etc.

Now for the future:
Multi-byte value in registers is d
while the memory uses Big Endian!

ribed as Little endian,

i

Notice we used .bss segment in the
second example, and .data in the first
one.

.bss and .data segments

Generally, the data segment is used
for initialized memory, while bss is
used for uninitialized variables we will
overwrite during program’s execution.

Resb vs db:
- resb reserves uninitialized area.

- db - defines the memory initializing it
with value.

T

* We write:

Mov-ing arbitrary values to the memory

mov [rdx], 10
nd with error.
« The assembler does not know what is this
10. Byte? Word? Double? Quad?
/e must show it what size we want:
mov byte [rdx], 10

« There are 5

size specifiers: bvte.

i

+ inc - increment the register.

+ cmp - compare two operands. The result can be
checked by.

* jne - jump if not equal - jumps to label if
‘comparison gave "not equal” result.

« jng - jump if not greater than.

Commands used in this example

« resb - reserve one (or more - here 44) bytes.
* equ - defines a constant.

0

B - byte - 1 byte,

W - word - 2 bytes,

D - double word - 4 byt
Q - quad word - 8 bytes.

Data .types”

So we can dd, dg, resq, etc.

for the future:

Multi-byte value in registers is described as Little endian,

while the memory uses Big Endian!

0

Notice we used .bss segment in the
second example, and .data in the first
one

-bss and .data segments

Generally, the data segment is used
for initialized memory, while bss is

used for uninitialized variables we will

overwrite during program’s execution =
Resb vs d

~ resb reserves uninitialized area.

- db - def

efines the memory initiali
with value.

T

* We write:
mov [rdx], 10

Mov-ing arbitrary values to the memory

il end v
« The assembler does not know whal
10. Byte? Word? Double? Quad?

* We must show it what size we wan!

mov byte [rdx], 10

« There are 5 size specifiers: bvte, word.

AGH

« However, we can assume the size by the register
size
mov eax, [rdx]

« We know that eax is 4-bytes in width. So we take
4-bytes from location pointed in rdx, and copy
them to eax r

* And now we should remember this endianness
problem

i

« While this overwriting can be used for some
purposes, Intel’s Assembler becomes dangerous as
it allows to do this:

Assembly is dangerous

00 03 24 05 0 0003 05

F:

B A
« Now the memory structui made lost all sense.
« Some architectures just will not let the
progremmer access an X-byte variable for an
address which is not a multiple of X.

i

* To build and run

Using C libraries

nasn -feLf64 -1 count.1st count.asm; occ no-pie -0

few changes:

where the program starts

Remember that in the assembly there are no « However, we can assume the size by the register
safeguards against overwriting one part of size:

memory by another. mov eax, [rdx]

If we declare two 2-byte values and write 4-byte
value in the first one, the leftover 4 bytes will
overwrite the next variable without any warning

We know that eax is 4-bytes in width. So we take
4-bytes from location pointed in rdx, and copy
them to eax register

/03 00 00 And now we should remember this endianness

F problem

Ecx

why programming in assembler requires careful
planning. x

agu Assembly is dangerous

« While this overwriting can be used for some
purposes, Intel’s Assembler b
it allows to do this:

/03 28 05 % 00 0305
.

« Now the memory structure we made lost all sense.

« Some architectures just will not I

programmer
address whicl

T i

* To build and run:

Now a small change Using C libraries

« The result:

count nasn felf64 L count.Lst count.asm; gec -no-ple -o count count.o;

« Notice a few changes;

i

comes dangerous as

il AGH
Remember that in the assembly there are no
safeguards against overwriting one part of
memory by another. mov e, [rdx]
If we declare two 2-byte values and write 4-byte
value in the first one, the leftover 4 bytes will
overwrite the next variable without any warning.

« However, we can assume the size by the register
size:

* We know that eax is 4-bytes in width. So we take
4-bytes from location pointed in rdx, and copy
them to eax register.

o0 0324 05 o0 0300 00 « And now we should remember this endianness

roblem.

p

EC)

That's why programming in a:
planning.

mbler requires car

Using C libraries Assembly is dangerous

i

« While this overwriting can be use;

purposes, Intel’s Assembler becomes dangerous as

it allows to do this:

00 032 05 00 00 03 05
&
AX

« Now the memory structure we made lost all sense.

+ Some architectures just will not let the
programmer an X-byte variable for an
address which is not a multiple of X.

Using C libraries

0

« To build and run:

i

Now a small change ;-)

« The result:

« Notice a few changes:

main 10 got oc know
whete he program stars

AGH

* Remember that in the assembly there are no
safeguards against overwriting one part of
memory by another.

+ If we declare two 2-byte values and write 4-byte
value in the first one, the leftover 4 bytes will
overwrite the next variable without any warning.

/03 205 00 03 00/ 00

&

6x

+ That's why programming in assembler requires careful
planning. ‘

Now a small change ;-) ..

« The result:

The external function used our registers
we were using for something
overwritten its values.

Do we need to use memory?

There i a space for temporarily storing
such data and it is called a stacl

Let’s hold the registers on the stack

Stack requirements

i

« When we call a fu
aligned to the 1

nction, the stack pointer must be
6-byte boundary.

« The stack is aligned before making a call to the
function? Great, but calling a function makes it
out of alignment because it pushes the 8-bit
return address to the stac!

« We have to prepare the stack before using when
functions are called, or we will get the

« There are two operations: push
to the stack and pop from the
stack

+ We can push and pop values and
registers.

« Initially, the stack contains the
program name, argument count
and arguments addresses.

« As in the stack of objects, the last
thing gets in, it goes out first.

Stack pointer

T

« In most architectures, the stack grows ,upwards” -
more items on stack - the higher value of the
pointer to the top.

« In Intel, start of stack is pre-declared and it grows

backwards, means, pushing a 64-bit register into it

results in stack’s top being 8 bytes lower.

« Then the stack pointer (rsp register) decrases.

« The base pointer (rbp register) points to the start
of the stack.

Preparing the stack

AcH
« S0 to use the stack reliably we have to

e
where
somewhere (the beginning
of the stack is a good
point, it is always there!)

- ...50 put a new base B
pointer to the new
beginning of the stack.

1n

« Most external functions work properly only if the

tark ic mada thic wav - ntharwica it mav nat ha

i

« When w
ali

« The external function used our registers
we were using for something and
overwritten its values.

« Do we need to use memory?

« There is a space for temporarily storing
such data and it is called a stacl

Let’s hold the registers on the stack

Notice the order w
push and pop-

Stack requirements

« The stack is aligned before making a call to the
function? Great, but calling a function makes
out of alignment because it pushes the 8-bit
return address to the stacl

* We have to prepare the stack bef

ful

e using when
are called, or we will get the.

call a function, the stack pointer must be
ned to the 16-byte boundary.

AGH

« There are two operations: push
to the stack and pop from the
stack,

+ We can push and pop values and
registers.

« Initially, the stack contains the
program name, argument count
and arguments addresses

« As in the stack of objects, the last
thing gets in, it goes out first.

agn Stack pointer

In most architectures, the stack grows ,upward:
more items on stack - the higher value of the
pointer to the top

In Intel, start of stack is pre-de
backwards, means
results in stack’s top being 8 bytes lower.

Then the stack pointer (rsp register) decrases.

The base pointer (rbp register) points to the start
of the stack.

T

« S0 to use the stack reliably we have to:
- Store the information
stack begins -
Sormebere (the beginning
of the stack s 2 good
point, it is always there
50 put a new base
pointer to the new push rip
beginning of the stack. i

Preparing the stack

« Most external functions work properly only if the
Stark is made this wav - ntharwice it mav not he

ared and it grows
pushing a 64-bit register into it

The external function used our registers
we were using for something and
overwritten its values.

Do we need to use memory?

The space for temporarily storing
S data ana Tt is called 3 stack.

i

Let’s hold the registers on the stack

i

« When we call a function, the stack pointer must be
aligned to the 16-byte boundary.

Stack requirements

« The stack is aligned before making a call to the
function? Great, but calling a function makes
out of alignment because it pushes the 8-bit
return address to the stack.

* We have to prepare the stack before using when
functions are called, or we will get the

AGH

« There are two operations: push
to the stack and pop from the
stack.

* We can push and pop values and
registers.

« Initially, the stack contains the
program name, argument coun
and arguments addr.

« As in the stack of objects, the last
thing gets in, it goes out first.

i

« In most architectures, the stack grows ,upwards” -
more items on stack - the higher value of the
pointer to the top.

Stack pointer

In Intel, start of stack is pre-declared and it grows
backwards, means, pushing a 64-bit register into it
results in stack’s top being 8 bytes lower.

Then the stack pointer (rsp register) decrases.
to the start

The base pointer (rbp register) points
of the stack.

T

* S0 to use the stack reliably we have to:
- Store the information
where the stack begins
somewhere (the beginning

Preparing the stack

point, it is always there!)
- .50 put a new base
pointer to the ne:
beginning of the stack
« Most external functions work properly only if the
mav not he

rack ic made thic wav - atherwice it

After the stack is prepared, it nevertheless would
be wise to make sure there are no solitary push ...
- as It will shift the stack pointer 8 bytes lower, Fi=Foa+Fos (when n>2 of course)
where we want 16.

! I i ive vely
A quick hack is to just push and pop something It can be calculated iteratively or recursively.

else. There is usually something we may want to
ve from messing up by function call, Every next element grows very fast, so it will
overfiow 8 r=g|<t=r aickly:
In the next example, I balanced this problem by
making three stack operations before function call, Parts of this sequen
aligning the misaligned (by 8 bytes) stack with tly in math
8+8+8 bytes. -

Fibonacci sequence

Floating point operations

st ot
thar than cmp!

T

Operation of an FPU

bly has no FPU operations at all.
All FPU operetions have to be performed using a
specific strategy:
- If the operands are in the registers, store them
e, e.g. in the memory.
from the progrem's
the FPU stack

- FPU stack has canacity of 8 onerands.

AcH

After the stack is prepared, it nevertheless would

solitary push
- as it will shift the stack pointer 8 bytes lower,
where we want 16.

A quick hack is to just push and pop something
else. There is usually something we may want to
save from messing up by function call

In the next example, I balanced this problem by
making three stack operations before fu
aligning the misaligned (by 8 byts

8+8+8 bytes.

w

onacci sequence

s wecanjop
depenng
o e thn gl

aqn Operation of an FPU
« Base x86 assembly has no FPU operations at all
« All FPU operations have to be performed using a
specific strategy
~ If the operands are in the registers, store them
Somewhere else, e.g. in the memory.
- Load the numbers from the program’s constants,
data or memory into the FPU st
= Perform the needed operation/operations.
- Pop the results back from the FPU stack
Again, not to registers!
- FPU stack has capacitv of 8 overands.

Fo=Fn2+Fns (when n>2 of course)

It can be calculated iteratively or recursively.

Every next element grows very fas
overflow a register quickly.

Parts of this sequence appears surprisingly
frequently in mathematics, pl

T

i

g point operations

But... why?

AGH

After the stack is prepared, it nevertheles

be wise to make sure there are no solitary push .
- as it will shift the stack pointer 8 bytes lower, Fu=FoztFa: (when n>2 of course)
where we want 16.

A quick hack is to just push and pop something « It can be calculated iteratively or recursively.

else. There is usually something we may want to .

save from messing up by function call * Every next element grows very fast, 5o it will
overflow a register quickly.

In the next example, I balanced this probier by

making three stack oj

aligning the misal gn@d‘ y bytes) stack wi

8+8+8 bytes.

« Parts of this sequence appears surprisingly
frequently in mathematics, physic:

Fibonacci sequence

il

N can jump

0

Base x86 assembly has no FPU operations at all

All FPU operations have to be performed using a

specific strategy

- Ifthe aperands are i th hem
somewtare eiss, ., n the memery

Operation of an FPU But... why?

@

- Load the numbers from the Brogram’s constants,
data or memory into the FPU stack.

- Perform the needed unerammpemmn.~
- Pop the results back from the FPU stack
Again, not to registers!
FPU stack has capacitv of 8 overands.

AGH

« Depending on architecture, 32 or 64 bits.
+ Internally, 80-bits. This allows to truncate
precision errors.
Some rare architectures allow to get wider
registers.
There are multiple floating-point representations
for FPU, CPU and print-like functions and CPU has
instructions to convert between them.
the floating-point number has to be
ific register to make function operate
on it like in a floating-point.

0

Now, when we loaded the data like in the stack,
FPU commands address the same data as
registers.

The most important commands

finit - initialize the FPU,
fld ... - push (load) the number into FPU stack.

fstp - pop the number from the FPU stack storing
real number in the memory (fst will skip popping).
Many arithmetic operands have ,p” suffix which
means -perform the operation and pop the result
from the FPU stack’

T

AGH errors.

the objective is to minimize their influence on the result!

« Typical errors:

computation pros in multiple pa d

each pass adds more detall to the resut, et nm’mldlmr\
2y be prematurely stopped because of time

Toundoff conaraints

FPoor mathematical assumptions (especially in

simulation: Jlet the friction be zero'

Human errors in alq ms

« fsqrt - square roots the STO FPU register.
« fmul - multiplication (fdiv - division)

- One operand - multiply STO by the operand and
store it in STO (operand can be a constant or
memory variable X

- Two operands - multiply numbers by each other,
store in the first one. But one of the operands
must be STO.

- fmulp - pops the stack after multiplication

« fsin, fcos - operate on STO, write to STO
« fadd, fsub - like fdiv, fmul.

7

« Squareroot the

Result:

we ran of precision so
got 1.000000)

AcH

Depending on architecture, 32 or 64 bits.
Internally, 80-bits. This allows to truncate

ecision err
Some rare architectures allow to get wid
register
There are multiple floating-point representations
for FPU, CPU and print-like functions and CPU has
instructions to convert between them.
Sometimes the fioating-point number has to be
put in a specific register to make ion operate
on it like in floating-point.

Ill!“y The most important commands

Now, when we loaded the data like in the stack,
FPU commands address the same data as
registers.

init - initialize the FPU.

fld ... - push (load) the number into FPU stack

fstp - pop the number from the FPU stack storing
real number in the memory (fst will skip popping).
Many arithmetic operands have ,p" suffix which
means , perform the operation and pop the result
from the FPU stack’.

lﬂ“ﬂ Example:

AGH errors.

..the objective is to minimize their influence on the result!
« Typical erro
- Some numbers are not represented properly in the
System (you cannot put an entire 1 into the system!)
You may run out of precision or numbers are
misrepresent
1f the computation program runs in multiple passes, and
each pass adds more detil o the resut the computation
may be prematurely stopped because of time or
roundoff constraints.
- Poor mathematical assumptions (especiall in
nulations!) - like ,let the friction be zero
~ Human errors in algorithms.

I@I"J‘ Arithmetic

« fsart - square roots the STO FPU register.
« fmul - multiplication (fdiv - division)
One operand - mutiply ST by the aperand and
store it in STO (operand can be a cons
memory variable ([..]).
- Two operands - multiply numbers by each other,
. But one of the operands

fmulp - pops the stack after multiplication.
« fsin, fcos - operate on STO, write to STO
« fadd, fsub - like fdiv, fmul.

W

AGH

« Squareroot the
number 28 times (and
we ran of precision so
got 1.000000)

Depending on architecture, 32 or 64 bits.
Internally, 80-bits. This allows to truncate
precision errors.

Some rare architectures allow to get wider
registers.

There are multiple fioating-point representations
for FPU, CPU and print-like functions and CPU has
instructions to convert between them.

Sometimes the floating-point number has to be
put in a specific register to make function operate
on it like in a floating-point.

i

Now, when we loaded the data like in the stack,
FPU commands address the same data as
registers.

The most important commands

finit - initialize the FPU.
fld ... - push (load) the number into FPU stack.

fstp - pop the number from the FPU stack storing
real number in the memory (fst will skip popping)
Many arithmetic operands have ,p" suffix which
means ,perform the operation and pop the result
from the FPU stack

Example:

AGH errors.
« ...the objective is to minimize their influence on the result!

« Typical errc
- Some numbers are not represented properly
System (you cannot put an entire 7 into the system!)
jon or numbers are

m runs in multipe passes, and
s adds more detail to t} I, the computation
may be prematurely stopped because of time o
roundof
ssumptions (especially in
- like ,let the friction o
in algorithm

i

« fsqrt - square roots the STO FPU register.
o fmul - multiplication (fdiv - division)

- One operand - multiply STO by the operand and
store it in STO (operand can be a constant or
memory variable ([..]).

- Two operands - multiply numbers by each other,
store In the first one. BU one of the operands
must be STO.

~ fmulp - pops the stack after multiplication

« fsin, fcos - operate on STO, write to STO
« fadd, fsub - like fdiv, fmul.

Arithmetic

!

+ Squareroot the
number 28 times (and
we ran of precision so
got 1.000000)

w Result:

AGH
« Initialize the stack to point at proper boundary:

epare t k

« Because we're dealing with floating point numbers,
tf expects the data in the xmm0 wide

0

The FPU is externally filled/emptied as a stack.
The numbers can be internally processed as a set
of registers.
However it is implemented as a set of shift
registers holding 80-bit numbers at once.
It means that if we load (fid) two numbers, always
the last one is the STO
Now: while it is possible to ,shift left” th
the previously pushed value, pu
next would result in the value trying to be v
over the STO.

is will shift the stack properly, but destroy
the STO cantent 5

Stack or register?

mmm Other useful instructions

AGH

FABS - Absolute value of STO

FCHS - Change sign of STO

FRNDINT - Round STO to integer

FINIT used after another FINIT - resets the FPU
totally, including clearing the stack.

FYL2X - 2-base logarithm: ST1=ST1*10g:(ST0)

FCOM - Compare 2 operands, at least one must be
ST.

« In the main calculation, we convert everything
from/to qword to get rid of FPU’s precision errors:

e
fornat

ac SO one more time

« FLD - Load into the STO - previous STO becomes
ST, ST1 becomes ST2 etc.

« FILD - Load to STO as integer.
~ FLDPI - load Pi to STO.

« FST - Store the STO into the operand (memory
address or ST register)

« FSTP - As above, but pop the STO from stack.

« FIST - FST, but converts the number to integer.

« FISTP - As above, but pops the value.

lumm FCOM considerations

AGH

« The comparison is in the FPU, and the code is
executed by the CPU.

« Itis needed to transfer the result of comparison
from FPU status register to CPU's status register:

0 AX

AGH
« Initialize the stack to point at proper boundary:

T sk rhp
nov_rbp, rsp ; pre
Because we're dealing with floating point numbers,
now printf expects the data in the xmmo0 wide
(128bit) register:
i e, o tuser

Stack or register?

I

The FPU is externally filled/emptied as a stack
The numbers can be internally processed as a set
of registers

However it is implemented as a set of s
registers holding 80-bit numbers at once.

It means that if we load (fid) two numbers, always
the last one s the S

Now: while it is possible to ,shift left” the stack to
the previously pushed value, pushing any value
next would result in the value trying to be written
over the STO

This will shift the stack properly, but destroy
the STO contents!

lﬂ”! Other useful instructions

FABS - Absolute value of STO

FCHS - Change sign of STO

FRNDINT - Round STO to integer

FINIT used after another FINIT - resets the FPU
totally, including clearing the stack.

FYL2X - 2-base logarithm: ST1=ST1*0g:(ST0)

H_UM - Compare 2 operands, at least one must be

In the main calculation, we convert everything

from/to qword to get rid of FPU's precision errors:

ovsd quor

Constants

i

FLD Load into the STO - previous STO becomes

a

dsta

So one more time

ST1 becomes ST2 etc.

FlLD - Load to STO as integer.

= FLDPI - load Pi to STO.

1 aw

and data for FPU operation:

FST - Store the STO into the operand (memory
address or ST register)
FSTP - As above, but pop the STO from stack.

FIST - FST, but converts the number to integer.
FISTP - As above, but pops the value.

T

« The compari

FCOM considerations.

executed by the CPU.

o Itis needed to transfer the result of comparison
CPUs

from FPU status reg

om
f>:>w ax

on is in the FPU, and the code is

egister:

j store FPU's status reister to AX

; store AH register to

CPU flags

« Initialize the stack to point at proper boundary:

push rbp

floating point numbes
the xmm0 wide

now printf expe
(128bit) register:

i

The FPU is externally filled/emptied as a stack
The numbers can be internally processed as a set
of registers.
However it is implemented as a set of shift
registers holding 80-bit numbers at once.
It means that if we load (ld) two numbers, alw,
the last one is the STO

low: while it Is possible to ,shift left” the stack to
the previously pushed value, pushing any value
next would result in the value trying to be written
over the STO.

s will shift the stack properly, but destroy

lhe STO contents!

0

FABS - Absolute value of STO

FCHS - Change sign of STO

FRNDINT - Round STO to integer

FINIT used after another FINIT - resets the FPU
totally, including clearing the stack

Other useful instructions

FYL2X - 2-base logarithm: ST1=ST1*l0g:(ST0)

FLOM Compare 2 operands, at least one must be

» In the main calculation, we convert everything

from/to gword to get rid of FPU's precision errors

i

« FLD - Load into the STO - previous STO becomes
ST, ST1 becomes ST2 etc.
o FILD - Load to STO as integes

So one more time

« FST - Store the STO into the operand (memor
address or ST rex

« FSTP - As above, but pop the STO from stack.

« FIST - FST, but converts the number to integer.

« FISTP - As above, but pops the value

T

FCOM considerations

* The comparison i Inthe FPU, and the code is

executed by the Cl

« Itis needed to lransfer the result of comparison

from FPU status register to CPU's status register

n ;compare
fstsw ax ; store FPI tus register to AX
sahf | store AH register to CPU flags

SSE Extension

XMM registers

 128-bit wide,

« Initially 8, in 64-bit architecture 16 of
them,

Can keep 4 32-bit floats,

In SSE2, itis also ble to keep and
process two 64-bit doubles, two 64-bit

« Streaming SIMD Extensions.
« Introduced in 1999 with Pentium III processor.
« Allows to perform opreations on 4 floats at once
(d in a 128-bit special XMM register:
Or 2 doubles, or 2 floats stored as double:

SSE Extension
« Application:

- Multimedia (en/decoding),

- Signal processing (SSE2 has DSP instructions)
- 3D graphics,

- Scientific computation,

0

XMM registers

are two kinds of instructions:
- Packed - perform the same operation on each of the
number in packed register (example: MULP

128-bit wide,
them,

Can keep 4 32-bit floats,

« Initially 8, in 64-bit architecture 16 of

AGH

Streaming SIMD Extensions.

Introduced in 1999 with Pentium TIT processor.
Allows to perform opreations on 4 floats at once
(packed in a 128-bit special XMM registers)

- Or 2 doubles, or 2 floats stored as doubl

« Applications:
- Multimedia (en/decoding),
- Signal processing (SSE2 has DSP instructions)
- 3D graphics,
Scientifi putation,

i

+ There are two kinds of instructions:
- Packed - perform th
number in pac}

SSE instructions

me operation on each of the
(example: MULPS;

i

SSE Extension

XMM registers

* 128-bit wide,

« Initially 8, in 64-bit architecture 16 of
them,

!

AGH

Streaming SIMD Extensions.
Introduced in 1999 with Pentium III pr

Allows to perform opreations on 4 floats at once

- Or 2 doubles

or

2 floats sto

- Multimedia (en/decoding),

- Signal processing (:

D graphics,

entific computation,

)

SSE instructions

2 has DS

as doubles.

SP instructions)

« There are two kinds of instructions:
- Packed - perform
number in pa

the same operat

on each of th
mple: MULPS),

In SSE2, it is also possible to keep and
ocess two 64-bit doubles, two 64-bit

integers or four 32-bit integers.

More rarely, it is possible to keep 8 16-bit

integers or four 32-bit integer
More rarely, it is possible to k
integers or 16 8-bit integers.

Can keep 4 32-bit floats,

In SSE2, it is also possible to keep and
process two 64-bit doubles, two 64-bit
integers or four 32-bit integer:

]

SSE: Example

integers or 16 8-bit integ

l‘Ulllly SSE: Result: : Example

ih a single command,

T

SSE: Result

“Two floating point numbers

p—

0

More rarely, it is possible to keep 8 16-bit
integers or 16 8-bit integers.

SSE: Example

w

I

w SSE: Result:

G

0

o floating point numbers ot multplied with a single command.

wutps

AGH

AGH

AGH T = aGH T T AGH

AGH
« It is needed to pack and unpack values * MULPS, MULPD - packed multiplication.

» It is needed to pack and unpack values * MULPS, MULPD - packed multiplication
before/after executing SSE instructions. © MULSS MULSD - scalar multiplication.

before/after executing SSE instructions. * MULSS MULSD - scalar multiplication
« ADD[P/S](S/D] - addition. « ADD[P/S][S/D] - addition.

« SUB[P/S[S/D] - subtraction. * The types must be maintained all time. « SUB[P/SI[S/D] - subtraction

« It is needed to pack and unpack values * MULPS, MULPD - packed multiplication.
before/after executing SSE instructions. « MULSS MULSD - scalar multiplication.
= ADD[P/S][S/D] - addition.
« SUB[P/S][S/D] - subtraction

« The types must be maintained all time.

« The types must be maintained all time.
- However, you can use e.g. double-based

calculus for floats if you align them properly.

- There are instructions for aligned and
unaligned data (like movaps/movups for
aligned/unaligned singles). This way it is
possible to align singles the way that they
are considered as doubles

SSE: Packing/unpacking

« MOVUPS/MOVUPD - move unaligned data
as floats/doubles.

MOVAPS/MOVAPS - move aligned data as
floats/doubles.

« UNPCKHPD - Unpack higher double
« UNPCKHPS - Unpack higher float
* UNPCKLPD/UNPCKLPS - a similar one.

AcH

SQRT([P/S][S/D] - Square root.
- WARNING: SQRT..S is guaranteed to work

all time. The double operations are available

in newer CPUs (>=Pentium 4).

Thank you for attention

- However, you can use e.g. double-based -

calculus for floats if you align them properly.

- There are instructions for aligned and
unaligned data (like movaps/movups for
aligned/unaligned singles). This way it is
possible to align singles the way that they
are considered as doubles

SSE: Packing/unpacking

MOVUPS/MOVUPD - move unaligned data
as floats/doubles.

MOVAPS/MOVAPS - move aligned data as
floats/doubles.

UNPCKHPD - Unpack higher double
UNPCKHPS - Unpack higher float
UNPCKLPD/UNPCKLPS - a similar one

AGH

SQRT[P/S][S/D] - Square root.

- WARNING: SQRT..S is guaranteed to work

all time. The double operations are available

in newer CPUs (>=Pentium 4).

Thank you for attention

However, you can use e.g. double-based
calculus for floats if you align them properly.
- There are instructions for aligned and
unaligned data (like movaps/movups for
aligned/unaligned singles). This way it is
possible to align singles the way that they
are considered as doubles.

i

acking/unpacking

MOVUPS/MOVUPD - move unaligned data
as floats/doubles.

MOVAPS/MOVAPS - move aligned data as
floats/doubles.

UNPCKHPD - Unpack higher double
UNPCKHPS - Unpack higher float
UNPCKLPD/UNPCKLPS - a similar one.

SQRT[P/S][S/D] - Square root.

- WARNING: SQRT..S s guaranteed to work
all time. The double operations are available
in newer CPUs (>=Pentium 4).

Thank you for attention

