## Badanie diod półprzewodnikowych

Proszę zbudować prosty obwód wykorzystujący diodę, który w zależności od jej kierunku zaświeci lub nie zaświeci żarówkę.



Proszę zmienić źródło zasilania na AC, tak aby żarówka zaczęła migać.

| CU <u>S</u> in | mulate Tr <u>a</u> nsfer         | <u>T</u> ools <u>R</u> eports | Options Window Help                   |                                       |                                           |                |
|----------------|----------------------------------|-------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|----------------|
| a ( 🕨          | Run                              | F5                            |                                       | <mark>&gt; ⊡ ▼ ⊞ √</mark> □ ₪ •       | 📣 🕸 In Use List 💌                         | 4              |
| - 11           | Pause                            | F6                            | 111 -                                 |                                       |                                           |                |
|                | Stop                             |                               |                                       |                                       |                                           |                |
| <u> </u>       | Instruments                      | ,                             |                                       |                                       |                                           |                |
| -              | Interactive Simulation Settings  |                               | 2                                     | · · · · · · · · · · · · · · · · · · · | 5                                         |                |
|                |                                  |                               |                                       |                                       |                                           |                |
|                | Digital Simulation S             | Settings                      | · · · · · · · · · · · · · · · · · · · |                                       | · · · · · · · · · · · · · · · · · · ·     | · · ·<br>· · · |
|                | <u>A</u> nalyses                 | •                             | DC Operating Point                    |                                       | · · · · · · · · · · · · · · · · · · ·     | · · ·<br>· · · |
| (ES)           | Postprocessor                    |                               | AC Analysis                           |                                       | · · · · · · · · · · · · · · · · · · ·     | · · · ·        |
|                | <u>in Postprocessor</u>          |                               | Transient Analysis                    |                                       | · <u>1</u> ·····                          | · · ·<br>· · · |
|                | Venice Command                   | Line Interface                | Fourier Analysis                      | 1111 <u>1</u> 111111                  | :::::::::: <b>D2</b> :::::                | · · ·          |
| -              | <u>L</u> oad Simulation Settings |                               | Noise Analysis                        |                                       | 1N1202C                                   | · · ·          |
|                |                                  |                               | Noise Figure Analysis                 | · · · · · · · · · · · · · ·           | · · · · · · · · · · · · · · · · · · ·     | · · ·          |
|                | Save Simulation S                | ettings                       | Distortion Analysis                   |                                       |                                           |                |
|                | Auto Fault Option                |                               | DC Sweep                              | · · · · · · · · · · · · · · ·         | ••••••••••••••••••••••••••••••••••••••    |                |
| -              | VUDL Circulation                 |                               | Sensitivity                           |                                       | · · · · <del></del> · · · · · · · · · · · | · · ·          |
| _              | VHDL SIMulation                  |                               | Parameter Sweep                       |                                       |                                           | · · ·          |
|                | Dynamic Probe Pr                 | operties                      | Temperature Sweep                     | Proszę zbudo                          | ować prosty obwód                         | jal            |
|                | Reverse Probe Dir                | ection                        | Pole Zero                             | na rysunku. l                         | który posłuży                             |                |
|                | Clear Instrument Data            |                               | Transfer Function                     | do przoprow                           | adzonia                                   |                |
| -              |                                  |                               | Worst Case                            |                                       | auzenia                                   |                |
|                | Use Tolerances                   |                               | Monte Carlo                           | tzw. Analizy                          | D.C                                       |                |
|                |                                  |                               | Trace Width Analysis                  |                                       | · · · · · · · · · · · · · · · · · · ·     |                |
|                |                                  |                               | Batched Analysis                      |                                       | · · · · · · · · · · · · · · · · · · ·     |                |
|                |                                  |                               | User Defined Analysis                 |                                       | · · · · · · · · · · · · · · · · · · ·     | · · · ·        |
|                | · · · · · · · · · ·              |                               |                                       |                                       | · · · · · · · · · · · · · · · · · · ·     | · · ·<br>· · · |
|                | · · · · · · · · · · ·            |                               | Stop Analysis                         |                                       |                                           | · · ·          |
| · ·            |                                  |                               |                                       |                                       |                                           |                |



początkową, końcową oraz krok zmiany.



Rezultat, czyli zależność prądu na diodzie od napięcia na źródle. Widać, że dioda zaczyna przewodzić prąd dopiero powyżej odpowiedniej wartości napięcia zasilania.



### **Dioda Zenera**

Odmiana diody półprzewodnikowej, której głównym parametrem jest napięcie przebicia złącza p-n. Po przekroczeniu napięcia przebicia ma miejsce nagły, gwałtowny wzrost prądu. Przebicie nie powoduje uszkodzenia diody.

### 1N5226B - 1N5257B Series Half Watt Zeners

| Absolute Maximum Ratings* TA                      | = 25°C unless otherwise noted |       |  |
|---------------------------------------------------|-------------------------------|-------|--|
| Parameter                                         | Value                         | Units |  |
| Storage Temperature Range                         | -65 to +200                   | °C    |  |
| Maximum Junction Operating Temperature            | + 200                         | °C    |  |
| Lead Temperature (1/16" from case for 10 seconds) | + 230                         | °C    |  |
| Total Device Dissipation                          | 500                           | mW    |  |
| Derate above 25°C                                 | 4.0                           | mW/∘C |  |
| Surge Power**                                     | 10                            | W     |  |



\*These ratings are limiting values above which the serviceability of the diode may be impaired. \*\*Non-recurrent square wave PW= 8.3 ms, TA= 55 degrees C.

#### NOTES:

1) These ratings are based on a maximum junction temperature of 200 degrees C.

 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

| Device  | V <sub>z</sub><br>(V) | Z <sub>Z</sub><br>(Ω) | и I <sub>ZT</sub><br>(mA) | Ζ <sub>ΖΚ</sub><br>(Ω) | I <sub>ZK</sub><br>(mA) | V <sub>R</sub><br>(V) | @ Ι <sub>R</sub><br>(μΑ) | T <sub>c</sub><br>(%/⁰C) |
|---------|-----------------------|-----------------------|---------------------------|------------------------|-------------------------|-----------------------|--------------------------|--------------------------|
| 1N5226B | 3.3                   | 28                    | 20                        | 1,600                  | 0.25                    | 1.0                   | 25                       | - 0.07                   |
| 1N5227B | 3.6                   | 24                    | 20                        | 1,700                  | 0.25                    | 1.0                   | 15                       | - 0.065                  |
| 1N5228B | 3.9                   | 23                    | 20                        | 1,900                  | 0.25                    | 1.0                   | 10                       | - 0.06                   |
| 1N5229B | 4.3                   | 22                    | 20                        | 2,000                  | 0.25                    | 1.0                   | 5.0                      | +/- 0.055                |
| 1N5230B | 4.7                   | 19                    | 20                        | 1,900                  | 0.25                    | 2.0                   | 5.0                      | +/- 0.03                 |
| 1N5231B | 5.1                   | 17                    | 20                        | 1,600                  | 0.25                    | 2.0                   | 5.0                      | +/- 0.3                  |
| 1N5232B | 5.6                   | 11                    | 20                        | 1,600                  | 0.25                    | 3.0                   | 5.0                      | 0.038                    |

#### Electrical Characteristics TA = 25°C unless otherwise noted

Zbuduj układ jak na rysunku. Zaobserwuj jak zachowa się napięcie na diodzie zenera przy wzroście napięcia wejściowego.







![](_page_10_Figure_0.jpeg)

# Kondensator

Należy wstawić przełącznik (switch) AIR\_NC. Wciskając spacje (schemat musi być aktywny) lub klikając na przełącznik można go włączyć lub wyłączyć.

| 🛷 Select a Component                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                  |                | )                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|
| Database:                                                                                                                                                                                                               | Component:                                                                                                                                            | Symbol (ANSI)                                                                                                                    | ОК             |                                                                                                                 |
| Master Database 🔄                                                                                                                                                                                                       | AIR_NC                                                                                                                                                |                                                                                                                                  | Close          | ······································                                                                          |
| Group:                                                                                                                                                                                                                  | AIR_NC                                                                                                                                                |                                                                                                                                  |                |                                                                                                                 |
| Electro_Mechanical                                                                                                                                                                                                      | AIR_NO                                                                                                                                                |                                                                                                                                  | <u>S</u> earch | a de la companya de l |
| Family:                                                                                                                                                                                                                 | ANTI_PLUG                                                                                                                                             | 88 201                                                                                                                           | Detail Report  |                                                                                                                 |
| All Select all families                                                                                                                                                                                                 | FLOAT NO                                                                                                                                              | 3                                                                                                                                | <u>M</u> odel  | ·····                                                                                                           |
| <ul> <li>SENSING_SWITCHES</li> <li>MOMENTARY_SWITCHES</li> <li>SUPPLEMENTARY_CON</li> <li>TIMED_CONTACTS</li> <li>COILS_RELAYS</li> <li>LINE_TRANSFORMER</li> <li>PROTECTION_DEVICES</li> <li>OUTPUT_DEVICES</li> </ul> | FLOW_NC<br>FLOW_NO<br>FOOT_NC<br>FOOT_NO<br>HELD_CLOSED_LIMIT<br>HELD_OPEN_LIMIT<br>LIMIT_NC<br>LIMIT_NO<br>SPEED_F<br>SPEED_FR<br>TEMP_NC<br>TEMP_NO | Function:          PRESSURE AND VACCUM NC         Model manuf./ID:         Generic/ILLUMINATED_P8         Footprint manuf./Type: | Help           | Key = Space                                                                                                     |
|                                                                                                                                                                                                                         |                                                                                                                                                       | Hyperlink:                                                                                                                       |                |                                                                                                                 |
| Components: 17                                                                                                                                                                                                          | Searching:                                                                                                                                            |                                                                                                                                  |                |                                                                                                                 |

### Schemat do symulacji:

![](_page_12_Figure_1.jpeg)

Przebiegi będą wyświetlane na oscyloskopie. Aby można było je odróżnić proszę zmienić kolor jednej z linii wejściowych oscyloskopu.

![](_page_13_Picture_1.jpeg)

Wyłączając i włączając przełączniki proszę zaobserwować sposób działania układów i zastanowić się z czego to wynika.

![](_page_14_Figure_1.jpeg)

Należy dodać żarówkę do schematu.

| )atabase:               | Component:   | Symbol (ANSI)          | OK             |
|-------------------------|--------------|------------------------|----------------|
| Master Database 💌       | LAMP_VIRTUAL |                        |                |
| Group:                  | LAMP_VIRTUAL |                        | Gose           |
| 🗵 Indicators 🔄          |              |                        | <u>S</u> earch |
| amily:                  |              | 19 Y _ 19 (10          | Detail Report  |
| All Select all families |              | 1                      | <u>M</u> odel  |
| VOLTMETER               |              | Function               | Help           |
|                         |              | Lamp                   |                |
| PROBE                   |              |                        |                |
|                         |              |                        |                |
| LAMP                    |              |                        |                |
|                         |              | Model manuf./ID:       |                |
| BARGRAPH                |              | IIT/VIR_LAMP           |                |
|                         |              | Footprint manuf./Type: |                |
|                         |              | Hyperlink:             |                |

![](_page_16_Figure_0.jpeg)

Proszę umieścić żarówkę na schemacie:

### Czy kondensator nadal "pamięta" napięcie po wyłączeniu przełącznika? Z czego wynika takie działanie obwodu?

![](_page_17_Figure_1.jpeg)

Aby zbadać dokładniej co się dzieje w obwodzie budujemy nowy schemat: •przełącznik wraz ze stałym napięciem zasilania zastąpiony jest rezystorem 10Ω i źródłem impulsowym PULSE\_VOLTAGE (biblioteka Sources/SIGNAL\_VOLTAGE\_SOURCES) – sposób działania jest identyczny jak poprzednio, przy czym obwód sam włącza i wyłącza zasilanie w zaprogramowany sposób.

•żarówka zastąpiona jest rezystorem 1k $\Omega$ 

![](_page_18_Figure_2.jpeg)

### Należy zmienić ustawienia źródła impulsowego:

|             | PULSE_VOLTAGE                     |             | ×          |
|-------------|-----------------------------------|-------------|------------|
|             | Label Display Value Fault Pins    | Variant   U | ser Fields |
|             | Initial Value:                    | 0           | V ÷        |
|             | Pulsed Value:                     | 10          | V ÷        |
|             | Delay Time:                       | 10          | msec 📩     |
|             | Rise Time:                        | 1           | nsec 📩     |
|             | Fall Time:                        | 1           | nsec 🕂     |
|             | Pulse Width:                      | 100         | usec 📩     |
|             | Period:                           | 10          | msec 🔅     |
|             | AC Analysis Magnitude:            | 1           | - v 🗄      |
|             | AC Analysis Phase:                | 0           |            |
|             | Distortion Frequency 1 Magnitude: | 0           | V 🕂        |
| 4 R3        | Distortion Frequency 1 Phase:     | 0           | •          |
|             | Distortion Frequency 2 Magnitude: | 0           | - v 🐳      |
| (+)0 V 10 V | Distortion Frequency 2 Phase:     | 0           | -          |
|             | Tolerance:                        | 0           | ~ %        |
|             |                                   |             |            |
|             | Replace OK                        | Cancel      | Info Help  |
|             |                                   |             |            |

Aby poprawnie zaobserwować sygnał na oscyloskopie należy odpowiednio ustawić opcje oscyloskopu (poprzednie zajęcia).

Proszę ustawić:

•Podstawa czasu (Timebase)

•Wzmocnienie w kanale A (Channel A)

•Synchronizacja (*Trigger*) – tryb normalny, oscyloskop jest wyzwalany kanałem A, poziom wyzwalania to 0.1V, sposób wyzwalania to zbocze narastające

Poprawnie ustawiona synchronizacja powinna zapobiec znikaniu i "płynięciu" sygnału na ekranie oscyloskopu.

|                                                                                                      | Channel_A Chan          | nel_B       | R                                  | everse                             | •                |
|------------------------------------------------------------------------------------------------------|-------------------------|-------------|------------------------------------|------------------------------------|------------------|
| T2-T1                                                                                                | annel A                 | Channel B   | Trigger —                          | Save E                             | C                |
| Scale     20 us/Div     Scale       X position     1     Y p       Y/T     Add     B/A     A/B     A | osition 0 9<br>C 0 DC © | AC 0 DC - C | Edge <u></u><br>Level<br>Type Sing | 1• <u>+</u> A<br>0.1<br>]. Nor. Au | V<br>Jto None .; |

23 Oscilloscope-XSC2 . 4 Channel\_A Channel\_B Time T1 Reverse 120.826 us 9.022 V T2 158.349 us 186.876 mV Ext. Trigger Save 37.523 us -8.835 V T2-T1 C Timebase Channel A Channel B Trigger Scale 20 us/Div Scale 5 V/Div \* Scale 5 V/Div Edge F Ł A B Ext Y position 0 Y position 0 1 X position Level 0.1 ٧ Type Sing, Nor. Auto None Y/T Add B/A A/B AC 0 DC -AC 0 DC 6

Przykładowe okno oscyloskopu poprawnej symulacji:

Aby sprawdzić jak kondensator wpływa na kształt sygnału proszę użyć kondensatora o regulowanej pojemności. Następnie zmienić na schemacie jego wartość na 10µF.

| 🛷 Select a Component |            |   | and the second second                                       |                    |                                                                                                                 |
|----------------------|------------|---|-------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| Database:            | Component: | _ | Symbol (ANSI)                                               | OK                 |                                                                                                                 |
| Master Database 💌    | 350p       | F |                                                             |                    |                                                                                                                 |
| Group:               | 30p        |   |                                                             | Gose               |                                                                                                                 |
| Two Basic 💌          | 100p       |   | 50%                                                         | Search             |                                                                                                                 |
| Family:              | 350p       |   |                                                             | Detail Report      |                                                                                                                 |
| NON_LINEAR_TRANSF *  |            |   | Save unique component on placement                          | <u>M</u> odel      |                                                                                                                 |
|                      |            |   | Component type:                                             | Help               |                                                                                                                 |
|                      |            |   | <no type=""></no>                                           |                    |                                                                                                                 |
| SOCKETS              |            |   |                                                             |                    |                                                                                                                 |
| SCH CAP SYMS         |            |   |                                                             |                    |                                                                                                                 |
| -W- RESISTOR         |            |   |                                                             |                    |                                                                                                                 |
|                      |            |   | Model manut./ID:                                            |                    |                                                                                                                 |
| INDUCTOR E           |            |   |                                                             |                    |                                                                                                                 |
| -IE CAP_ELECTROLIT   |            |   | Footprint manuf./Type:                                      |                    |                                                                                                                 |
| # VARIABLE_CAPACITO  |            |   | <no footprint=""></no>                                      |                    | XSC2                                                                                                            |
| VARIABLE_INDUCTOR    |            |   | Generic / TRIM_CAP                                          |                    |                                                                                                                 |
|                      |            |   | Hyperlink:                                                  | -                  |                                                                                                                 |
| . m →                |            |   |                                                             |                    | the second se |
| Components: 3        | Searching: |   |                                                             |                    | <u></u>                                                                                                         |
|                      |            |   | 4 R3<br>V2 10Ω<br>+ 0 V 10 V<br>πππτ<br>100usec 10msec<br>0 | C2<br>10uF<br>Key= | 3<br>A 41% ≥1kΩ<br>Ţ                                                                                            |

Podczas symulacji proszę zaobserwować kształt przebiegu.

Gdy włączona jest symulacja można myszką przesuwać suwak zmiany pojemności kondensatora, lub żyć klawisza ,A' do zwiększania tej pojemności (*Key=A*). Im większa pojemność kondensatora tym zbocze narastające i opadające trwa ...

![](_page_23_Figure_2.jpeg)

Wyznaczanie czasu narastania **t**<sub>LH</sub> i opadania **t**<sub>HL</sub> zbocza sygnału oraz stałej czasowej RC – **T** Obwód będzie na zmianę ładował i rozładowywał kondensator. Układ pracuje w dwóch fazach:

1)Przełącznik *J1* jest włączony. Źródło ładuje kondensator poprzez rezystor *R2*. W tym czasie przełącznik *J2* jest wyłączony

2)Przełącznik J2 jest włączony. Kondensator jest rozładowywany poprzez rezystor R1. W tym czasie przełącznik J1 jest wyłączony.

Przełączniki pracują na zmianę – należy prze symulacją odpowiednio je ustawić, następnie w czasie symulacji zmieniać ich położenie za pomocą spacji.

![](_page_24_Figure_4.jpeg)

Należy zwrócić uwagę na odpowiednie ustawienie oscyloskopu (Timebase, Channel A, Trigger ) Wciskając spację oscyloskop automatycznie powinien wykryć zbocze narastające.

![](_page_25_Figure_1.jpeg)

**t**<sub>LH</sub>,**t**<sub>HL</sub> - czas opadania (narastania) jest to czas potrzebny na to aby wartość sygnału spadła (wzrosła) od 90% do 10% .

W naszym przypadku sygnał zmienia się od 12V do 0V. Kursory ustawiamy w pozycjach 10,8V i 1,2V (rysunek). Z oscyloskopu można bezpośrednio odczytać różnicę w czasie. Stąd:  $t_{HL} = 21.886ms$ 

![](_page_26_Figure_2.jpeg)

Stałą czasowa obwodu rozładowującego kondensator jest równa:  $\tau = R_1 C_1 = 10 \text{k} \ 1 \mu = 10 \text{ms}$ Aby odczytać ją z przebiegu należałoby poprowadzić styczną do przebiegu w dowolnym punkcie i zmierzyć czas między tym punktem a przecięcie się stycznej w tym wypadku z OV. Przyjmuje się zależność:  $t_{HL} \approx 2.2 \ \tau$ 

Wyznacz czas zbocza narastającego i stałą czasową obwodu ładującego kondensator

![](_page_27_Figure_2.jpeg)

### Pomiar prądu

Pomiar prądu za pomocą oscyloskopu można dokonać używając specjalnej sondy pomiarowej. Sonda prądowa obejmuje kabel, w którym mierzymy prąd. Każdy przepływ prądu generuje fale elektromagnetyczną, która jest wykrywana przez sondę pomiarową:

![](_page_28_Figure_2.jpeg)

Na oscyloskopie mierzymy wartość napięcia generowanego przez sondę. Aby przeliczyć napięcie na prąd należy odczytać stosunek napięcia do prądu z sondy. Domyślnie jest on ustawiony na 1V/mA

![](_page_29_Figure_1.jpeg)

Proszę przyjrzeć się wynikom symulacji – przypominam o odpowiednim ustawieniu oscyloskopu.

Jaka jest zależność między napięciem na kondensatorze a prądem płynącym przez kondensator? Jaką operację matematyczną przypomina ta zależność?

![](_page_30_Figure_2.jpeg)

Proszę wyznaczyć maksymalną chwilową wartość prądu jaki płynie przez kondensator (należy odczytać stosunek napięcia do prądu dla sondy prądowej oraz skalę podziałki w odpowiednim kanale).

![](_page_31_Figure_1.jpeg)

Pomiar prądu – zadanie.

Dobierz tak wartość rezystora i kondensatora, aby prąd w obwodzie zawsze płynął – nigdy nie spadał do zera.

Jak powinno wyglądać napięcie na kondensatorze w takim przypadku?