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A symmetric digraph ←→G is obtained from a simple graph G by replacing each edge uv

with a pair of opposite arcs −→uv , −→vu . An arc-colouring c of a digraph ←→G is distinguishing if 
the only automorphism of ←→G preserving the colouring c is the identity. Behzad introduced 
the proper arc-colouring of type I as an arc-colouring such that any two consecutive arcs −→uv , −→v w have distinct colours. We establish an optimal upper bound ⌈2

√
Δ(G)⌉ for the least 

number of colours in a distinguishing proper colouring of type I of a connected symmetric 
digraph ←→G . Furthermore, we prove that the same upper bound ⌈2

√
Δ(G)⌉ is optimal for 

another type of proper colouring of ←→G , when only monochromatic 2-paths are forbidden.
© 2025 Published by Elsevier B.V.

1. Introduction

We use standard graph theory terminology and notation. An edge-colouring c of a graph G is called distinguishing if the 
identity is the only automorphism preserving c. In 2015, Kalinowski and Pilśniak [3] introduced the distinguishing chromatic 
index χ ′

D(G) of a graph G as the least number of colours in a proper distinguishing edge-colouring of G . In particular, they 
proved that Δ(G) ≤ χ ′

D(G) ≤ Δ(G) + 1 for every connected graph G of order |G| ≥ 3 except for four graphs of small order 
K4, C4, C6, K3,3.

By 
←→
G we denote a symmetric digraph obtained from a simple graph G by replacing each edge uv by a pair of opposite 

arcs −→uv and −→vu . The concept of distinguishing edge-colourings of graphs can be naturally extended to arc-colouring of 
digraphs. This problem is particularly interesting for symmetric digraphs since the automorphism group of a symmetric 
digraph 

←→
G coincides with the automorphism group of the underlying graph G . Note that, in general, the automorphism 

group of a digraph is a subgroup of the automorphism group of the underlying graph. Let us note that distinguishing 
arc-colourings of digraphs were studied in a different context by Meslem and Sopena [6].

A definition of proper arc-colouring of a digraph depends on a definition of adjacency of arcs. There are 15 possible defi
nitions of a proper arc-colouring of a digraph since there are 15 possible definitions of adjacency of two arcs corresponding 
to non-empty forbidden monochromatic subsets of the set of the four digraphs: 2-cycle A1, 2-path A2, source A3 and sink 
A4 (see Fig. 1).

In this paper, we investigate distinguishing proper arc-colouring for two of these definitions, all other 13 ones have 
already been investigated in [4] and [5]. One of these two definitions has already been studied in the literature. An arc
colouring of a digraph is called proper of type I if there are neither monochromatic 2-cycles nor monochromatic 2-paths. 
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Fig. 1. Four weakly connected digraphs with two arcs. 

We denote by χ ′
1,2(

←→
G ) the chromatic index of type I of a symmetric digraph 

←→
G , i.e. the least number of colours in a 

proper arc-colouring of 
←→
G of type I. We also use the notation χ ′

2(
←→
G ) for another chromatic index of 

←→
G when only 

monochromatic 2-paths are forbidden.
A proper colouring of type I in digraphs was introduced by Behzad [1] in 1965, and then investigated by Harner and 

Entringer [2]. Poljak and Rödl [7] proved the following notable result in 1981.

Theorem 1. ([7]) For every graph G

χ ′
1,2(

←→
G ) = min

{︃
k : χ(G) ≤

(︃
k 

⌊k/2⌋
)︃}︃

,

where χ(G) is the chromatic number of the underlying graph G.

Analogously, χ ′
D1,2

(
←→
G ) and χ ′

D2
(
←→
G ) stand for the distinguishing chromatic indices of 

←→
G , i.e. the least number of 

colours in a distinguishing proper arc-colouring, where the indicated two-arc digraphs cannot be monochromatic.
In Section 2, we discuss distinguishing proper colouring of type I of symmetric digraphs. There, we formulate our main 

result, Theorem 4, which provides an optimal upper bound for the distinguishing chromatic index χ ′
D1,2

(
←→
G ). Its proof is 

given in Section 3. Finally in Section 4, we discuss proper arc-colourings, where only monochromatic 2-paths are forbidden.
We restrict our investigations of distinguishing colouring to connected graphs G to avoid dealing with isomorphic com

ponents.
Given an arc-colouring of 

←→
G , we write that a vertex v is fixed, if v is a fixed point of every automorphism of 

←→
G 

preserving this colouring.

2. Distinguishing chromatic index 𝝌 ′
D1,2

(
←→
G )

In this section, we investigate the distinguishing chromatic index χ ′
D1,2

(
←→
G ). Clearly, for every connected symmetric 

digraph 
←→
G we have χ ′

D1,2
(
←→
G ) ≥ χ ′

1,2(
←→
G ). First, we show that the equality is achieved for complete graphs.

Proposition 2. Every proper arc-colouring of type I of a complete symmetric digraph 
←→
Kn is distinguishing. Hence,

χ ′
D1,2

(
←→
Kn ) = χ ′

1,2(
←→
Kn ) = min

{︃
k : n ≤

(︃
k 

⌊ k 
2 ⌋

)︃}︃
.

Proof. Let c be any proper arc-colouring of type I of 
←→
Kn . Suppose c is not distinguishing. Therefore, there exists a non

trivial automorphism φ preserving the colouring c. Let u and v be two distinct vertices of 
←→
Kn such that φ(u) = v . If the 

arc −→uv is coloured with α, then there must exist an arc −→v w of colour α outgoing from the vertex v . However, this would 
create a monochromatic 2-path if w ≠ u, or a monochromatic 2-cycle if w = u, a contradiction. □

Another example of a graph G that achieves the equality χ ′
D1,2

(
←→
G ) = χ ′

1,2(
←→
G ) is an odd cycle. We now determine the 

distinguishing chromatic index χ ′
D1,2

of any path and cycle, which will be useful in the proof of the main theorem.

Observation 3. For symmetric directed paths 
←→
Pn we have χ ′

D1,2
(
←→
P2k) = 2 and χ ′

D1,2
(
←−→
P2k+1) = 3. For every symmetric di

rected cycle 
←→
Cn with n ≥ 3, we have χ ′

D1,2
(
←→
Cn ) = 3.

Proof. For a path 
←→
Pn , there is a proper arc-colouring of type I with two colours, which is unique up to the swapping of 

colours. The only non-trivial automorphism of 
←→
P2k , a reflection, does not preserve this colouring since c(−−→v1 v2) ≠ c(−−−−→vn vn−1). 

For 
←−→
P2k+1, we need a third colour for one arc, say −−→v1 v2. The vertex v1 is thus fixed, and consequently, all vertices are fixed.
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For even cycles 
←→
C2k , there is exactly one proper colouring of type I with two colours up to the swapping of colours. This 

colouring is not distinguishing. We change the colour of the arc −−→v1 v2 to a third colour. The vertices v1 and v2 are thus 
fixed and, consequently, all vertices are fixed, too.

For odd cycles, we have χ ′
1,2(

←−→
C2k+1) = 3, and there exists a proper colouring c with three colours, where only two arcs 

−−→vn v1, −−→v2 v1 have a third colour. The vertices v1, v2 and vn are fixed, because they have unique sets of colours of ingoing 
arcs. Consequently, the colouring is distinguishing. □

The main result of this paper is the following optimal upper bound for the distinguishing chromatic index of type I for 
any connected symmetric digraph.

Theorem 4. If G is a connected graph of maximum degree Δ, then

χ ′
D1,2

(
←→
G ) ≤

⌈︂
2
√

Δ
⌉︂
.

The proof of Theorem 4 is given in Section 3. Let us now observe that the equality holds for symmetric stars 
←−→
K1,Δ , while 

only two colours are enough in a proper arc-colouring, i.e. χ ′
1,2(

←−→
K1,Δ) = 2 by Theorem 1. This shows that the difference 

between the chromatic index χ ′
1,2(

←→
G ) and the distinguishing chromatic index χ ′

D1,2
(
←→
G ) can be arbitrarily large.

Proposition 5. For the symmetric directed star 
←−→
K1,Δ we have

χ ′
D1,2

(
←−→
K1,Δ) =

⌈︂
2
√

Δ
⌉︂
.

Proof. Set k =
⌈︂

2
√

Δ
⌉︂

. Let w be a vertex of degree Δ in K1,Δ . In a proper distinguishing colouring, every 2-cycle has to 

be coloured with a different pair of two colours. Moreover, if a colour α is used on an arc −→uw , then it cannot be used on 
any arc −→w v , hence the sets of colours for arcs ingoing to w and those outgoing from w are disjoint. We need Δ pairs of 
colours. We use colours 

{︂
1,2, . . . ,

⌈︁ k 
2

⌉︁}︂
for the arcs from w to Δ pendant vertices and 

{︂⌈︁ k 
2

⌉︁ + 1,
⌈︁ k 

2

⌉︁ + 2, . . . ,k
}︂

colours 
for the arcs in the opposite direction. It is easy to see that⌈︃

k 
2

⌉︃
·
⌊︃

k 
2

⌋︃
≥ Δ. □

3. Proof of Theorem 4

If Δ(G) = 1, then G = K2, and trivially, χ ′
D1,2

(
←→
K2 ) = 2. For Δ = 2 the claim follows by Observation 3. Now, we prove 

Theorem 4 for Δ ≥ 3. We will use the terms parent, child and sibling with respect to a given BFS tree.
Let G be a connected graph with maximum degree Δ ≥ 3. We construct a distinguishing proper arc-colouring c of the 

symmetric digraph 
←→
G using colours from the set {1, . . . ,k}, where k =

⌈︂
2
√

Δ
⌉︂

.

To ensure that c is proper, for each vertex v we assign a list L(v) of ⌊ k 
2 ⌋ admissible colours for arcs ingoing to v , such 

that adjacent vertices get distinct lists. Then the arcs of 
←→
G are coloured according to the rule

c(−→uv ) ∈ L(v) \ L(u) (⋆)

for every arc −→uv of 
←→
G . Consequently, no 2-cycle or 2-path will be monochromatic.

To ensure that c is distinguishing, we first pick a vertex w of degree Δ, and define its list L(w) = {︁⌈︂ k 
2

⌉︂
+ 1, . . . ,k

}︁
. The 

arcs incident to w induce a star, and we colour them as in the proof of Proposition 5. That is, the arcs ingoing to w get 
colours from L(w), while the arcs outgoing from w get colours from 

{︁
1, . . . ,

⌈︂
k 
2

⌉︂}︁
in such a way that each neighbour u of 

w gets a distinct pair of two colours of the arcs −→uw ,−→wu . The vertex w will be the only vertex of 
←→
G with this colouring of 

incident arcs, so w will be fixed by every automorphism of 
←→
G preserving our colouring c.

For every neighbour u of w , we assign the list L(u) = L(w) ∪ {c(−→wu )} \ {c(−→uw )}, which is distinct from the lists of its 
siblings, and the colours of arcs between u and w satisfy rule (⋆). Observe also that all neighbours of w are fixed, since w
is fixed.

We further proceed by considering consecutive vertices of G in a BFS ordering rooted at w . At each stage of the pro
cedure, every vertex x with an assigned list L(x) is fixed, and all arcs between vertices with assigned lists are coloured 
according to rule (⋆). Each stage begins with finding the first vertex v in the BFS order, which has a child without an 
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assigned list of admissible colours. Let A be a maximal set of children of v that do not have assigned lists, have the same 
set of neighbours with already assigned lists, have the same degree, and the same set of neighbours with already assigned 
lists. Recall that all vertices with assigned lists are already fixed. Consequently, an automorphism φ of 

←→
G can move a child 

of v only onto a child of v within the same set A.
For each such set A, we proceed in three steps:

1. We colour the arcs between the vertex v and the set A so that each vertex of A is fixed.
2. We assign a list L(u) to every vertex of A which is distinct from L(w) and from the lists of neighbours of u.
3. According to rule (⋆), we colour all uncoloured arcs between vertices of A and vertices with assigned lists of admissible 

colours.

After completing this procedure for every set A and every vertex v in the BFS ordering, we clearly obtain a proper distin
guishing arc-colouring of 

←→
G .

The arcs between the vertices of A and the vertex v induce a star. We colour them as in the proof of Proposition 5, that 
is, each pair (−→vu ,−→uv ) of opposite arcs between v and u ∈ A gets a distinct pair of colours (α,β) such that α / ∈ L(v) and 
β ∈ L(v). Thus, the set A is also fixed point-wise.

Now, we want to assign to every vertex u ∈ A a suitable list L(u) containing c(−→vu ) and excluding c(−→uv ). Additionally, 
we have to ensure that adjacent vertices get different lists. Let N L(A) denote the set of neighbours of A with already 
assigned lists. Clearly, |N L(A)| ≤ Δ, and the equality holds only if A is an independent set of vertices of degree Δ. For each 
u ∈ A, to establish its list L(u), we choose ⌊ k 

2 ⌋ − 1 colours from the set of k − 2 colours since we require c(−→vu ) ∈ L(u) and 
c(−→uv ) / ∈ L(u). The list L(u) has to be different from the lists assigned to vertices of N L(A) and from the list L(w) of the root 
w . Hence, such a list L(u) exists whenever

(︃
k − 2 

⌊ k 
2 ⌋ − 1

)︃
≥ Δ + 1.

We claim that this inequality holds for each Δ ≥ 13. As k =
⌈︂

2
√

Δ
⌉︂

, it follows that Δ ≤ k2

4 . Thus, it suffices to show that 
the inequality

(︃
k − 2 

⌊ k 
2 ⌋ − 1

)︃
≥ k2

4 
+ 1 (1)

holds for each k ≥ 8. It clearly holds for k = 8 and k = 9. For greater values of k, we use induction taking into account the 
parity of k. Consider first the case when k is even, and suppose that the inequality is true for some even k ≥ 8. We want to 
prove that it also holds for k + 2. To this end observe that

(︃
(k + 2) − 2

k+2
2 − 1 

)︃
=

(︃
k − 2 
k 
2 − 1

)︃
k(k − 1)

k2

4 
≥

(︃
k2

4 
+ 1

)︃
k(k − 1)

k2

4 
≥ k(k − 1),

where the first inequality follows from the induction hypothesis. Thus, it suffices to show that k(k − 1) ≥ (k+2)2

4 + 1. This 
inequality is equivalent to the quadratic inequality 3k2 − 8k − 8 ≥ 0, which holds for k ≥ 4. Analogously, we use induction 
for odd k.

Thus, we can assign lists L(u) for all u ∈ A when Δ ≥ 13 since ⌈2
√

13⌉ = 8. Next, we colour all arcs incident to vertices 
of A according to the rule (⋆), and continue the procedure for another set A if it exists for the vertex u. Next, we consider 
a subsequent vertex v in the BFS ordering that has a child without an assigned list of colours, and repeat the procedure. If 
such a vertex does not exist, i.e. all vertices have assigned lists, then the obtained arc-colouring is proper and distinguishing, 
as desired. Consequently, our theorem holds for every graph with maximum degree Δ ≥ 13.

Suppose now that Δ ≤ 12, and there is a vertex u ∈ A such that c(−→vu ) = α and c(−→uv ) = β and all lists containing α, but 
not β , are already assigned to the vertices of N L(A) ∪ {w}. There are ⌊ k 

2 ⌋(k − ⌈ k 
2 ⌉) ≥ Δ distinct pairs of colours for pairs of 

opposite arcs between the parent v with a given list L(v) and its children. At least one of them, (α1, β1), is not used, so we 
can recolour the arcs between u and v setting c(−→vu ) = α1 and c(−→uv ) = β1. The number of lists L such that {α,β} \ L = {β}
is equal to 

(︁ k−2 
⌊ k 

2 ⌋−1

)︁
. The same is the number of lists L with {α1, β1} \ L = {β1}. By the inclusion-exclusion principle, the 

number m of lists L such that {α,β} \ L = {β} and {α1, β1} \ L = {β1} equals

m = 2

(︃
k − 2 

⌊ k 
2 ⌋ − 1

)︃
− m1,

where m1 is the number of lists L counted twice, that is,

4 
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Fig. 2. Proper distinguishing colouring of ←→
K4,4 with three colours: only the arcs coloured with the third colour are drawn, all remaining arcs directed 

downwards are coloured with the first colour, and all arcs upwards with the second colour.

m1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(︁ k−3 
⌊ k 

2 ⌋−1

)︁
if {α,β} ∩ {α1, β1} = {α},(︁ k−3 

⌊ k 
2 ⌋−2

)︁
if {α,β} ∩ {α1, β1} = {β},(︁ k−4 

⌊ k 
2 ⌋−2

)︁
if {α,β} ∩ {α1, β1} = {α,β},

0 if {α,β} ∩ {α1, β1} = ∅.

It is easy to verify that m ≥ Δ + 1 for Δ ∈ {7,8,10,11,12}. Moreover, it follows that if all lists L with {α,β} \ L = {β} are 
already assigned to the vertices of N L(A) ∪ {w}, then for any pair of colours (α1, β1) ≠ (α,β), there is a free list L with 
{α1, β1} \ L = {β1}. Therefore, we can assign a suitable list L(u) to every vertex u of A, for these values of Δ.

For Δ = 9, we have k = 6 colours. Since m ≥ 9, we can find a suitable list L(u) for each vertex u ∈ A whenever |N L(A)| ≤
8. Suppose that |N L(A)| = 9 and that L(w) = {4,5,6} is the only list available for a certain vertex u ∈ A with c(−→vu ) = α and 
c(−→uv ) = β . It follows that α,α1 ∈ {4,5,6} and β,β1 ∈ {1,2,3}. Moreover, the pairs {α,β} and {α1, β1} cannot be disjoint 
since otherwise we would have 10 free lists for u. Suppose first that α = α1. Without loss of generality, we may assume 
that α = 4, β = 1 and β1 = 2. Thus, the eight lists containing 4 and not containing 1 or 2, different from L(w), are assigned 
to the vertices of N L(A). In particular, L(v1) = {1,3,4} and L(v2) = {2,3,4} for some v1, v2 ∈ N L(A). We put L(u) = L(w)

and colour the pairs of arcs between u and vi with the same pair of colours c(−→uvi) = 3, c(−→viu ) = 5, for i = 1,2 (recall that 
each vertex of A ∪ N L(A) is already fixed). Consequently, the vertex u has a colouring of incident arcs different from that of 
the root w , therefore the root w is still fixed. If β = β1, then we proceed in a similar way.

For Δ = 6, we have k = 5 colours, and ten 2-element lists. If there is no free list L(u) for some vertex u ∈ A, then we 
cancel the colouring of arcs between the vertex v and its children. Clearly, |A| ≤ 5. Since |N L(A)| ≤ 6, there are at least three 
lists L1, L2, and L3 which are distinct from L(w), which are not assigned to any vertex of N(A) and hence can be used for 
the vertices of A. It is not difficult to verify that for two of them, say L1, L2, there are lists L(v1), L(v2) assigned to some 
vertices v1, v2 ∈ N L(A) such that Li ∩ L(vi) = ∅ for i = 1,2. If the independence number of G[A] is at least 3, we assign L1
to three independent vertices of A. We use distinct pairs of colours for pairs of opposite arcs between v1 and the vertices 
with L1 (there are four possible such pairs). The other vertices of A get the list L2, and we can colour the arcs between 
them and v1 with pairs of colours, possibly equal, different from the pairs of colours of arcs between v1 and vertices of A
with the list L1. Next, we colour the arcs between v2 and the vertices with L2 with two distinct pairs of colours. As the 
vertices v1 and v2 are fixed, all the vertices of A are fixed. We colour the remaining arcs of 

←→
G [A ∪ N L(A)] according to 

the rule (⋆).
Suppose that the independence number of G[A] is less than 3. Hence G[A] is a clique or G[A] is spanned by two disjoint 

cliques of orders n1 and n2, where 1 ≤ n1 ≤ n2 ≤ 4. If these two cliques are isomorphic, then n1 = n2 = 2 and |A| = 4. Hence 
|N L(A)| ≤ 5, so there are four free lists. We assign them to the vertices of A and colour the arcs of 

←→
G [A ∪ N L(A)] in 

such a way that colours of the arcs between the parent v and the two cliques are different, thus fixing all vertices of A. If 
n1 < n2 ≤ 4 or A induces a clique of order n2, then |N L(A)| ≤ 5 − n2 + 1 ≤ 4 and we have at least five free lists. Finally, we 
colour all arcs of 

←→
G [A ∪ N L(A)] following the rule (⋆).

As we have shown that there exists a proper distinguishing colouring of 
←→
G for Δ = 6, it also always exists for Δ = 5, 

because we have the same number k = 5 of colours, and there are no more vertices in A and N L(A).
For Δ = 4, we have k = 4 colours, and six 2-element lists. Clearly, |A| ≤ 3. Suppose that for some vertex u ∈ A, there is 

no free list compatible with colours of the arcs between u and its parent v . In such a case, we remove colours between v
and all its children in A.

If A ∪ N L(A) has at most five vertices, then we can assign a distinct list L(u) ≠ L(w) to every vertex u ∈ A, and colour 
the arcs in 

←→
G [A ∪ N L(A)] according to rule (⋆) so that each vertex of A is fixed. The same holds if the number of distinct 

lists assigned to vertices in N L(A) is at most two. If there is an edge joining two vertices of A (there may exist only one 
such edge), then |N L(A)| ≤ 3, and two lists suffice for A, even if |A| = 3.

Then suppose that |A ∪ N L(A)| ≥ 6 and A is an independent set. If N L(A) has four vertices with a common parent, then it 
must be the root w . If |A| = 3, then G = K4,4 and a distinguishing proper colouring with three colours is presented in Fig. 2. 
If |A| = 2, then the subgraph G[{w} ∪ N L(A) ∪ A] is isomorphic to K3,4, possibly with an edge or two independent edges. 
It is easy to find a proper distinguishing colouring of this subgraph using the fourth colour on one arc of each additional 
edge.

5 
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Suppose now that there are at least two vertices of N L(A) with distinct parents. If there is a vertex v ′ ∈ N L(A) such that 
L(v ′) is not a list of w and of any other vertex in N L(A), then we assign the list L(v ′) to every vertex of A, and colour the 
arcs between them and v ′ differently, thus fixing all vertices of A. Next, we properly colour the remaining arcs between A
and N L(A).

Hence, we are left with the situation, when

1. |A ∪ N L(A)| ≥ 6,
2. the vertices of N L(A) have at least three distinct lists,
3. every parent of a vertex in N L(A) has at most three children,
4. for each vertex of N L(A) with a list L, the complement L is assigned to another vertex of N L(A) or L = L(w).

It follows that there exists a vertex v1 ∈ N L(A) such that L(v1) ≠ L(w) is unique in N L(A). Let v ′ be a vertex of N L(A) with 
L(v ′) = L(v1). We will change the list L(v1) so that L(v ′) will not be a list of any vertex in N L(A) ∪ {w}. To this end, first 
observe that for any pair of colours (c(−→v1x ), c(−→xv1)), where x is a parent of v1 ∈ N L(A), there are two possible lists for v1. If 
the other list is different from L(w), then we put the list L(v ′) on the vertices of A and proceed as above. Otherwise, given 
a list L(x) we have four distinct pairs of colours between x and its children (their number is at most three). Hence, we can 
change the pair of colours between x and v1 to obtain another possible list for v1. This can be clearly done when x is the 
only parent of v1.

If v1 has another parent x′ , then |A| = 2 and v1 has no children outside A. Hence, the four vertices in N L(A) have 
distinct lists that are pairwise complementary, because otherwise, we will have two free lists for vertices in A. Thus L(w)

cannot be a list of any vertex in N L(A). It is easy to check that for any pair of lists L(x), L(x′) and a common child of 
x, x′ , there are at least four distinct possible colourings of arcs on the path xv1x′ of length two, when L(x) ∩ L(x′) = ∅, and 
even more when L(x) ∩ L(x′) ≠ ∅. The number of common children of x and x′ is at most three, so we can change the 
colours of arcs between v1 and its two parents x, x′ to get a new list L(v1). If this new list is different from L(w), then 
we are done. Otherwise, we let L(v1) = L(w), and colour the arcs between v1 and u1, u2 ∈ A with distinct pairs of colours 
putting (c(−−→v1u1), c(−−→u1 v1)) = (c(−→v1x ), c(−→xv1)), thus fixing the vertices of A. We assign lists for the vertices u1 and u2. Then 
we colour the other arcs between A and N L(A) properly. Note that the root w is still fixed since w and v1 have different 
colourings of incident arcs.

As there always exists a proper distinguishing colouring of 
←→
G for Δ = 4, it also exists for Δ = 3, because we have the 

same number k = 4 of colours, and the numbers of vertices in sets A and N L(A) are not greater. This completes the proof 
of Theorem 4.

4. Forbidden monochromatic 2-paths only

In this section, we study proper arc-colourings, where only monochromatic 2-paths are forbidden. To our knowledge, 
such colourings have not been investigated in the literature yet. Therefore, we first consider the chromatic index χ ′

2(
←→
G ). 

Clearly, for every symmetric digraph 
←→
G we have

χ ′
2(

←→
G ) ≤ χ ′

1,2(
←→
G ). (2)

First, observe that the equality holds for bipartite symmetric digraphs of order at least 3.

Observation 6. For all connected bipartite symmetric digraphs 
←→
G , except for 

←→
K2 , it holds

χ ′
2(

←→
G ) = χ ′

1,2(
←→
G ).

Proof. By Theorem 1, χ ′
1,2(

←→
G ) = 2 for any bipartite graph G . If 

←→
G is a connected symmetric digraph with χ ′

2(
←→
G ) =

1, then Δ(G) = 1 because monochromatic 2-paths are forbidden. Consequently, either χ ′
2(

←→
G ) = 2 or G ∼ = K2 if 

←→
G is 

connected. □
On the other hand, let us show now that infinitely many graphs fulfil a strict inequality in (2).

Proposition 7. Let l ≥ 2 be any integer and let n = (︁2l+1
l 

)︁ + 1. Then

χ ′
2(

←→
Kn ) < χ ′

1,2(
←→
Kn ).

Proof. Let n = (︁2l+1
l 

)︁ + 1 for l ≥ 2. It follows from Theorem 1 that χ ′
1,2(

←→
Kn ) = 2l + 2.

We divide the set of vertices of 
←→
Kn into pairs Mi = {ui, vi}, i = 1, . . . , ⌊ n 

2 ⌋, and, possibly, a single vertex M⌈ n 
2 ⌉ = {un}

if n is odd. For each i = 1, . . . , ⌊ n 
2 ⌋, we colour the arcs −−→ui vi,

−−→viui with one and the same colour, which will no longer be 
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used. Next, consider a complete symmetric digraph 
←−→
K⌈ n 

2 ⌉ with vertices M1, . . . , M⌈ n 
2 ⌉ , and its proper arc-colouring c of type 

I with χ ′
1,2(

←−→
K⌈ n 

2 ⌉) colours, i.e. without monochromatic 2-cycles and 2-paths. In the digraph 
←→
Kn , for i ≠ j, we colour all arcs 

between the vertices of Mi and M j with the colour c(
−−−→
Mi M j). It is easy to see that we thus obtain an arc-colouring of 

←→
Kn

with 1 + χ ′
1,2(

←−→
K⌈ n 

2 ⌉) colours not creating any monochromatic 2-path. Hence, χ ′
2(

←→
Kn ) ≤ 1 + χ ′

1,2(
←−→
K⌈ n 

2 ⌉).

Denote ak = (︁ k 
⌊ k 

2 ⌋
)︁

for k ≥ 3, and observe that n − 1 = (︁2l+1
l 

)︁ = a2l+1. Moreover, ak ≥ k and

a2l+1

a2l
= 2l + 1

l + 1 
,

for each k, l. Consequently,

a2l = a2l+1 · l + 1 
2l + 1

= (n − 1) · l + 1 
2l + 1

= n 
2

+ n 
2(2l + 1)

− l + 1 
2l + 1

=

= n 
2

+ a2l+1 − (2l + 1)

2(2l + 1) 
.

Hence, a2l ≥ ⌈ n 
2 ⌉ since a2l+1 ≥ 2l + 1. Therefore, χ ′

1,2(
←−→
K⌈ n 

2 ⌉) ≤ 2l, and

χ ′
2(

←→
Kn ) ≤ 2l + 1 < 2l + 2 = χ ′

1,2(
←→
Kn ). □

Now, we investigate the distinguishing chromatic index χ ′
D2

(
←→
G ). Clearly, for every symmetric digraph 

←→
G it holds

χ ′
D2

(
←→
G ) ≤ χ ′

D1,2
(
←→
G ). (3)

Hence, Theorem 4 immediately implies the following.

Proposition 8. If G is a connected graph, then

χ ′
D2

(
←→
G ) ≤

⌈︂
2
√

Δ
⌉︂
.

This bound is optimal because the equality holds for every symmetric directed star 
←−→
K1,Δ with Δ ≥ 4, as shown below.

Observation 9. If Δ ≥ 4, then χ ′
D2

(
←−→
K1,Δ) = ⌈2

√
Δ⌉

Proof. Let w be a central vertex of the star K1,Δ . Consider a proper distinguishing arc-colouring c of 
←−→
K1,Δ with χ ′

D2
(
←−→
K1,Δ)

colours, without monochromatic 2-paths, and with the least number of monochromatic 2-cycles. If every 2-cycle is 
monochromatic, then c uses Δ colours, and Δ ≥ ⌈2

√
Δ⌉ except for Δ = 3. Otherwise, there exists a pendant vertex 

v with c(−→w v ) ≠ c(−→v w ). If there is a pendant vertex u with c(−→wu ) = c(−→uw ), then we can recolour one of the arcs −→wu or −→uw by a colour of −→w v or −→v w , thus obtaining a distinguishing colouring with the same number of colours, a 
smaller number of monochromatic 2-cycles and without monochromatic 2-paths. In this way, we can obtain a proper 
distinguishing arc-colouring with the same number χ ′

D2
(
←−→
K1,Δ) of colours and without monochromatic 2-cycles. Hence, 

χ ′
D2

(
←−→
K1,Δ) = χ ′

D1,2
(
←−→
K1,Δ) = ⌈2

√
Δ⌉, by Proposition 5. □

On the other hand, there exist infinitely many symmetric digraphs 
←→
G with χ ′

D2
(
←→
G ) < χ ′

D1,2
(
←→
G ). Simple examples are 

paths of odd order. Indeed, colouring every second 2-cycle of 
←−→
P2k+1 with the same colour yields a distinguishing proper 

arc-colouring. Thus, χ ′
D2

(
←−→
P2k+1) = 2 while χ ′

D1,2
(
←−→
P2k+1) = 3 by Observation 3.

Besides, infinitely many complete symmetric digraphs fulfil the strict inequality.

Proposition 10. Let l ≥ 2 be any integer and let n = (︁2l+1
l 

)︁ + 1. Then

χ ′
D2

(
←→
Kn ) < χ ′

D1,2
(
←→
Kn ).

Proof. In view of Proposition 2 and the proof of Proposition 7, it suffices to show that

χ ′
D2

(
←→
Kn ) ≤ χ ′

1,2(
←−→
K⌈ n 

2 ⌉) + 1

7 
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for every n = (︁2l+1
l 

)︁ + 1.

As in the proof of Proposition 7, we partition the vertex set of 
←→
Kn into pairs Mi = {ui, vi}, i = 1, . . . , ⌊ n 

2 ⌋, and, possibly, 
a single vertex M⌈ n 

2 ⌉ = {un} if n is odd. For each i = 1, . . . , ⌊ n 
2 ⌋, we colour the arcs −−→ui vi,

−−→viui with one and the same colour, 

which will no longer be used. Next, we consider a complete symmetric digraph 
←−→
K⌈ n 

2 ⌉ with vertices M1, . . . , M⌈ n 
2 ⌉ , and 

produce its arc-colouring c without monochromatic 2-cycles and 2-paths as follows. Let k = χ ′
1,2(

←−→
K⌈ n 

2 ⌉). That is,

k = min

{︃
k′ : n 

2
≤

(︃
k′

⌊ k′
2 ⌋

)︃}︃
.

Each vertex Mi gets a distinct list L(Mi) of ⌊ k 
2 ⌋ colours from a fixed set of k colours which are admissible for arcs ingoing 

to Mi . We colour the arc 
−−−→
Mi M j with any colour from L(M j) \ L(Mi). By Proposition 2, this is a distinguishing colouring of ←−→

K⌈ n 
2 ⌉ . Then we obtain an arc-colouring of Kn without monochromatic 2-paths by colouring each arc from Mi to M j with 

c(
−−−→
Mi M j) for i ≠ j.

Clearly, this colouring of 
←→
Kn is not distinguishing but it suffices to recolour some arcs to break all transpositions of the 

vertices ui, vi , for i = 1, . . . , ⌊ n 
2 ⌋. To do this, for each such i, we choose a j such that L(Mi) \ (L(M j) ∪ {c(

−−−→
M j Mi}) contains a 

colour, say α. We recolour the arc u jui with α. Such a j exists for each i, by the definition of k since k 
2 ≥ 2 for n ≥ 7. This 

new arc-colouring of 
←→
Kn still has no monochromatic 2-paths, and it is distinguishing because each vertex vi is fixed. Indeed, 

if φ is an automorphism of 
←→
Kn preserving this colouring, then vi cannot be mapped by φ onto ui since the multisets of arcs 

ingoing to ui and to vi are distinct. Also, vi cannot be mapped onto any other vertex because there are no monochromatic 
2-paths. □

We conclude this section with a conjecture.

Conjecture 11. 

χ ′
D2

(
←→
Kn ) = χ ′

2(
←−→
K⌈ n 

2 ⌉) + 1.
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