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Abstract
A majority edge-coloring of a graph without pendant edges is a coloring of its edges
such that, for every vertex v and every color α, there are at most asmany edges incident
to v colored with α as with all other colors. We extend some known results for finite
graphs to infinite graphs, also in the list setting. In particular, we prove that every
infinite graph without pendant edges has a majority edge-coloring from lists of size 4.
Another interesting result states that every infinite graph without vertices of finite odd
degrees admits a majority edge-coloring from lists of size 2. As a consequence of our
results, we prove that line graphs of any cardinality admit majority vertex-colorings
from lists of size 2, thus confirming theUnfriendly PartitionConjecture for line graphs.

Keywords Infinite graphs · Unfriendly partition conjecture · Majority
edge-colorings · Colorings from lists

1 Introduction

For a graph G, an edge-coloring c : E(G) → [k] is a majority k-edge-coloring if, for
every vertex v of G and every color α ∈ [k], the cardinality of edges incident to v

colored with α is not greater than the cardinality of edges incident to v colored with
all other colors. That is, if the degree of v is finite, then at most half of the incident
edges has the same color. Of course, graphs with pendant edges do not admit such
a coloring. As usual, the least number of colors in a majority edge-coloring is of
interest. The concept of majority edge-colorings was recently introduced in [3], and
was motivated by majority vertex-colorings, i.e. colorings of vertices of a graph G
such that each vertex v has at most as many neighbors with the color of v as with
other colors. They were studied already in 1966 by Lovász in [10] for finite graphs,
then extended to infinite graphs (e.g. in [2, 5, 12]), and more recently to digraphs in
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[9]. This problem for infinite graphs, including the well-known Unfriendly Partition
Conjecture, is presented in more detail in Sect. 4.

In [3], the following results were proved for finite graphs.

Theorem 1 ([3]) Every finite graph of minimum degree at least 2 admits a majority
4-edge-coloring.

Theorem 2 ([3]) A finite connected graph G admits a majority 2-edge-coloring if and
only if all vertices of G have even degrees and the size of G is even.

In this paper, we extend these results to infinite graphs whose orders are arbitrary
cardinal numbers, considering also the list version of edge-colorings. Section2 con-
tains some auxiliary results for Sect. 3, where we prove the list version of Theorem 2
for finite and infinite graphs. Next in Sect. 4, we confirm the well-known Unfriendly
Partition Conjecture for line graphs, which we derive from the results of the previ-
ous section. Actually, we prove there a stronger result that line graphs of any infinite
cardinality admit majority vertex-colorings from lists of size 2. In Sect. 5, we show
that Theorem 1 holds for infinite graphs, also in the list setting, and we formulate a
conjecture.

We use standard terminology and notation of graph theory (cf. [6]). A double ray
in an infinite graph is a two-sided infinite path, i.e. an infinite connected 2-regular
graph. A ray is a one-sided infinite path, and a unique vertex of degree one in a ray is
its startvertex.

Following Schmidt [11], we define the rank of a graph without rays as follows. We
assign rank 0 to all finite graphs. Next, we assign the smallest ordinal ρ as the rank of
any infinite graph G that does not already have rank less than ρ and contains a finite
set S of vertices such that each component of G − S has some rank less than ρ. We
shall make use of the following facts (cf. [5, 7, 11]). For every rayless graph G with
rank ρ(G) > 0, there exists a unique minimal set S that works, called the core of G. If
S is the core ofG, then the number of components ofG− S is infinite, and each vertex
of S has infinite degree in G. Moreover, if C1, . . . ,Cn is a finite set of components of
G − S, then the subgraph of G induced by S ∪ ⋃n

i=1 V (Ci ) has rank smaller than the
rank of G.

For convenience, we introduce some more notation and terminology. If W is an
oriented walk of a graph and e is an edge in W , then we denote the subsequent edge
by e+.

Assume that an edge-coloring of a graph is given. We say that a vertex v ismajority
colored if there is no color α such that v is incident with more edges of color α than
with the remaining edges. Note that if the degree of v is infinite, then v is majority
colored if and only if for every color α, the cardinality of the set of edges incident with
v that are not colored with α equals the degree of v. We say that a vertex v is almost
majority colored if there exists a color α, called the overwhelming color, such that of
the edges incident with v, strictly more have color α than do not, but at most two more
have color α than do not. Notice that if v is an almost majority colored vertex, then
the degree of v is finite, and the number of its incident edges with overwhelming color
exceeds the number of remaining incident edges by 1 or 2, depending on the parity of
the degree of v. If all vertices of a graph G are majority colored, then the graph G is
majority colored.
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2 Auxiliary Results

We begin with three lemmas which cover all three cases related to list majority edge-
colorings of finite graphs from lists of size 2.

Lemma 3 Let G be a connected finite graph of even size with all vertices of even
degree, and L be a set of lists for edges of G, each of size 2. Then there exists a
majority edge-coloring of G from the set L of lists.

Proof From the assumptions, it follows that G has an Euler tour W . We fix an orien-
tation of W . First, assume that all elements of L are the same. We color the edges in
W alternately. Clearly, this yields a majority coloring.

If not every list in L is the same, then we choose two consecutive edges e and e+
in W that have different lists. We color e+ with a color that does not belong to L(e).
Next, we color each consecutive edge in W starting from the edge following e+ in
such a way that, for every edge f , the next edge f + has a different color than f has.
The choice of e guarantees that each two consecutive edges inW have different colors.
Therefore, the obtained coloring is a majority coloring. ��
Lemma 4 Let G be a connected finite graph of odd size with all vertices of even
degree, and L be a set of lists for edges of G, each of size 2. Let b be an arbitrary
vertex of G. Then there exist two edge-colorings of G from the set L of lists such that
each vertex different from b is majority colored, and either b is majority colored in at
least one of them, or b is almost majority colored in both colorings with two different
overwhelming colors.

Proof Again, G has an Euler tour W . We color the edges in W starting from an edge
e1 incident to b in such a way that if any edge e has a color α, then e+ has a different
color, except possibly the last edge of W and the edge e1, which are incident to b.
Now, each vertex, possibly except b, is majority colored, and b may have exactly two
incident edges of one color more than the edges of all other colors.

For e1, we can choose one of two colors in L(e1), hence we get two different
edge-colorings of G as needed. ��
Lemma 5 Let G be a connected finite graph with some vertices of odd degrees, and
let L be a set of lists for edges of G, each of size 2. Then there exists an edge-coloring
from the set L of lists such that each vertex is majority colored, except possibly some
vertices of odd degrees which are almost majority colored.

Proof Let X be the set of all vertices of odd degrees inG. By the hand-shaking lemma,
the number of vertices in X is even. Hence, we can partition X into pairs. For each
such pair {x, y}, we join x and y by an extra path (with internal vertices outside of
G) of length at most three to obtain a graph G ′ of even size and with all vertices of
even degrees. We choose arbitrary lists of size 2 for the extra edges. Next, we color G ′
with a majority edge-coloring from the extended list set, which exists by Lemma 3.
Removal of the additional paths yields a desired edge-coloring of the graphG. Indeed,
the only vertices of G with deleted incident edges belong to X , and each such vertex
is majority colored or almost majority colored in G. ��
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In the proof of our main result, we make use of the following fact. Its proof uses a
standard argument in infinary combinatorics, but we include it for completeness.

Lemma 6 Let G be a graph, and let H be any family of graphs. Then G contains a
maximal subgraph F decomposable into elements ofH, in the sense that the remaining
subgraph G − E(F) contains no subgraph isomorphic to a graph ofH.

Proof The idea of the proof is to show that there is a maximal decomposition which
gives us a subgraph with the desired property rather than straightforwardly proving
that such a subgraph exists. First, we define a family F of subsets of the set 2E(G) of
all subsets of E(G) which are decompositions of some subgraphs of G into unions
of some pairwise edge-disjoint elements of H. That is, for each X ∈ F every A ∈ X
induces a subgraph isomorphic to an element ofH, and any A, B ∈ X are disjoint. We
show that every non-empty chain in (F ,⊆) has an upper bound. Let C be a non-empty
chain in F , and let M = ⋃ C. For every element C ∈ C, we have C ⊆ M , and M is a
decomposition of a certain subgraph ofG. HenceM majorizesC . Therefore, by Zorn’s
Lemma there exists a maximal element in F . The obtained maximal decomposition
gives a subgraph from the statement of the theorem. ��

3 Lists of Size 2

Let us formulate the main result of this section.

Theorem 7 A graph G of arbitrary order admits a majority edge-coloring from any
set L of lists, each of size 2, if and only if no vertex of G has odd degree and G has no
finite component of odd size.

The "only if" part is obvious. For the "if" part, we prove the following slightly
stronger result.

Theorem 8 Let G be a graph, and L be a set of lists for the edges of G, each of size
2. Then either there exists an edge-coloring of G from the set L of lists in which every
vertex of G which is not of odd degree is majority colored and each vertex of odd
degree in G is either majority colored or almost majority colored, or G has a finite
component of odd size with all vertices of even degree.

Proof We may assume that G is connected; otherwise we can argue component-wise.
Let us call an edge-coloring from the lists L good if it satisfies the claim, i.e. only
vertices of odd degrees need not be majority colored, but then they have to be almost
majority colored.

The case where G is finite follows from Lemma 3 and Lemma 5. Assume that G
is infinite.

If G contains a double ray, then let F be a maximal subgraph of G decomposable
into double rays, which exists by Lemma 6. Fix a decomposition P of F into double
rays. We color each double ray P ∈ P from the lists in L in so that adjacent edges get
distinct colors. Hence, every vertex of F is majority colored in F since no vertex has
odd degree in F .
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Nowwe consider every component H ofG−E(F). Clearly, each vertex v ∈ V (F)

belongs to exactly one component of G − E(F) (which can be a trivial graph K1 but
then we have nothing to do because all edges incident to v in G are already colored).
To color the edges of H , we distinguish three cases.

Case 1. Component H is a finite graph.
Let X be the set of vertices of odd degrees in H . If the set X is non-empty, then we
apply Lemma 5 for a good coloring of H . If X is empty and the size of H is even,
then H admits a majority coloring by Lemma 3.

Suppose now that X is empty but the size of H is odd. For each such component
H , we select a vertex b = b(H) ∈ V (H) ∩ V (P), for some P ∈ P . For P ∈ P , let
B(P) denote the set of all vertices b(H), for some component H , which belong to P .
In view of Lemma 4, there exists a coloring from L of each such component H such
that every vertex of H is majority colored, except possibly the vertex b(H) which is
almost majority colored and overwhelmed by a certain color. We now show how to
make these vertices majority colored.

To make all vertices of a given double ray P majority or almost majority colored in
G, we perform the following procedure of shifting the edge-coloring of P . We consec-
utively enumerate the vertices of P by integers, i.e. V (P) = {. . . , v−1, v0, v1, . . .}.
For i = 0, 1, 2, . . . , we verify whether vi ∈ B(P) and vi is not majority colored.
Suppose that this is the case and vi is overwhelmed by a certain color in H that is also
a color of an edge e of P incident to vi . Without loss of generality, we can assume
that e = vivi+1. Indeed, if e = vi−1vi , then, by Lemma 4, we can recolor the edges
of H such that vi is not overwhelmed by the color of the edge vi−1vi . Next, we put
another admissible color from L(e) on e = vivi+1, and we consecutively recolor the
edges v jv j+1 of P , for j = i + 1, i + 2, . . . , so that the color of v jv j+1 is distinct
from the color of the previous edge v j−1v j . Next, we examine in a similar way the
vertices v−i for i = 1, 2, . . .. If v−i ∈ B(P), then we may analogously assume that vi
is overwhelmed by a color of the edge v−i−1v−i . Then we consecutively recolor the
edges v− j−1v− j , for j = i + 1, i + 2, . . . , so that the color of v− j−1v− j is distinct
from that of the edge v− jv− j+1.

Thus, for any double ray P ∈ P , we obtain a good edge-coloring of the subgraph
induced by the edges of P and all finite components sharing a vertex with P .

Case 2. Component H is an infinite rayless graph.
It suffices to prove that every rayless graph, finite or infinite, admits a good edge-
coloring. To this end, we proceed by transfinite induction on the rank of H . If the
rank of H is 0, then H is a finite graph, which we settled in Case 1. Assume then that
the rank of H is greater than 0. Let S be the core of H . Then each vertex of S has
infinite degree in H . Let C be the set of all components of H − S. For C ∈ C, denote
C ′ = H [S ∪ V (C)] − E(H [S]), the subgraph consisting of edges of the component
C and edges between C and S.

Denote by S1 the set of all vertices s ∈ S that are joined to dH (s) components
from C by exactly one edge. For each s ∈ S1, select a set C(s) of cardinality dH (s) of
such components. As the set S1 is finite, this can be done in such a way that the sets
C(s), s ∈ S1, are pairwise disjoint. Next, partition each set C(s) into pairs (C1,C2).
For each such pair, take a good edge-coloring of the subgraph C ′

1 ∪ C ′
2, in which s

has degree 2. Such a good coloring exists by the induction hypothesis. It is easy to see
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that each vertex of S1 is already majority colored no matter how the remaining edges
incident to it will be colored.

Now, consider the components of C \ ⋃
s∈S1 C(s). For each such component C

take a good coloring of C ′, which exists by the induction hypothesis, and color H [S]
arbitrarily. Hence, all edges in H are colored.

Observe that each vertex v of any component C ∈ C is majority colored, unless v

is of odd degree in H but then v is almost majority colored. This is because NH (v) ⊂
V (C ′). Also, every vertex s ∈ S \ S1 is majority colored, even if its degree is odd for
infinitely many components C ∈ C.

Case 3. Component H is an infinite graph with a ray.
Let F ′ be amaximal subgraph of H decomposable into rays that exists by Lemma 6.

We select a decompositionR of F ′ into rays. Observe that the decompositionRmay
contain any number of rays, but any two rays share infinitely many vertices since F ′
does not contain a double ray. Each component of H − E(F ′) is a rayless graph, finite
or infinite. Let B denote the set of those finite components that are of odd size and
with all vertices of even degrees. For each K ∈ B, we assign exactly one ray R and
a vertex b(K ) ∈ V (K ) ∩ V (R). Let B(R) be the set of all vertices b(K ) ∈ V (R) of
components K ∈ B to which R is assigned.

First, we color all components K of H − E(F ′). If K ∈ B and b = b(K ), then
we color the edges of K such that only b can be a vertex of K overwhelmed by some
color (by Lemma 4). Otherwise, if K /∈ B, then we choose a good coloring of K as
in Case 1 or 2.

Denote by D the set of all startvertices of rays in R. Clearly, a vertex v may have
odd degree in F ′ only if v ∈ D. For each v ∈ D, let r(v) be the cardinality of the set
R(v) of rays in R starting at v.

Let v0 ∈ D. If r(v0) is finite, then we color initial edges of consecutive rays
in R(v0) such that v0 is either majority colored or it has odd degree and is almost
majority colored in the subgraph induced by the rays ofR(v0) and the component K
of H − E(F ′) to which v0 belongs.

Let r(v0) be infinite.We partition the setR(v0) into two subsetsR1(v0) andR2(v0)

of the same cardinality. That is, to each ray inR1(v0) there corresponds a unique ray in
R2(v0).We color the initial edges of rays inR(v0) in such away that the corresponding
rays do not get the same color. Thus, the vertex v0 is majority colored, and each ray
inR(v0) has its initial edge already colored.

Let R = v0v1v2 . . . be a ray in R(v0). We successively color edges of R so that,
for each i ≥ 1, the edges vi−1vi and vivi+1 get distinct colors, unless vi = b(K ) for
some K ∈ B and vi is overwhelmed by the color α. Again, by Lemma 4, we may
recolor K if necessary so that α is different to the color of vi−1vi . Then we color the
edge vivi+1 with any color different from α, perhaps with the color of vi−1vi .

Hence, we produced a good coloring of the subgraph RH consisting of the ray R
and all components K of H − E(F ′) that meet R at the vertex b(K ). It is easy to
see that in this way we obtain a good coloring of the union RH (v0) of subgraphs
{RH : R ∈ R(v0)}. Indeed, each vertex v �= v0 that belongs to at least one ray in
R(v0) has either even or infinite degree in

⋃R(v0), and all other vertices ofRH (v0)

are well colored.
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For every v ∈ D, we color the subgraphsRH (v) in the same way. Now, we want to
show that this gives a good edge-coloring of the component H . Consider the set Z of
all good edge-colorings of subgraphs of H that are unions ofRH (v) for some v ∈ D.
For c, c′ ∈ Z , we write c ≤ c′ if the domain of c is contained in the domain of c′ and
the restriction of c′ to the domain of c coincides with c. Let C be a non-empty chain
in (Z ,≤), and let m = ⋃

C . For every element c ∈ C , we have c ≤ m, and m ∈ Z .
Therefore, by Zorn’s Lemma, there exists amaximal elementM in Z .We claim thatM
is a good coloring of H . Suppose, contrary to the claim, that there is a subgraphRH (v)

of H , for some v ∈ D, that does not belong to the domain of M . However, it is easy to
see that M and any good coloring of RH (v) gives a good coloring because common
vertices are well colored, contrary to the assumption. Indeed, the only problem might
occur when a certain vertex w has odd degrees in both RH (v) and the domain of M ,
with disjoint sets of incident edges. Then w has to be the startvertex of a ray inR(v).
However, then w could not have odd degree in the union of rays in the domain of M .

We have just shown that, for every double ray P ∈ P , there exists a good edge-
coloring of P and all components of G − E(F) sharing a vertex with P . Analogously
as above, application of Zorn’s Lemma gives a good coloring of the whole graph G. ��

We conclude with an obvious consequence of Theorem 7 concerning usual majority
colorings without lists.

Corollary 9 A graph G of arbitrary order admits a majority 2-edge-coloring if and
only if no vertex of G has an odd degree and no component of G is a finite graph of
odd size.

4 Unfriendly Partition Conjecture Holds for Line Graphs

Recall that a majority k-vertex-coloring of a graph G is a mapping c : V (G) → [k]
such that, for every vertex v ∈ V (G), the cardinality of neighbors of v with the color
c(v) is not greater than the cardinality of neighbors in other colors. Equivalently, a
graph G admits a majority k-vertex-coloring if there is a partition V1, . . . , Vk of V (G)

such that, for each vertex v ∈ Vi , one has |N (v) ∩ Vi | ≤ |N (v) ∩ (V \ Vi )|, for
i = 1, . . . , k. The following result was proved by Lovász [10] for usual coloring but
can be extended to the list setting with essentially the same proof, which we include
for completeness.

Theorem 10 ([10]) Every finite graph admits a majority vertex-coloring from any lists
of size 2.

Proof Let G be a finite graph with a set L of lists of size 2 assigned to every vertex
of G. Let c be a vertex-coloring of G from L with the least number of edges with
both endvertices of the same color. Then c is a majority vertex-coloring. Indeed, if
there existed a vertex v with more than half of its neighbors with the color of v, then
recoloring of vwould decrease the number of edgeswith the same color of endvertices.

��
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Cowan and Emerson, in an unpublished work, conjectured that every infinite graph
has a majority 2-vertex coloring. It was disproved by Shelah and Milner by showing
the following.

Theorem 11 ([12]) There exist uncountable graphs without majority 2-vertex-
coloring. However, every infinite graph has a majority 3-vertex-coloring.

The question whether countably infinite graphs have a majority 2-vertex-coloring
remains open, and is known as the Unfriendly Partition Conjecture, which reads as
follows.

Conjecture 12 Every countably infinite graph admits a majority 2-vertex-coloring.

The Unfriendly Partition Conjecture has been confirmed for graphs:

• with finitely many vertices of infinite degree (Aharoni, Milner, and Prikry [1]),
• with finitely many vertices of finite degree (Aharoni, Milner, and Prikry [1]),
• without rays (Bruhn, Diestel, Georgakopoulos, and Sprüssel [5]),
• without a subdivision of an infinite clique (Berger [2]).

Let us add that in 2023 Haslegrave proved the following.

Theorem 13 ([8]) Every countable graph admits a majority vertex-coloring from any
lists of size 3.

Our Theorem 8 easily implies the following result.

Theorem 14 Every line graph of arbitrary infinite order admits a majority vertex-
coloring from any lists of size 2.

Proof Let G be a line graph of a graph H . Let L be any set of lists for vertices of G,
each of size 2. Simultaneously, L is the set of lists for edges of H .

Obviously, it is enough to prove that every component ofG satisfies the claim. That
is, it suffices to prove the theorem for connected graphs G. For finite graphs, the claim
follows from Theorem 10.

Then suppose that G = L(H) is an infinite connected graph. Hence, H is also an
infinite connected graph. By Theorem 8, there exists an edge-coloring c of H from the
set L of lists such that all vertices are majority colored, except possibly some vertices
of odd degrees which are almost majority colored. Naturally, we color each vertex e
of G with the color c(e) of the corresponding edge e = uv of H . It is easy to see that
the cardinality of neighbors of e in G colored with c(e) cannot be greater than that of
other colors, even if one or two endvertices u, v of e have odd degree in H and c(e) is
an overwhelming color. Thus, we obtained a majority 2-vertex-coloring of the graph
G. ��

Consequently, line graphs form another class of graphs satisfying the Unfriendly
Partition Conjecture.

Corollary 15 The Unfriendly Partition Conjecture holds for line graphs.
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5 General Bound

In this section, we discuss a general upper bound for the least size of lists in a majority
edge-coloring of graphs of arbitrary order. Note that this problem is related to the
well-known List Coloring Conjecture, which is still open. However, for our purpose,
the following result of Borodin, Kostochka and Woodall [4] suffices.

Theorem 16 ([4]) Let G be a finite graph with maximum degree �(G), and let L be
a set of lists, each of size � 3

2�(G)� assigned to the edges of G. Then G has a proper
edge-coloring from these lists.

Bycompactness, this theorem is also true for infinite graphs. This result enables us to
prove the following lower bound for the size of lists, allowing amajority edge-coloring.

Theorem 17 Let G be a graph of arbitrary order and without pendant edges. Then G
admits a majority edge-coloring from any collection of lists, each of size 4.

Proof Given a graphG, analogously as in [3] we construct a graphG∗ in the following
way. We split every vertex v of degree greater than 3 in G into a set of vertices
{vi : i ∈ I (v)} of degrees 2 or 3 in G∗ by a suitable partition of its neighborhood
NG(v). Naturally, if the degree dG(v) is infinite, then the cardinality of the index set
I (v) is equal to dG(v). Observe that there is a one-to-one correspondence between
the edges of G and G∗. So, the list for an edge of G∗ is the same as the list for its
counterpart in G. Each component of the graph G∗ is a countable subcubic graph. By
the above result of Borodin, Kostochka andWoodall for countable graphs, there exists
a proper coloring of G∗ from any collection of lists of size 4. This coloring transferred
to the graph G yields a majority coloring since for every v ∈ V (G), the edges incident
to any single vertex of {vi : i ∈ I (v)} have distinct colors. ��

This bound is tight. Namely, for each infinite cardinal κ , there exists a graph of
order κ that needs four colors in any majority edge-coloring. To see this, consider the
following construction. Take any graph G ′ of order κ and a subcubic Class 2 finite
graph H . Then join them by an edge vu, where v ∈ V (H) and u ∈ V (G ′), to create a
graph G. If there existed an edge vw ∈ E(H) such that H − vw was Class 1, then we
could easily extend a proper 3-edge-coloring of H −vu to a majority 3-edge-coloring
of H + vu by putting the same color on two edges vw, vw′ incident to v in H . Hence,
to obtain a graph G without a majority 3-edge-coloring, we take a vertex v such that
for every incident edge vw the subgraph H − vw is still of Class 2 (the Petersen
graph is an example). Clearly, the graph H may contain more vertices v1, . . . , vk
such that the deletion of an arbitrary edge viwi , for each i = 1, . . . , k, results in a
Class 2 graph. Then we can join each vertex vi by an edge to a vertex ui ∈ V (G ′)
to obtain a graph G that does not admit a majority 3-edge-coloring. However, k has
to be smaller than |V (H)| since if, for each v ∈ V (H), we delete an incident edge,
then we get a graph with maximum degree two which clearly admits a majority 3-
edge-coloring. Therefore, some vertices of H have to maintain their degrees also in
G, otherwise G could have a majority 3-edge-coloring. This observation justifies the
following conjecture showing that subcubic Class 2 subgraphs are the only obstacle
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for the existence of a majority 3-edge-coloring. For finite graphs, this conjecture was
already formulated in [3].

Conjecture 18 Every graph G without pendant edges admits a majority 3-edge-
coloring unlessG contains a Class 2 graph H with�(H) = 3 as an induced subgraph,
and with some vertices of H with degrees at most 3 in G.

Acknowledgements The authors are very grateful to anonymous referees whose valuable comments
improved the paper considerably.
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