Merlin Systems Corp. Ltd

Miabot BT PRO
Sonar Array

v1.0

Revision History

V1.0 07/03/05 pp first version

© Merlin Systems Corp. Ltd 2002-2004

Merlin Systems Corp. Ltd assumes no responsibility for any errors which may appear
in this manual, reserves the right to alter the devices, software or specifications
detailed herein at any time without notice, and does not make any commitment to
update the information contained herein. Merlin Systems Corp. Ltd’s products are not
authorized for use as critical components in life support devices or systems.

ii

v1.0 pp 07/03/05

Introduction

The Miabot Pro sonar array package comprises a pro robot, a 360° sonar array add-on
for the top of the robot, and a demonstration PC application.

NOTE: This applies only to Miabot BT PRO robots, software v2.3 and above.

Page 1/7

v1.0 pp 07/03/05

Sonar Array Hardware

The sonar robot add-on can support up to 8 miniature sonar rangefinder units covering
the full 360° around the robot at 45° intervals.
In practice 1, 2, 4 or 8 units are commonly fitted, depending on the application.

The rangefinder devices are the Devantech (Robot Electronics) type SRF0S.

They have a range of up to 6 metres and a half-angle of view of about 30°.

See the separate manufacturers datasheet for more information (“SRFO08 Ultra sonic
range finder.htm”, on the support disk).

The rangefinders are connected to the robot via a common I’C bus. Robot commands
to access the I’C bus are described in a separate section below.

Fitting
The sonar array fits over the main control board on the Miabot Pro.
The ribbon cable lead plugs into the Pro expansion connector.

For physical support, double hex pillars fit in place of the four corner screws securing
the control board, and the sonar array board is screwed to the top of these using the
original corner screws :—

The board orientation is such that the expansion connector on the sonar board fits
directly above the one on the main board.

All fittings are M3 size.

NOTE: If desired, the sonar board will fit on single hex spacers, but in this position
the on/off switch and the charge socket are obsured.

Page 2/7

v1.0 pp 07/03/05

Sonar Addresses
Each unit is given a separate bus address.

As supplied, the addresses for the individual sonar directions are set up as follows :-

front
EO
EA E8
left EG6 E4 right
EE EC
E2
back

These addresses are 8-bit hex values (the actual 7-bit I°C address is the upper 7 bits).
This arrangement is assumed by the demonstration software.

To change unit addresses, refer to the manufacturer datasheet, and notes below on the
robot I°C control commands.
You need to send a set of commands similar to —

[iE0=0,A0] [iE0=0,AA] [iE0=0,A5] [iE0=0,NN]

A unit can be temporarily disabled by bridging the two-pin jumper installations next
to its connector on the board: This can be useful in resolving bus address conflicts.

Page 3/7

v1.0 pp 07/03/05

Demonstration Software

A simple example Visual Basic application is provided, which can be installed from
the Miabot Support Disk “Sonar Array\Demo App” subdirectory. The source code is
also provided.

When run, this presents a window like this :-

. Miabot Sonar Demo ¥1.0 : o] 4|

Communications Go |

Portl_ [~ | connected
Left Siop [Right |
Start Stop | Speed Seftings... |
Back |

Type the Bluetooth virtual Comport number into the ‘Port’ box, and hit the 'Start'
button to start communication with the robot.
(The ‘Stop’ button on the left will stop communications and close the port).

At this point, the the application interrogates the attached sonars to find out which
units are present, and will present a 1-, 2-, 4- or 8§-way 'map' in the radar screen
window, like this :-

W sonar -lalx|

(this is a 4-way example)

The 'radar' screen shows the sonar output as a series of segments with red arcs
showing the echo returns.

Page 4/7

v1.0 pp 07/03/05

The buttons on the right can now also be used to steer the robot around.
The “Speed Settings” button brings up controls to change the movement speeds.

Internally, the example application recognises specific 1-, 2-, 4- and 8-unit patterns:
Sonars are arranged into 'groups' that are fired simultaneously, and these groups are
operated in turn, to avoid cross-echoes between devices. It may be necessary to
experiment with these arrangements to get the performance needed in a particular
application.

The arrangement of the sonar units is assumed to match the diagram above.

The distance range of the display and the number of echoes displayed from each unit
can easily be adjusted by editing the application.

At present, the application sets each sonar unit to 'minimum gain' on startup.
In addition to this, it is also possible to reduce the scan range of the sonar, which can
speed up the scan (see manufacturers datasheet).

Page 5/7

v1.0 pp 07/03/05

Miabot Pro Commands for I*C Support

From version 2.3 onward, the Miabot Pro command-set contains a command to
control slave devices on the the I°C bus, as follows :-

- 2 .
[i1-access I°C bus device

Two command formats allow reading and writing over the I°C bus :
[IAA=x1,x2...]
write data bytes (hexadecimal values x1,x2 etc.) to the bus at address 'AA".
[IAA?nn]
read nn (decimal) bytes from the bus at address 'AA’".

The bus addresses 'AA’ are hexadecimal values, of which the top 7 bits are the actual
I’C address and the lowest bit must always be 0 (i.e. even numbers only).

Accesses with no data transferred are permitted - i.e. read or write 'no bytes'.
These are specified as [IAA=] and [iAA?].

If an error occurs (including no bus response), the access will be retried a set number
of times. If the maximum retries have occurred without a response, the command
fails with an error code. (See below for retry controls and error codes).

All 'i' commands eventually produce a response string, but this may not occur for
some time if a lengthy retry is specified. The following are the possible response
formats :-
<i>
a write access succeeded (N.B. also read access with no bytes)
<ixlx2.>
a read access returned the (hexadecimal) bytes shown (x1, x2...)
<i=nn>
the access failed, with error-code nn

Current error-code values are -
<i=1> access timed out: no response after N retries (see below)
<i=2> access rejected: expected acknowledge bit missing (during write only)

All I’C accesses are automaticall retried, according to two parameter settings -
y g p g
[.IN] number of bus-access retries -can be zero. Default =3
[.iT] interval between bus-retries (in milliseconds)

Examples:
[1C473] read three bytes from I°C address 0x62 --> response <i 25 A7 03>
[1AO=1,21] write two bytes to address 0x50 --> response <i>
[170714] read 14 bytes from 0x38 (no device) --> response <i=1> (failed)

Page 6/7

v1.0 pp 07/03/05

Commands to Control Sonars

To update and read results from a sonar, three accesses are required each time (see
datasheet for full explanation) :-

(1) First, send a ranging (or 'ping') command to start the unit scanning
e.g. “[iE0=0,51]"

(2) Second, set the internal access address to '02' to access the correct returns data
e.g. “[iIE0=2]"

(3) Finally, read out the echoes data
e.g. “[iE0?10]” (to read back the first 5 echoes as 5* byte-pairs)

The ranging operation itself can create a considerable delay (up to 65 milliseconds),
during which the sonar device will not respond to I°C accesses at all.

The example application uses the inbuilt retry controls to detect when the new sonar
information is ready. To do this -

- the retry controls are set to “[.iT=5]", “[.iIN=20]" to retry at SmS up to
100mS

- first all 'ping' commands in a group are sent

- next the application sends the "pointer=02' commands to each sonar.
The first of these will be held up retrying until the the first sonar scan completes.
(The other scans will normally complete at roughly the same time, so will not cause
further delays).

- finally, results are read out from each unit in turn

Page 7/7

