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Abstract. Ant Colony Optimization (ACO) is an acclaimed method
for solving combinatorial problems proposed by Marco Dorigo in 1992
and has since been enhanced and hybridized many times. This paper
proposes a novel modification of the algorithm, based on the introduction
of a two-dimensional pheromone into a single-criteria ACO. The complex
structure of the pheromone is supposed to increase ants’ awareness when
choosing the next edge of the graph, helping them achieve better results
than in the original algorithm. The proposed modification is general and
thus can be applied to any ACO-type algorithm. We show the results
based on a representative instance of TSPLIB and discuss them in order
to support our claims regarding the efficiency and efficacy of the proposed
approach.
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1 Introduction

Many efficient optimization algorithms are based on some kind of learning pro-
cess (e.g., pheromone deposition in Ant Colony Optimization (ACO) or direction
change towards the current best global solution in Particle Swarm Optimiza-
tion). Modern research related to optimization algorithms (especially in the field
of evolutionary algorithms) usually focuses on elitist approaches. In particular,
the most popular variants of ACO learn only from the most generated feasi-
ble solutions, and the information collected is stored in a very simple structure
[7,1,13,6].

The aim of our research was to extend the Ant Colony Optimization algo-
rithm to extract knowledge from more than only the top candidate solutions,
store it in a more comprehensive form than the standard pheromone table, and,
presumably, improve optimization results. Our previous research [11,12] showed
that allowing more solutions to improve pheromone trails improves the quality
of the final results. However, the classic pheromone model is too simple to prop-
erly encode and interpret information from all feasible solutions, thus, we want
to extend its structure to make it more meaningful. Using such an approach,
the algorithm is able to make better use of computational effort dedicated to
preparing feasible solutions and also to gain more information from negative ex-
amples. We believe that this kind of approach would increase the diversity of the
search, allowing better solutions to be found in shorter time than the reference
algorithms.

Multi-dimensional pheromone is an idea already present in the literature,
see, e.g. [10,9], however these works are very closely related to the discussed
applications (e.g. Vehicle Routing Problem when the authors actually save the
local optimization outcomes, very valuable for undertaking the decisions when
looking for global solution) and our idea is to propose general algorithms aimed
at solving global and multi-criteria optimization problems with ACO.

This research stems from our works on metaheuristics summarized in [2] from
the substantial point of view and in [8] from the technical point of view. Further
sections of this paper focus on related work regarding Ant Colony Optimization,
description of the idea of two-dimensional pheromone in ACO and discussion of
the experimenal evaluation of this idea followed by the conclusions and future
work.

2 Ant Colony Optimization

The first version of ACO was introduced by Marco Dorigo [4] to solve the Trav-
eling Salesman Problem (TSP). The algorithm was inspired by the behavior of
natural ant colonies and the way they share their knowledge. ACO as a meta-
heuristic algorithm was described a few years later by Dorigo and Caro [5].

The single-objective ACO meta-heuristic algorithm expects the optimization
problem to be specified as a graph consisting of a finite set of components (ver-
tices) connected by edges with assigned cost. A valid solution is a path that
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respects the restrictions posed and meets the requirements defined by the prob-
lem. The cost of a solution is defined as a function of all the costs of all the
connections that make up the path. The optimal solution is the valid path with
a minimum cost.

The optimization process is based on a population of ants (agents). They
iteratively traverse the graph creating candidate solutions. In each iteration,
each ant starts from an initial vertex, which can be selected randomly, as in
TSP or can be specified by the problem, as in VRP. A probabilistic decision rule
(see Eq. 1) is a basis for the ant’s decision regarding selection of the next vertex.
The rule takes into account the heuristic attractiveness value and the values of
pheromone trails left on the edges by previous generations of ants. The heuristic
attractiveness (also referenced as desirability) is a function that describes the
chances (based on optimization objectives) that the edge will be part of a high-
quality solution. For example, in the case of TSP it can be defined as an inverted
length of the edge. The pheromone trails indicate how often previous solutions
contain specific edges.

The probability of moving from the vertex i to the vertex j of the ant k
in iteration t is based on τij(t) the intensity of the trail of pheromones at the
edge and ηij(t) the heuristic attractiveness of the edge. The parameters α and
β control the relative importance of the trail versus heuristic information. The
value is relative to the values in all other possible moves Ak.

The probabilistic decision rule is defined as follows:

pkij(t) =


τα
ij(t) η

β
ij(t)∑

l∈Ak
τα
il(t) η

β
il(t)

if j ∈ Ak

0 otherwise
(1)

The tour ends when a complete feasible solution is found.
Based on the constructed paths, the ants update the pheromone trails. In

the classic Ant System (AS) version, the update is performed at the end of each
single iteration, controlled by parameters ρ ∈ [0, 1) – a pheromone persistence
coefficient, and m – the number of ants, according to the following formula:

τij(t+ 1) = ρτij(t) +

m∑
k=1

∆τkij (2)

The value of pheromone update for each ant, with the cost of the solution
Lk and a constant Q, is defined as follows:

∆τkij =

{
Q
Lk

if k-th ant uses edge (i, j)

0 otherwise
(3)

where, in the case of TSP, the cost of the tour is simply the length of the
route and Q often equals 1.

Since the first version of the ACO algorithm, multiple variations have been
proposed to further improve its effectiveness and performance. One type of such
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a variation is based on introducing modifications to the original sequential al-
gorithm but without introducing parallelism or distribution. Elitist Ant System
(EAS, [7]) modifies Eq. 2, allowing only some ants with the best solutions to up-
date pheromone trails. The rank-based Ant System (ASRank, [1]) is similar to
EAS but weights the update left by the specific solution by its rank, so that the
best solution modifies the trail most, while the second best modifies it slightly
less, etc. Max-Min Ant System (MMAS, [13]) introduced the idea of minimum
and maximum bounds of the pheromone trail value that are regularly enforced
after performing standard pheromone modifications based on solutions found
and evaporation. Ant Colony System (ACS, [6]) proposed two modifications:
sometimes allowing an ant to choose the best option available as the next step
instead of following the probability formula – Eq. 1 and the so-called local up-
date, that is, decreasing the pheromone value, similar to standard evaporation,
right after choosing a specific edge when creating a solution.

The most popular variants of ACO tend to reduce the importance of many
solutions produced by the ants in each iteration, or even completely ignore most
of them. In this way, they force the ants to focus on the most promising solutions.
Although such an approach is natural, it wastes a lot of computational effort. In
fact, it does not extract any knowledge from the rest of the proposed solutions
[11].

3 Two-dimensional pheromone for Ant Colony
Optimization

Despite multiple popular versions of the ACO algorithm, none of them aims at
achieving effective knowledge extraction from all feasible solutions. One of the
most popular variants of ACO — the Max-Min Ant System [13] – uses only one
solution (iteration or global best) to update pheromones. In a colony with 25
ants, this approach discards 96% of the collected data. The experimental results
of our previous research showed that larger colonies and more solutions used for
the pheromone update improve the final results [11].

To collect more complex information about the feasible solutions created
so far, we propose a two-dimensional pheromone structure. Each edge in the
graph representing the problem will be connected not with a single value of the
pheromone trail strength, but with multiple values representing pheromones left
by various feasible solutions. This modification requires novel strategies for the
three main components of the ACO algorithm: handling the solutions in the
repository, updating the two-dimensional pheromones, and interpreting them
during the solution construction.

We actually plan to apply the two-dimensional pheromone for solving mul-
ticriteria problems; however, now we would like to apply this idea to increasing
the efficiency and efficacy of the single-criteria ACO. Therefore, we introduce
many values for the pheromone deposited on the particular edge, and the idea
for updating those values closely connects them with a certain order of the so-
lutions produced by the ants. The path with lower cost will be marked closer
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to the ”top” value in the pheromone, and worse paths will be marked ”lower”.
Therefore, we may include information about not only the best solutions found
by ants, but also a wider range of them. Thus, the ant choosing its next step
may have much more information than the ant perceiving only the best solution
(or actually the solutions gathered in the form of pheromone marking); see Fig.
1.

The problem graph representation

The ant chooses the edge based on the attractiveness and 
the information encoded in the two-dimensional pheromone, 
updated grouping the solutions found by many other ants

Fig. 1. Idea of functioning of ACO using 2D pheromone. The ants have more informa-
tion than in the previous versions of ACO to use, i.e. vector of pheromones instead of
a single value.

3.1 Depositing the pheromone

In the standard approach (let us call it a one-dimensional pheromone), each edge
is associated with a single pheromone value that represents how often this edge
was used by the solutions found so far by the colony (usually taking into account
only the top solutions). Its value is usually modified by two mechanisms:

– After each iteration, it decreases by some percentage (extinction) (the so-
called pheromone evaporation or extinction),

– if the edge is part of the solution selected for the pheromone update, it
increases by some particular value (increment).

In the two-dimensional pheromone, each edge is instead associated with a
set of twoDimPheromoneSize values instead of just a single value. Therefore,
we have to adjust the above mechanisms to this condition. For this, we need to
have a context to evaluate a specific solution with respect to others. Therefore,
multiple solutions (possibly all generated by the specific iteration) are passed to
the pheromone update procedure and divided into groups based on their evalu-
ation, and each group updates a single value in the two-dimensional pheromone
(see Fig. 2).
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At the edge the classic 
mechanism of evaporation occurs 
with proper adaptation.

According to the classic 
approach, the amount of the 
pheromone left is proportional to 
the heuristic function (based on 
total solution cost).
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Pheromone value

The best solutions.

The worst group of solutions

The ant with a solution from 
the 4th group deposits 
pheromone here.

The value is related to the 
number of ants that passed 
along this edge who created 
one of solutions of a certain 
range (group).

edge

Fig. 2. Structure of the 2D pheromone.

Grouping is done in one of two ways (update types):

– PartFromEvaluation (PFE) — the cost range covered by the solutions is
divided into twoDimPheromoneSize equal subranges and each solution is
assigned to the i-th subrange according to its cost,

– PartFromIndex (PFI) — the solutions are sorted and divided equally into
twoDimPheromoneSize groups of equal (or almost equal) sizes.

Once the solutions are divided into groups assigned to one of the values of the
two-dimensional pheromone, each group updates their part of the pheromone.
The value of increment (the algorithm parameter) is divided by the size of the
group and the result value is added to the current pheromone value for each
solution of the group that contains this edge.

The pheromone extinction is simply applied to all pheromone values for each
edge in the same way as for the one-dimensional pheromone.

3.2 Interpreting the pheromone information

For a one-dimensional pheromone, the value for the specific edge is inserted
directly into the formula 1. In the case of two-dimensional pheromones, we have
a set of values instead. The simplest way to bring that to the standard ACO
version is to combine these multiple values associated with the specific edge to
a single value in some way and put that into the aforementioned formula as if it
were the value of a one-dimensional pheromone.

We propose three versions (interpretation types) of reducing multiple values
of the pheromone to a single one:
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– ExponentialRandom (ER) – from the available values, we choose a single
one in such a way that the value updated by the best solutions is taken 50%
of the time, the second value is chosen 25% of the time, the next one is taken
half as often, and so on,

– WeightedCombination (WC) – the final value is calculated as the weighted
product of the values where the first value is assigned the weight of 0.5, the
second one – 0.25 and so on (the last two ones are assigned the same weight
so that the weights sum up to 1,

– PairingCombination (PC) – this method pairs up the values from the out-
side towards the center (assuming that twoDimPheromoneSize is even).
For each pair, we consider the first one as ”positive” (updated by better
solutions) and the second one as ”negative” (updated by worse solutions),
calculate their average and difference, multiply the difference by the decreas-
ing index of the pair (so that the difference is reinforced the most for the
extreme pair, i.e., the first and last value of the pheromone, and the least
for the ”middle pair”) and add the average to that. Finally, we compute
the average of such values calculated for the pairs. Since this method does
not ensure that the ultimate value is within reasonable limits, we ensure
that it does not exceed maxV alue and the current minimum value of the
pheromone (maxPhV alue ∗ (1− extinction)iterationsSoFar).

4 Experimental evaluation

In order to evaluate the proposed modifications to the ant colony optimization
Algorithm, a new testing framework has been developed, and a series of experi-
ments have been conducted using it.

4.1 Testing framework

The testing framework developed for the purpose of this research was created
from scratch and is written in Scala. It is designed to represent the algorithm
as an extensible model that contains interchangeable components. With that we
aim to support not only running various (including new, experimental) versions
of the Ant Colony Optimization algorithm but also solving different types of
optimization problem.

For now, the framework supports a standard ACO version as described earlier
in the document (called Basic) and the new version that uses the proposed two-
dimensional pheromone in a few variants, in lieu of the usual ”one-dimensional”
pheromone. As of now, it is possible to solve TSP, MTSP and CVRP opti-
mization problems, and the research presented here is focused on TSP based
on popular benchmarks available from the TSPLIB database. For the sake of
clarity, the framework does not apply any local optimizations (e.g. 2-opt) to the
created solutions yet.

The framework allows for setting the following common parameters:

– repeat – the number of repeated runs for each specific configuration,
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– iterationsNums — the number of iterations of the algorithm,
– minPhV alue — the minimum value of the pheromone,
– maxPhV alue — imposed maximum value of the pheromone,
– antsNum — the number of ants in the colony,
– α — pheromone power in the probabilistic decision rule,
– β — heuristic value power in the probabilistic decision rule,
– pheromoneType — Basic or TwoDim – choice between the standard ”one-

dimensional” and the experimental two-dimensional pheromone,
– increment — the value used for the pheromone update increment,
– extinction — pheromone extinction fraction,
– updateNum — the number of the best solutions passed to the pheromone

update procedure (with -1 meaning all the solutions from the iteration).

When pheromoneType is set to TwoDim, there are a few more parameters
that can be set:

– twoDimensionalPheromoneSize – the number of values associated with a
single edge,

– interpretationType – ExponentialRandom,WeightedCombination, or PairingCombination
– choice among variants of the two-dimensional pheromone interpretation

– updateType – PartFromEvaluation or PartFromIndex – choice between
variants of the two-dimensional pheromone update type.

It is possible to define a set of values for each of the parameters and run each
combination of those possibilities.

4.2 Experimental results

In order to evaluate the potential of our proposed modification of the ACO algo-
rithm, we have conducted a wide range of experiments with various combinations
of algorithm parameters for a single optimization problem – namely Berlin52
from TSPLIB.

In Figures 3 and 4, we can see the results grouped by the number of ants in
the colony for the types of pheromones Basic and TwoDim, respectively. They
show an important difference between these two types. Since the pheromone does
not influence the algorithm much at the beginning, we can see that they both
start similarly, giving better results for more ants (better exploration, better
chance of finding a better solution). However, in the case of Basic, it ends up
giving worse final results for larger colonies, which might be interpreted as a
faster fall into some local minimum. On the other hand, in the case of TwoDim,
the results are consistently better for larger colonies for all iterations from the
beginning to the very end. It might be interpreted as a sign of more effective
knowledge extraction from solutions proposed by the ants. It is also worth noting
that even for 20 ants, the average for two-dimensional pheromone is better than
Basic.

Looking closer at the results generated for various combinations of param-
eters, we have concluded which values of some basic parameters seem to work
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Fig. 3. Average results for various number of ants - algorithm with basic pheromones.

best, that is, 100 ants, both α and β set to 3.0, and pheromones increment and
extinction set to 0.05. In Figure 5 we show average results for some selected
combinations of twoDimPheromoneSize and interpretationType from among
the runs with the basic parameters set as mentioned above. As we can see, we
get the best results for 20 and ExponentialRandom and the worst results for
20 and PairingCombination which also shows very poor convergence.

In Table 1 we list the top configurations based on the results achieved in the
last iteration. Each line of the table contains the score for the specific config-
uration that was calculated as an average from 20 repeats. The abbreviations
of the parameter names and values have the following meanings: Inc. – incre-
ment; Ext. – extinction; UN – update solution number; TDS – Two-Dimensional
Pheromone Size; InterpT. – Interpretation type; UpdateT. – update type; PC –
Pairing Combination; ER – Exponential Random; WC – Weighted Combination;
PFE – Part From Evaluation; PFI – Part From Index. Based on what can be
seen in the table, we make the following observations:

– vast majority of configurations have 100 ants in the colony,
– both α set to 2.0 and 3.0 are popular, β is usually set to 3.0,
– most configurations have increment and extinction set to 0.05,
– interpretationType set to ExponentialRandom dominate the table, but

both WeightedCombination and PairedCombination also show up,
– updateType is always set to PartFromEvaluation, which is in alignment

with our observation that PartFromIndex gives good results during the
optimization but does not converge to them towards the end,

– Basic appears only once, roughly in the middle of the table, and uses only
a single best solution from each iteration for pheromone update.
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Table 1. Average last iteration results from 20 repeats (berlin52)

Ants α β Pheromone Inc. Ext. UN TDS InterpT. UpdateT. Avg. score

100 2 3 TwoDim 0.05 0.05 50 20 ER PFE 7641.93

100 3 3 TwoDim 0.05 0.05 50 20 ER PFE 7656.87

100 2 3 TwoDim 0.05 0.05 50 4 ER PFE 7699.16

100 3 2 TwoDim 0.05 0.05 50 20 ER PFE 7702.64

50 2 3 TwoDim 0.1 0.1 25 20 ER PFE 7705.11

100 2 2 TwoDim 0.05 0.05 50 10 ER PFE 7711.96

100 3 3 TwoDim 0.1 0.1 50 20 ER PFE 7715.82

100 2 2 TwoDim 0.05 0.05 50 20 ER PFE 7719.61

100 3 3 TwoDim 0.05 0.05 50 10 ER PFE 7719.61

100 2 3 TwoDim 0.05 0.05 50 4 PC PFE 7734.02

50 3 3 TwoDim 0.05 0.05 25 20 ER PFE 7740.89

100 2 3 TwoDim 0.05 0.05 -1 20 PC PFE 7742.79

100 2 2 TwoDim 0.05 0.05 50 4 ER PFE 7743.03

100 2 2 TwoDim 0.05 0.05 -1 10 ER PFE 7746.44

100 2 3 TwoDim 0.05 0.05 50 20 WC PFE 7746.84

100 2 3 Basic 0.05 0.05 1 - - - 7747.77

100 2 3 TwoDim 0.05 0.05 -1 20 ER PFE 7748.98

100 2 3 TwoDim 0.1 0.1 -1 20 ER PFE 7750.97

100 3 3 TwoDim 0.01 0.01 50 10 WC PFE 7754.45

100 3 3 TwoDim 0.1 0.1 50 10 ER PFE 7755.76

100 2 2 TwoDim 0.1 0.1 50 4 ER PFE 7758.33

50 2 3 TwoDim 0.05 0.05 25 20 ER PFE 7768.05

100 3 3 TwoDim 0.05 0.05 50 4 ER PFE 7768.28

100 3 3 TwoDim 0.01 0.01 -1 20 PC PFE 7768.36

100 3 3 TwoDim 0.01 0.01 50 20 WC PFE 7770.58

100 3 3 TwoDim 0.01 0.01 50 4 PC PFE 7777.40

50 3 3 TwoDim 0.01 0.01 25 20 WC PFE 7781.24

100 2 3 TwoDim 0.1 0.1 50 10 ER PFE 7785.18
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Fig. 4. Average results for various number of ants - algorithm with two dimensional
pheromones.

5 Conclusion

In this article we have shown how the introduction of a new pheromone structure
(2D pheromone) affects the efficiency and efficacy of ACO applied to solving one
of the popular TSP benchmarks. Even though the original algorithm uses all
created solutions to update the pheromone, its later modifications reduce that
to only top solutions, sometimes only to a single one, and because of that achieve
better results. However, our work proves that using more or all solutions is more
effective, provided that the information that can be collected from such variety
of solutions is encoded in a more advanced structure than just a single value per
edge.

The results presented demonstrate that the proposed pheromone makes the
algorithm significantly better than its predecessor utilizing the original pheromone
structure. We focused in this paper on one of the most popular benchmarks;
however, we are planning to publish an extended version of this paper (abridged
because of lack of space) in the near future, covering more benchmark functions.

We believe that utilizing a wider range of solutions (not only the best ones)
increases the diversity of the search and helps in reaching better solutions ear-
lier. We already developed a method for measuring the diversity of ACO [3,14],
however we will apply this method in future to the newly developed algorithms.
Moreover, in the future, we will apply 2D pheromone for solving not only single
but also multi-criteria optimization problems, encoding e.g. different levels of
Pareto front in our 2D pheromone structure, tackling more benchmark and real-
life problems. Even though our idea stems from the existing ones cited in this
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Fig. 5. Average results for various combinations of size and interpretation methods of
two dimensional pheromones.

paper, we aim at working-out a general algorithm aimed at solving global and
multi-criteria optimization problems with ACO, while the cited papers focus on
the applications.
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