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Abstract. Due to their structure, metaheuristics such as parallel evo-
lutionary algorithms (PEA) are well suited to be run on parallel and
distributed infrastructure, e.g. supercomputers. However, there are still
many issues that are not well researched in this context, e.g. existence
of delays in HPC-grade implementations of metaheuristics and how they
affect the computation itself. The lack of this knowledge may expose
the fact, that the power of supercomputers in this context may be not
properly used. We want to focus our research on examining such white
spots. In the paper we focus on giving the evidence for the existence of
delays, showing the differences among them in different island topologies,
try to explain their nature and prepare to propose dedicated migration
operators considering these observations.

Keywords: high performance computing, delays, PEA, island model,
genetic algorithm, migrations

1 Introduction

Due to their nature (the need to process a significant number of individuals, in
particular computing their fitness on and on), metaheuristics have a very high
time complexity [9]. Therefore, the need to utilize parallel and distributed HPC
infrastructure when the computing results are in quick demand is imminent.
Many different computing platforms were constructed, e.g. DEAP 1, jMetal 2,
EASEA 3, PlatEMO 4, AGH-AgE platform 5 to name a few. For the last two
decades we have been doing metaheuristic-focused research using different plat-
forms, some of the mentioned and some of our own (e.g. [18]).

1 https://github.com/deap
2 https://jmetal.sourceforge.net/
3 https://easea.unistra.fr/index.php/EASEA_platform
4 PlatEMO source code http://bimk.ahu.edu.cn/index.php?s=/Index/Software/
index.html

5 https://gitlab.com/age-agh/age3

https://www.agh.edu.pl/
https://github.com/deap
https://jmetal.sourceforge.net/
https://easea.unistra.fr/index.php/EASEA_platform
http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html
http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html
https://gitlab.com/age-agh/age3
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When thinking about proper utilizing of HPC infrastructure, one has not
only to “divide and conquer” the algorithm, assigning processes (e.g. islands in
the parallel evolutionary algorithm) to nodes and managing their communication
(e.g., by some central node) as this will soon hamper the overall efficiency. The
selection of the programming libraries and technologies used should suit the
needs of reaching the scalability and reliability of the whole computing system.
Therefore in this paper, we wanted to focus on intricacies of HPC that may affect
the computing with metaheuristics, and pave the way for further adaptation of
the algorithms towards proper use of HPC-grade infrastructure.

We were inspired by the work of predecessors examining the island model of
genetic algorithms [1], [7], [6], in terms of taxonomy [12], topology [13], theoret-
ical analyses [14] and mainly the migration mechanism [5], [16], and interested
in the best possible setting of this mechanism, having examined various param-
eters and migration strategies in previous work, we decided to investigate the
behavior of delays occurring in PEA in HPC.

We have used a dedicated lightweight computing system based on Python
Ray 6, in order to use actor-based concurrency to achieve high scalability of
the system (and our computations). When running the experiments, we have
observed significant delays in migration. One has to remember that if our aim
would be the simulation, controlling the delays would be crucial. Metaheuristics
however can work on a little bit “outdated” data (e.g. delayed migrants in parallel
evolutionary algorithm). Anyway, we are convinced that proper handling of such
phenomena might at least increase the efficiency of our algorithms (if not the
efficacy).

In this paper, we are trying to answer the question of how “outdated” mi-
gration data come to the islands in the island evolution algorithm, how these
phenomena are related to the used island topologies, and what we can do with
that in the future.

The paper is organized as follows. In the next section we present the state-
of-the-art of the parallel island model and some metaheuristics platforms. Next,
our research methodology is described, namely the computing system used and
the plan for experiments. In the following section, the experimental results are
discussed. Finally, the paper is summarized and conclusions are presented in the
last section, where future work is also indicated.

2 Population decomposition in algorithms and
implementations of the metaheuristics

Metaheuristics such as evolutionary algorithms (EA) are, as researchers con-
firms [19] [7], universal optimization methods. Such methods often suffer from
problems with maintaining the diversity of the population [15], therefore one
of common ideas to deal with this problem is decomposition of population and
introduction of migration mechanism [9]. Such approach is believed to increase

6 http://ray.io
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the diversity and thus efficacy of the entire algorithm, as noticed in works [17]
[7] on a parallel model of the evolutionary algorithm.

In many reports Island model of evolutionary algorithm performs excellently
in comparisons with sequential development and usually ranks among the best
when compared to many other solutions. This happens both for standard bench-
mark functions and for more complex problems [8], such as graph partitioning,
set coverage, labor planning problem [2] and TSP [10].

In detailed analyses such as the paper by Skolicki and DeJong [15], the dy-
namics of the island model is described as a two-level structure. Two evolutionary
processes interact, one at the local level and the other at a higher level between
islands. These processes are complementary and may contribute to the overall
result to varying degrees. It is believed that in the process of evolution in the is-
land model, we first accumulate diversity between islands and then slowly release
it by triggering migrations. It is important, of course, how we set its parameters,
such as the migration interval [16] and the size of the migrant group, as well as
the topology.

For research and application purposes, many platforms were constructed to
support parallel, distributed, and HPC infrastructure in the context of running
metaheuristics. For example, EASEA 7 is an Artificial Evolution platform (Free
Open Source Software) that allows easy to implement evolutionary algorithms
and to exploit the massive parallelism of many core architectures in order to
optimize virtually any real-world problems, typically allowing for speedups up to
x500 on 3,000 machines, depending on the complexity of the evaluation function.

PlatEMO 8 - open source MATLAB Platform for Evolutionary Multi-Objective
Optimization, which includes numerous multi-objective evolutionary algorithms,
test problems, and performance indicators. Enables one to properly benchmark
existing algorithms and to apply selected algorithms to solve real-world prob-
lems and easily compare several evolutionary algorithms and collect statistical
results.

AgE platform 9 is a Java-based solution developed as an open source project
by the AGH-UST Intelligent Information Systems Group for the development
and execution of agent-based applications in simulation and computational tasks.
Its modular architecture allows one to use components to assembly and run
agent-based computations for various problems such as black-box complex dis-
crete problems (e.g. LABS, OGR, Job-shop) or continuous optimization prob-
lems [4].

jMetal stands for Metaheuristic Algorithms in Java. It is an object-oriented
Java-based framework for multiobjective optimization with metaheuristics.

7 https://easea.unistra.fr/index.php/EASEA_platform
8 Source code of PlatEMO http://bimk.ahu.edu.cn/index.php?s=/Index/
Software/index.html

9 Project homepage: https://gitlab.com/age-agh/age3

https://easea.unistra.fr/index.php/EASEA_platform
http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html
http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html
https://gitlab.com/age-agh/age3
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DEAP10 is an evolutionary algorithm framework with wide possibilities of
creating user own types, customizing initializers, choosing operators, and imple-
menting user algorithms that fit all he needs.

All these platforms are popular and proven in research; however, as we want
to delve into the intricacies of HPC infrastructure, we utilize an implemented
platform based on the actor model of concurrency, trying to reach efficient scala-
bility of the whole system. In particular, our article examines the impact of delays
occurring in various PEA topologies and is another attempt to answer the age-
old question: how to obtain the appropriate PEA parameterization, topologies
and migration strategies, keeping in mind the no-free-lunch theorem [20].

3 The algorithm and the computing framework used

The evolutionary algorithm processes a population of individuals (initially ran-
domly selected). Each individual represents a potential solution to the problem,
which is encoded in its genotype contained in its chromosome. The genotype
allows to calculate the phenotype, i.e. the argument of the objective function.
Individuals are compared using this function known as the fitness function [9].
The typical sequence of the algorithm is as follows: random initialization of the
individuals, evaluation by applying the fitness function, selection of the parents,
crossover and mutation, return to evaluation (while the stopping condition is
false).

In a parallel version of EA the population is divided into several islands.
These populations work simultaneously on separate islands, replacing a certain
number of individuals at certain times. The result of PEA’s work is the result
of the best island.

The framework used is planned to support the parallel metaheuristics in
as simple way as possible, i.e. introducing the software agents for realizing of
the computing island, and introduce queues in order to communicate them in
efficient way, avoiding any possible synchronization.

As we can see in Fig. 1, the core abstractions of the model are:

– Island - main actor that holds the Computation, neighbouring islands and
new immigrants,

– Computation - the actor that creates and runs the algorithm,
– Migration - the actor that receives new immigrants,
– Emigration - the actor that selects the destination and sends the emigrants.

The created abstractions needed a proper programming framework to create
an efficient implementation. We considered the most popular solutions, such as
Akka (Scala) and Ray (Python). Since the evolutionary algorithms have already
been developed using jMetalPy, we decided to use Ray. It allowed us to easily in-
tegrate the framework with the evolutionary algorithm. Ray provides distributed
10 https://deap.readthedocs.io/en/master/
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Fig. 1: Actor system architecture

abstractions (such as actors) through the Ray Core library. Asynchronous com-
munication was achieved thanks to the pipelining pattern 11.

4 Planning the experiments

The main purpose of the experiments is to check whether the introduction of
asynchronous communication affects the age difference (delay) between immi-
grants and the destination island. The parameters of the experiment are the
following: number of islands = 50, 100, 150, 200, number of emigrants = 5, mi-
gration interval = 5, topology = torus, ring, complete. We used Rastrigin and
Sphere problems (200 dimensions), 16 individuals in population and offspring
population equal to 4.

The framework was deployed to the HPC cluster Ares located in the ACC
Cyfronet in Krakow. The machine is equipped with 532 nodes of 48 core 2.90GHz
Intel cpus. The number of cpu cores required for the efficient running of the
framework doubled the number of islands.

The topology determines which islands migration takes place between. In
Figure 2 three topologies used in the research were shown. We can describe
them as follows:
11 Pipelining pattern. https://docs.ray.io/en/latest/ray-core/patterns/pipelining.html
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– complete - each island is connected to each other and can send/receive mi-
grants to/from them,

– torus - islands are arranged in a matrix, islands at the right edge of the
matrix connect to those on its left edge to form a cylinder, and then the
islands at the bottom of the cylinder connect to those at the top - smaller
number of connections between the islands is put together. Every island is
connected with four other islands,

– ring - connections (ring-shaped) - each island sends migrants to only one
neighbor and receives migrants only from one other neighbour - the smallest
number of connections.

(a) Ring topology (b) Torus topology (c) Complete topology

Fig. 2: Topologies

To investigate how migration strategies affect delays, three migration strate-
gies without repetition performed in PEA created in our previous work [3] were
used. When we selected n migrants, in:

– “best strategy” - n individuals were selected in order of fitness values, starting
from the best one,

– “random strategy” - n individuals were randomly selected,
– “max distanse strategy (mDist)” - Euclidean distances of all individuals were

tested in pairs and then the farthest ones were selected in pairs (if possible)
until the number of migrants set in the parameters was exhausted.

We have realized our research using two benchmark functions: Rastrigin and
Sphere [11] using three topologies (complete, torus and ring) and three migrant
selecting strategies ("best", "max distance" and "random").
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5 Experimental study

During the experiments, we observed the occurring delays by comparing epoch
on the source islands (islands from which migrants started) with the epoch on the
destination islands (islands where migrants arrived). We were also interested in
how the working time of one island behaves relative to the working time of each
other island and how long is the common working time of all islands in the model.
We also compared the final and average results obtained with specific topologies
and migration strategies for both problems. Each algorithm setting was tested
10 times and the results were averaged at appropriate places and compared at
other places to check the certainty and quality of the trends studied.

Fig. 3: Islands cooperation. Axis: Y - number = name of island, X - timestamp.

In Fig. 3 shows how all islands work in the PEA algorithm running on HPC.
Each line shows the working time of some island. Darker color means islands
with a better score. The yellow lines indicate the weakest work and the red lines
indicate the best working islands. A dashed line (red or yellow) indicates "second
in line" (in meaning: best or worst). The section between 53 and 68 is the time
when all the islands are working. It is a time of cooperation when the exchange
of migrants between all islands is possible, how long they cooperate with each
other and what is the percentage of their solitary work (for example, in a ring
topology - without a neighbor next door).

We have observed differences in how the yellow and red lines are arranged in
relation to each other in the charts for individual topologies. For complete and
torus topologies, yellow lines are short and red lines are long, like on Fig. 3. In
the ring topology, when using the "mdist" and "random" strategies, the yellow
line is shorter than or equal to the red one, while when using the ring topology
with the "best" strategy, sometimes the red line is not the longest.
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5.1 Delays - types

When running the genetic island algorithm with migrations in HPC, there are
delays in the arrival of migrants. We define it as the difference between the
generation on the starting island when they left and the generation on the desti-
nation island when they arrived. We observed them when we ran our algorithm,
observing the operation of the islands and the process of arrival of migrants.
They vary, as we can see in picture 4, depending on the topology and migration
strategy, but they are also different on different islands in a single test (this is
influenced, among other things, by how good the solution is generated by a given
island).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4: Delay types

The delays observed in the tests took many characteristic shapes.
Let’s define two concepts:

– acceleration - means that migrants arrive on the island from islands that
have been evolving longer at the time of the migrants’ departure than the
destination island at the time of the migrants’ arrival,

– delay - the opposite situation.

Let us now describe some of the most common patterns. Other shapes often
are modifications or combinations of the following.

– A - triangles - the delay grows continuously, it is getting bigger,
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– B - triangles - rounded at the top (positive values occur) - look like triangles
A, only sometimes there are migrants arriving too early - but only up to a
certain step,

– C - increasing delays most of the time, after a certain point improvement.
Finally, the delays disappear and positive values appear,

– D - we have here constant small delays of two values,
– E - first, very time-delayed migrants arrived on the island. Then, migrants

arrive without delay,
– F - very large, sudden acceleration for about half of the island’s operation

time, then there was no delays,
– G - slightly bold back-slash shape - all the time increasing delays,
– H - first, more and more modern individuals arrive, then less and less modern

ones arrive, until individuals arrive that are more and more delayed,
– I - irregular sine wave. Alternately, delayed and accelerated migrants arrive

on the island with varying intensity and period and amplitude,
– J - triangle lying on its side - this island was delayed at the very beginning

and then there was a time point from which the delay started to decrease,
– K, L - H shape variant, slightly different shapes, initially accelerations, then

increasing delays.

In different topologies, some of the latency patterns described above are more
common and others are less frequent:

– Complete topology: This topology has by far the most delays. There is a
very large communication crowd here, which is visible in the delay patterns
characteristic for this topology.
• Best strategy: The best performing islands are characterized by delays

with H-type graphs (for the best ones - a narrower shape). The worst is
definitely type A. Intermediate shape B shape and thick H shape.

• MDist strategy: Here, the best islands are those that stop accepting
migrants about halfway through their operation - for them, the delay
pattern resembles Type F. The H-type appears in the middle of the
ranking. Then, more worse, it is type B. The worst islands also have
pattern A.

• Random strategy: In complete topology with random strategy, islands
working with delays from the thin H pattern win. The thicker H-shaped
ones are slightly worse (1/3 of the rate). Then (3/4 of the rate) there are
type B delays. And the worst have shape A.

– Torus topology: In this topology, each island has exactly four neighbors.
Delays are more regular. Migrant crowds occur less frequently and are rela-
tively small compared to the complete topology. However, sometimes there
is an accumulation of arriving migrants and a delay occurs. Here is where
the greatest variety of delay patterns occur. Therefore, this topology is quite
a good compromise between a full graph and a ring topology, where there
are very few neighbors.
• Best strategy: The latencies for the top islands resemble Pattern J. The

intermediate ones have different shapes - the better, the slimmer. And
the worst islands have delay shape types A and G.
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• mDist strategy: The latencies for the top islands resemble Pattern J, but
additionally there are negative values of a small quantity. Not many of
the most worst islands have shapes of delays of type A, in the middle of
ranking, various shapes begin quite quickly.

• Random strategy: The winning islands have lag shapes of type F, a small
percentage of the worst ones are of type A and G, and the intermediate
shapes are very varied.

– Ring topology: In the ring topology, communication is the most orderly. The
traffic congestion is the smallest, but if the neighbor of the island finishes
work earlier, no migrant with fresh genetic material reaches the island from
that moment on.
• Best strategy: The latencies of the worst islands are represented by

shapes A and D (with a constant amplitude from -3 to -1). Various
shapes appear in the middle of ranking, most often I and F. The best is
shape I or for half the time of the island’s; operation shape I and J, and
then a straight line like in shape F.

• mDist strategy: About half of the islands have delays that end abruptly
in the middle of the work section. The best islands have a sinusoidal
shape, a triangle lying on its side or standing on top.

• Random strategy: There is a great variety of shapes here. Many sinu-
soidal shapes. Characteristically, the patterns end abruptly when the
neighboring island stops working and the flow of arriving migrants stops.
The lags of the best islands have an upward convex parabola pattern,
like the upper part of a sine wave ending halfway down the line.

Table 1: minimal and maximal values in delays averaged by topologies and mi-
grant strategies

average Min Delays average Max Delays
complete -1077,107481 672,6903784
ring -316,9725226 319,8765899
torus -607,6686456 565,9689137
complete best -965,4746667 711,1034778
complete mdist -1234,076 614,8229631
complete random -1031,771778 692,1446942
torus best -621,4404059 578,341527
torus mdist -547,5165006 523,7945917
torus random -654,0490302 595,7706223
ring best -324,4927714 321,2856487
ring mdist -315,4192413 308,517391
ring random -311,0055551 329,82673

In the tab. 1 we show minimal and maximal values in delays averaged by
topologies and migrant strategies.
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5.2 Results achieved while using three topologies

(a) Rastrigin problem (b) Sphere problem

Fig. 5: Different topologies results of Rastrigin and Sphere problem

As we can see in the Fig. 5 with the results for both problems:
The complete topology that wins generates large congestion and delays, but

diverse migrants from multiple islands with different evolving populations clearly
improve the results. The torus topology generating average results in this ranking
has fewer connections between islands than in the complete topology and more
than in the ring topology. Each island connects to four of its neighbors. Ring
topology is the worst in the ranking. This is probably due to the large number of
undelivered migrants when the destination island is no longer working, or a long
time without arriving migrants when the source island is no longer working.
When comparing the results, we also found that longer-acting islands have a
better prognosis for a better result. And since in the maxdistance strategy the
islands cooperate the longest (this common section is the longest in seconds),
maybe it is a matter of the time needed to calculate this maxdistance?

5.3 Summary of the experimental results

As we show above, we can observe different types of latency when running PEA
on HPC, depending on the topology.

There is a relationship between the topology of the islands’ connections (in
the sense of migration) and traffic congestion and the increased delays that oc-
cur when individuals migrate from island to island. Furthermore, when different
migration strategies were used, a difference was observed in the types of delays
that occurred or in the frequency of their different types. The topology of con-
nections and the migration strategy are also related to the speed at which PEA
achieves a good result.
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The most dense traffic occurs in the complete topology, and yet its results
compares better than the results of torus topology and much better than the re-
sults of ring topology. The ring topology, where number of connections between
islands is the smallest (each island has only two neighbors, one of them receives
migrants from and the other sends migrants to), while using asynchronous work
of islands, is exposed to the fact that many islands work alone most of the time,
while their neighbors finish their work before them. The torus topology is in some
sense intermediate between complete and ring. Each island, having more con-
nections with other islands, has a greater chance of long-term cooperation than
in the ring topology and a smaller chance compared to the complete topology.

6 Conclusions

In this paper, we explored different patterns of the delays that occur in the island-
based evolutionary algorithm running on the HPC infrastructure. Apparently,
these phenomena can affect the computation using metaheuristics. Although this
may not be so crucial as in the case of distributed simulation, we are convinced
that by proper managing of such deyals we can increase the efficiency of the
system (e.g. by dropping too delayed messages).

In the future, we will develop dedicated emigration/immigration operators
and explore how they affect the algorithm. Such proposed operators will, e.g.
neglect delayed migrants, or incorporate some partial information to the popu-
lation carried by those.
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