
Efficient parallelization of direct solvers
for isogeometric analysis

Maciej Paszyński

Department of Computer Science
AGH University, Krakow, Poland

home.agh.edu.pl/paszynsk

Collaborators:
David Pardo (UPV / BCAM / IKERBASQUE, Spain)
Daniel Garcia(BCAM, Spain)
Victor Calo (Curtin Uniwersity, Australia)

PhD Students:
Maciej Woźniak
Marcin Łoś
Konrad Jopek
Marcin Skotniczny
Grzegorz Gurgul

1

Motivation

In 1D/2D/3D Finite Element Method computations
it is possible to refine basis functions over the computational mesh
in such a way that
• the topology of the mesh does not change
• accuracy of the numerical approximation is similar
• computational cost of both direct and parallel solvers

is reduced up to two orders of magnitude
• efficiency of parallel solver is better

2

Computational mesh, sparse matrix
and direct solvers

2D Isogeometric Analysis Finite Element Method (IGA-FEM)
Basis functions defined as tensor products of B-splines
Element matrices merged into the global matrix 3

Sparse matrix based direct solvers

Sparse global matrix, stored in some compressed manner, e.g.
• coordinate format,
• CSC format
• CSR format

(see e.g. Sparse Matrix Computations lectures by Jean Yves L’Excellent et al.
http://graal.ens-lyon.fr/~bucar/CR07/introSparse.pdf
for more details) 4

http://graal.ens-lyon.fr/~bucar/CR07/introSparse.pdf
http://graal.ens-lyon.fr/~bucar/CR07/introSparse.pdf
http://graal.ens-lyon.fr/~bucar/CR07/introSparse.pdf

Sparse matrix based direct solvers

Several algorithms constructing ordering
looking at the structure of the sparse matrix,
e.g. available through MUMPS solver interface:
• nested-dissections (METIS)
• aproximate minimum degree (AMD)
• PORD

5

Ordering generator

Ordering P

P-1AP

Ordering generator

Sparse matrix based direct solvers

Ordering P

P-1AP

Elimination tree

Elimination tree constructed internally by the solver
followed by LU factorization

(for more details on the elimination trees
see e.g. Sparse Matrix Computations lectures by Jean Yves L’Excellent et al.:
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/factorization.pdf
)

LU factorization

6

Sparse-matrix-based solver

http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/lecture-etree.pdf
http://graal.ens-lyon.fr/~bucar/CR07/factorization.pdf
http://graal.ens-lyon.fr/~bucar/CR07/factorization.pdf
http://graal.ens-lyon.fr/~bucar/CR07/factorization.pdf

Sparse matrix based direct solvers

Sparse-matrix based direct solvers
lost information about basis functions spread over the mesh

Additional knowledge about the basis functions
allows to speed up both sequential and parallel solvers
up to two orders of magnitude

7

Ordering generator

Ordering P

P-1AP

Elimination tree

LU factorization

Sparse-matrix-based solver

Isogeometric analysis

8

16 finite elements, 16 element matrices

 merged (assembled) into

1 Global matrix

 submitted to

Direct solver

Isogeometric analysis

9

16 elements with cubic B-splines

4 basis functions per element  4x4 element matrices

Isogeometric analysis

10

Element matrices overlap to the greatest extend

16 element frontal matrices
 Size of each element matrix 4x4

 assembled into

Global matrix:

Small size N=19
 (=16+3)

Dense diagonals

Traditional Finite Element Method analysis

11

When we introduce additional basis functions „C^0 separators”
in between finite elements we obtain tradition Finite Element Method
with third order polynomials

We enrich the space of basis functions, so the accuracy is similar

Traditional Finite Element Method analysis

12

16 element frontal matrices
each element matrix 4x4

 assembled into

Global matrix:

Large size N=49
 (=3*16+1)

Sparse diagonals

Element matrices overlap in minimal way

refined Isogeometric Analysis (rIGA)

13

Compromise between both methods
16 elements with cubic B-splines
additional C^0 separators included every four elements

refined Isogeometric Analysis (rIGA)

14

16 element frontal matrices
 Size of each element matrix 4x4

 assembled into

Global matrix:

Medium size N=25
 (=4*(4+2)+1)

Medium sparse diagonals

2D IGA-FEM

2D uniform mesh with basis functions = tensor products of B-splines

15

rIGA sequential 2D

16

rIGA with optimal size of macro elements (16 in this case) cubic B-splines
is one order of magnitude faster than FEM and IGA-FEM

Daniel Garcia, David Pardo, Lisandro Dalcin, Maciej Paszynski, Victor M. Calo, Refined
Isogeometric Analysis (rIGA): Fast Direct Solvers by Controlling Continuity,
submitted to Computer Methods in Applied Mechanics and Engineering, 2016

rIGA sequential 2D

17

rIGA with optimal size of macro elements (16 in this case) cubic B-splines
is one order of magnitude faster than FEM and IGA-FEM

Daniel Garcia, David Pardo, Lisandro Dalcin, Maciej Paszynski, Victor M. Calo, Refined
Isogeometric Analysis (rIGA): Fast Direct Solvers by Controlling Continuity,
submitted to Computer Methods in Applied Mechanics and Engineering, 2016 (IF:3,456)

3D IGA-FEM
3D uniform mesh with basis functions = tensor products of B-splines

18

3D sequential rIGA with quadratic B-splines

19

Around 15 times faster than FEM
and 4 times faster than IGA-FEM
optimal number of separators varies with mesh size (8, 16 or 32)

3D sequential rIGA with quintic B-splines

20

Over two orders of magnitude times faster than FEM
One order of magnitude faster than IGA-FEM
optimal number of separators varies with mesh size (8 or 16)

Automatic selection of macro-elements size

21

p=1

It is possible to estimate the cost (FLOPS per node) without formulation
of the global matrix (we do not have the matrix assembled yet!)

Maciej Paszyński, Fast solvers for mesh-based computations,
Taylor & Francis, CRC Press 2016

Automatic selection of macro-elements size

22

p=2

It is possible to estimate the cost (FLOPS per node) without formulation
of the global matrix (we do not have the matrix assembled yet!)

Maciej Paszyński, Fast solvers for mesh-based computations,
Taylor & Francis, CRC Press 2016

Automatic selection of macro-elements size

23

p=3

It is possible to estimate the cost (FLOPS per node) without formulation
of the global matrix (we do not have the matrix assembled yet!)

Maciej Paszyński, Fast solvers for mesh-based computations,
Taylor & Francis, CRC Press 2016

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, quadratic B-splines, 96^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

24

MUMPS_5.0.1
lapack-3.5.0
scalapack-2.0.2
compilers/intel/16.0.2

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, quadratic B-splines, 96^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

25
rIGA 7,5 times faster than IGA

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, quadratic B-splines, 96^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

26

E=T1/(p*Tp)*100 %

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, quadratic B-splines, 96^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

27
One order of magnitude lower total energy consumption

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, cubic B-splines, 64^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

28

MUMPS_5.0.1
lapack-3.5.0
scalapack-2.0.2
compilers/intel/16.0.2

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, cubic B-splines, 64^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

29
rIGA 11 times faster than IGA

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, cubic B-splines, 64^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

30

E=T1/(p*Tp)*100 %

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, cubic B-splines, 64^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

31
One order of magnitude lower total energy consumption

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, quartic B-splines, 32^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

32

MUMPS_5.0.1
lapack-3.5.0
scalapack-2.0.2
compilers/intel/16.0.2

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, quartic B-splines, 32^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

33
rIGA is 8 times faster than IGA

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, quartic B-splines, 32^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

34

E=T1/(p*Tp)*100 %

Parallel computations

We select optimal separator and go for parallel solver
3D IGA-FEM, quartic B-splines, 32^3 elements
PROMETHEUS 16 nodes @ 2,50 GHz, 128 GB RAM

35
3 times lower total energy consumption

Conclusions

In 1D/2D/3D Finite Element Method computations
it is possible to refine basis functions over the computational mesh
in such a way that
• the topology of the mesh does not change
• accuracy of the numerical approximation is similar
• computational cost of both direct and parallel solvers

is reduced up to two orders of magnitude
• effciency of parallel solver is better

We believe these features are solver independent
since we have changed the properties of the matrix

36

