4. Opracowanie wyników

Część I: kondensator płaski – wyznaczenie ε_0

- a) Wykonać wykres iloczynu Cd w funkcji odległości okładek d.
- b) Przez punkty eksperymentalne przeprowadzić gładką krzywą. Odczytać z wykresu wartość ekstrapolowaną do *d*=0.

(*Cd*)_{extr}=.....

Uwaga: zależność iloczynu *Cd* od grubości *d* jest dla naszego eksperymentu nieliniowa, dlatego nie można stosować ekstrapolacji liniowej.

Proszę skorzystać z metody analitycznej, która polega na dopasowaniu do danych wielomianu stopnia drugiego $(y=a_0+a_1x+a_2x^2)$ i trzeciego $(y=a_0+a_1x+a_2x^2+a_3x^3)$ – obie krzywe należy pokazać na jednym wykresie. Wyraz stały wielomianu a_0 jest wartością ekstrapolowaną $(Cd)_{\text{extr}}$. Do dalszych obliczeń proszę wybrać wartość $(Cd)_{\text{extr}}$ uzyskaną z dopasowania wielomianowego – tego, które zdaniem Studentów jest lepsze.

Niepewność wyznaczenia wyrazu wolnego $u(a_0)$, jest niepewnością wyznaczenia $(Cd)_{\text{extr.}}$ Można ją wyznaczyć korzystając z funkcji REGLINP w programie Microsoft Office Excel. W tym celu należy:

- 1. Zaznaczyć w arkuszu obszar składający się z trzech wierszy i trzech kolumn (dla dopasowania wielomianu drugiego stopnia) lub trzech wierszy i czterech kolumn (dla dopasowania wielomianu trzeciego stopnia).
- 2. W oknie funkcji REGLINP za argument Znane_y należy podstawić adresy komórek, w których znajdują się wyznaczone wartości iloczynu Cd, a za Znane_x adresy komórek z odległościami okładek d oraz ^{1\2} (dla dopasowania wielomianu drugiego stopnia) lub ^{1\2\3} (dla dopasowania wielomianu trzeciego stopnia). Za wartości argumentów Stała i Statystyka należy przyjąć PRAWDA.

Znane_y	B3:B8	1
Znane_x	A3:A8^{1\2}	1
Stała	PRAWDA	1
Statystyka	PRAWDA	Ť

Rys. 1. Przykład zastosowania funkcji REGLINP dla dopasowania wielomianu drugiego stopnia.

- 3. Nacisnąć kombinację klawiszy Ctrl-Shift-Enter.
- 4. Wynikiem regresji będzie tabela, w której będą znajdować się parametry wielomianu dopasowanego do zadanych argumentów **Znane_x** i **Znane_y**. Dla dopasowania wielomianu drugiego stopnia uzyskana tabela będzie wyglądała następująco:

Wartość współczynnika a2	Wartość współczynnika a1	Wartość współczynnika a_0
Niepewność wyznaczenia <i>a</i> ₂	Niepewność wyznaczenia <i>a</i> ₁	Niepewność wyznaczenia a ₀
Współczynnik korelacji R ²	Niepewność wyznaczenia	-
	wartosci y	

c) Wartość stałej elektrycznej wynosi:

*ɛ*₀=.....

- d) Prędkość światła:
 - *c*=.....
- e) Niepewność wyznaczenia stałej elektrycznej obliczyć można z prawa przenoszenia niepewności zastosowanego do wzoru roboczego (5). Można przy tym pominąć wyraz poprawkowy $3(\epsilon_r 1)D_p^2$ i obliczenia niepewności złożonej wykonać dla wzoru $\epsilon_0 = \frac{4}{\pi} \frac{(Cd)_{\text{extr}}}{D^2}$ z zastosowaniem prawa przenoszenia niepewności względnych:

$$\frac{u(\epsilon_0)}{\epsilon_0} = \sqrt{\left[\frac{u((Cd)_{\text{extr}})}{(Cd)_{\text{extr}}}\right]^2 + \left[\frac{-2 u(D)}{D}\right]^2} \quad , \tag{1}$$

więc:

$$u(\epsilon_0) = \epsilon_0 \frac{u(\epsilon_0)}{\epsilon_0}.$$
 (2)

- f) Czy obliczona wartość ε_0 jest zgodna w granicach niepewności rozszerzonej z wartością tabelaryczną?
- g) Obliczyć wartość prędkości światła i jej niepewność z prawa przenoszenia niepewności. Za stałą magnetyczną proszę przyjąć wartość $\mu_0=4\pi \cdot 10^{-7} \frac{V \cdot s}{A \cdot m}$.

Część II: kondensator płaski – wyznaczenie ε_r dla różnych dielektryków i kabel koncentryczny

Obliczyć wartości przenikalności względnej ε_r dla dielektryków w kondensatorze płaskim i dla kabla koncentrycznego (polietylen). Porównać obliczone wartości ε_r z wartościami tablicowymi (bez obliczania niepewności). Wyniki zestawić w tabeli.

Materiał	Wyznaczona wartość ε_r	Wartość tablicowa ε_r

Tab. 1. Porównanie wyznaczonych wartości ε_r z wartościami tabelarycznymi

Opracowanie zostało przygotowane na podstawie:

- 1. Zeszyt A1 do ćwiczeń laboratoryjnych z fizyki prof. dr hab. Janusz Wolny (red.), http://www.ftj.agh.edu.pl/wfitj/dydaktyka/zeszyt.pdf (dostęp: 29.02.2024)
- Instrukcja i opis ćwiczenia 33: Kondensatory Pracownia Fizyczna WFiIS AGH, <u>http://website.fis.agh.edu.pl/~pracownia_fizyczna/index.php?p=cwiczenia</u> (dostęp: 29.02.2024)
- Wykonywanie Regresji Liniowej przy użyciu programu Microsoft Excel Michał Poliński, <u>http://website.fis.agh.edu.pl/~pracownia_fizyczna/pomoce/Regresja%20w%20Excelu.p</u> <u>df</u> (dostęp: 29.02.2024)
- 4. Strona internetowa: *How to Fit a Polynomial Curve in Excel (Step-by-Step)*, <u>https://www.statology.org/excel-polynomial-fit/</u> (dostęp: 29.02.2024)