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Motivation 

 
 

In 1D/2D/3D Finite Element Method computations 
it is possible to refine basis functions over the computational mesh 
in such a way that 
• the topology of the mesh does not change 
• accuracy of the numerical approximation is similar 
• computational cost of both direct and parallel solvers  

is reduced up to two orders of magnitude 
• efficiency of parallel solver is better 
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Computational mesh, sparse matrix 
and direct solvers 

  

2D Isogeometric Analysis Finite Element Method (IGA-FEM)  
Basis functions defined as tensor products of B-splines 
Element matrices merged into the global matrix 3 



Sparse matrix based direct solvers 

  

Sparse global matrix, stored in some compressed manner, e.g. 
• coordinate format, 
• CSC format 
• CSR format 
 
(see e.g. Sparse Matrix Computations lectures by Jean Yves L’Excellent et al. 
http://graal.ens-lyon.fr/~bucar/CR07/introSparse.pdf 
for more details) 4 

http://graal.ens-lyon.fr/~bucar/CR07/introSparse.pdf
http://graal.ens-lyon.fr/~bucar/CR07/introSparse.pdf
http://graal.ens-lyon.fr/~bucar/CR07/introSparse.pdf


Sparse matrix based direct solvers 

  

Several algorithms constructing ordering 
looking at the structure of the sparse matrix, 
e.g. available through MUMPS solver interface: 
• nested-dissections (METIS) 
• aproximate minimum degree (AMD) 
• PORD 
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Ordering generator 

Ordering P 

P-1AP 
 



Ordering generator 

Sparse matrix based direct solvers 

  

Ordering P 

P-1AP 
 

Elimination tree 

 

Elimination tree constructed internally by the solver 
followed by LU factorization 
 
(for more details on the elimination trees 
see e.g. Sparse Matrix Computations lectures by Jean Yves L’Excellent et al.: 
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf 
http://graal.ens-lyon.fr/~bucar/CR07/factorization.pdf 
) 
 

LU factorization 
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Sparse-matrix-based solver 

http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/factorization.pdf
http://graal.ens-lyon.fr/~bucar/CR07/factorization.pdf
http://graal.ens-lyon.fr/~bucar/CR07/factorization.pdf


Sparse matrix based direct solvers 

  

Sparse-matrix based direct solvers 
lost information about basis functions spread over the mesh 
 
Additional knowledge about the basis functions 
allows to speed up both sequential and parallel solvers  
up to two orders of magnitude 
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Ordering generator 

Ordering P 

P-1AP 
 

Elimination tree 

 

LU factorization 

 

Sparse-matrix-based solver 



Isogeometric analysis 
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16 finite elements, 16 element matrices 
 

 merged (assembled) into 
 

1 Global matrix  
 

 submitted to 
  

Direct solver 



Isogeometric analysis 
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16 elements with cubic B-splines 
 
4 basis functions per element  4x4 element matrices 



Isogeometric analysis 
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Element matrices overlap to the greatest extend 

16 element frontal matrices 
 Size of each element matrix 4x4 
 
 
               assembled into 
 
Global matrix: 
 
Small size N=19   
   (=16+3)  
 
Dense diagonals 



Traditional Finite Element Method analysis 
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When we introduce additional basis functions „C^0 separators”  
in between finite elements we obtain tradition Finite Element Method 
with third order polynomials 
 
We enrich the space of basis functions, so the accuracy is similar 
 



Traditional Finite Element Method analysis 
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16 element frontal matrices 
each element matrix 4x4 
 
 
        assembled into 
 
Global matrix: 
 
Large size N=49   
 (=3*16+1)  
 
Sparse diagonals 

Element matrices overlap in minimal way 



refined Isogeometric Analysis (rIGA) 
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Compromise between both methods 
16 elements with cubic B-splines 
additional C^0 separators included every four elements 



refined Isogeometric Analysis (rIGA) 
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16 element frontal matrices 
 Size of each element matrix 4x4 
 
 
        assembled into 
 
Global matrix: 
 
Medium size N=25   
 (=4*(4+2)+1)  
 
Medium sparse diagonals 



2D IGA-FEM  

2D uniform mesh with basis functions = tensor products of B-splines 
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rIGA sequential 2D 
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rIGA with optimal size of macro elements (16 in this case) cubic B-splines 
is one order of magnitude faster than FEM and IGA-FEM 
 

Daniel Garcia, David Pardo, Lisandro Dalcin, Maciej Paszynski, Victor M. Calo, Refined 
Isogeometric Analysis (rIGA): Fast Direct Solvers by Controlling Continuity,  
submitted to Computer Methods in Applied Mechanics and Engineering, 2016 
 



rIGA sequential 2D 
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rIGA with optimal size of macro elements (16 in this case) cubic B-splines 
is one order of magnitude faster than FEM and IGA-FEM 
 

Daniel Garcia, David Pardo, Lisandro Dalcin, Maciej Paszynski, Victor M. Calo, Refined 
Isogeometric Analysis (rIGA): Fast Direct Solvers by Controlling Continuity,  
submitted to Computer Methods in Applied Mechanics and Engineering, 2016 (IF:3,456) 
 



3D IGA-FEM  
3D uniform mesh with basis functions = tensor products of B-splines 
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3D sequential rIGA with quadratic B-splines 
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Around 15 times faster than FEM  
and 4 times faster than IGA-FEM 
optimal number of separators varies with mesh size (8, 16 or 32) 



3D sequential rIGA with quintic B-splines 
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Over two orders of magnitude  times faster than FEM  
One order of magnitude faster than IGA-FEM 
optimal number of separators varies with mesh size (8 or 16) 



Automatic selection of macro-elements size 
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p=1 

It is possible to estimate the cost (FLOPS per node) without formulation 
of the global matrix (we do not have the matrix assembled yet!) 
 

Maciej Paszyński, Fast solvers for mesh-based computations,  
Taylor & Francis, CRC Press 2016 

 



Automatic selection of macro-elements size 
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p=2 

It is possible to estimate the cost (FLOPS per node) without formulation 
of the global matrix (we do not have the matrix assembled yet!) 
 

Maciej Paszyński, Fast solvers for mesh-based computations,  
Taylor & Francis, CRC Press 2016 

 



Automatic selection of macro-elements size 
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p=3 

It is possible to estimate the cost (FLOPS per node) without formulation 
of the global matrix (we do not have the matrix assembled yet!) 
 

Maciej Paszyński, Fast solvers for mesh-based computations,  
Taylor & Francis, CRC Press 2016 

 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, quadratic B-splines, 96^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 
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MUMPS_5.0.1  
lapack-3.5.0 
scalapack-2.0.2 
compilers/intel/16.0.2 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, quadratic B-splines, 96^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 

25 
rIGA 7,5 times faster than IGA 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, quadratic B-splines, 96^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 
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E=T1/(p*Tp)*100 % 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, quadratic B-splines, 96^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 

27 
One order of magnitude lower total energy consumption 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, cubic B-splines, 64^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 
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MUMPS_5.0.1  
lapack-3.5.0 
scalapack-2.0.2 
compilers/intel/16.0.2 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, cubic B-splines, 64^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 
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rIGA 11 times faster than IGA 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, cubic B-splines, 64^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 

30 

E=T1/(p*Tp)*100 % 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, cubic B-splines, 64^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 

31 
One order of magnitude lower total energy consumption 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, quartic B-splines, 32^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 
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MUMPS_5.0.1  
lapack-3.5.0 
scalapack-2.0.2 
compilers/intel/16.0.2 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, quartic B-splines, 32^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 
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rIGA is 8 times faster than IGA 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, quartic B-splines, 32^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 
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E=T1/(p*Tp)*100 % 



Parallel computations 

 
 

We select optimal separator and go for parallel solver 
3D IGA-FEM, quartic B-splines, 32^3 elements 
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM 
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3 times lower total energy consumption 



Conclusions 

 
 

In 1D/2D/3D Finite Element Method computations 
it is possible to refine basis functions over the computational mesh 
in such a way that 
• the topology of the mesh does not change 
• accuracy of the numerical approximation is similar 
• computational cost of both direct and parallel solvers  

is reduced up to two orders of magnitude 
• effciency of parallel solver is better 

 
We believe these features are solver independent 
since we have changed the properties of the matrix 
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