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Abstract

A vertex colouring of a graph is called asymmetric if the only automorphism which
preserves it is the identity. Tucker conjectured that if every automorphism of a connected,
locally finite graph moves infinitely many vertices, then there is an asymmetric colouring
with 2 colours. This conjecture was recently confirmed by Babai, using the heavy ma-
chinery of the classification of finite simple groups. We make progress towards a purely
combinatorial proof of this conjecture in the special case of graphs with bounded maximal
degree. More precisely, using only elementary combinatorial methods, we prove that if
every automorphism of a connected graph with maximal degree A moves infinitely many
vertices, then there is an asymmetric colouring using O(v/Alog A) colours. This is the
first improvement which does not depend on the classification of finite simple groups over
the trivial bound of O(A).
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1 Introduction

Call a (not necessarily proper) vertex colouring of a graph asymmetric if the only auto-
morphism which preserves it is the identity. This notion was first introduced by Babai [2]
in 1977, who proved that 2 colours suffice for an asymmetric colouring of every regular
tree. The concept was later reintroduced by Albertson and Collins [!] under the name
distinguishing colouring, and since has received a considerable amount of attention.

In this paper we investigate connections between the maximal degree A of a graph and
the number of colours needed for an asymmetric colouring. It is not hard to see that every
connected finite graph has an asymmetric colouring with at most A + 1 colours, and it was
shown independently by Collins and Trenk [7], and Klavzar, Wong, and Zhou [ 1] that the
only graphs which attain this bound are complete graphs, complete bipartite graphs, and
the cycle on 5 vertices. In 2007, Imrich, Klavzar and Trofimov [9] extended this result to
infinite graphs, showing that every connected infinite graph with maximal degree A has
an asymmetric colouring with at most A colours. In [15], the authors of the present paper
improved this bound to A — 1 for infinite graphs with maximal degree at least 3 and this
bound is sharp for every A > 3.

It is worth noting that all known examples achieving this bound have an automorphism
moving only few vertices. This motivates the concept of motion. We say that a graph has
motion m, if the minimal number of vertices moved by a non-trivial automorphism is m.
Motion turns out to be a powerful tool for bounding the number of colours needed in an
asymmetric colouring. It is often used in the form of the so-called Motion Lemma, which
states that if G is finite graph with motion m such that 2% > | Aut G|, then G has an
asymmetric colouring with 2 colours. Perhaps the first to explicitly state this result were
Russell and Sundaram [16], but it is worth pointing out that Cameron, Neumann, and Saxl
[5] implicitly use a generalization to permutation groups to show that primitive permutation
groups admit an asymmetric colouring with 2 colours, unless they are symmetric groups,
alternating groups, or one of finitely many exceptions. The following conjecture due to
Tucker [17] can be seen as a generalization of the Motion Lemma to infinite graphs.

Conjecture 1.1 (Tucker [17]). Let G be a connected, locally finite graph with infinite
motion. Then there is an asymmetric colouring of G with 2 colours.

After the first preprint of the present paper was published, this conjecture was confirmed
by Babai [4]. However, it is worth pointing out that the proof depends on the classification
of finite simple groups; Babai poses the question whether the conjecture can also be proved
by purely combinatorial methods.

Despite numerous partial results (see for example [10, 12, 13, 14, 18]) a combinatorial
proof of Conjecture 1.1 remains elusive. In particular, no such proof is known if we restrict
ourselves to graphs with finite maximum degree. Recently, Hiining et al. [8] provided such
a proof for graphs with maximum degree at most 3, in [15] this was extended to graphs
with maximum degree at most 5, and by using similar arguments one can show that there
is an asymmetric colouring for connected graphs with infinite motion with at most % +1
colours. We note that, although this is a substantial improvement over the trivial bound of
A + 1itis still linear in A.

In this short note we show by elementary combinatorial methods that a graph with infi-
nite motion and maximum degree A admits an asymmetric colouring with
(VA +1)(2logy A + 3) = O(v/Alog A) colours. To our best knowledge, this is the
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first combinatorial proof of a bound which is sublinear in A thus constituting a significant
step towards an elementary proof of Conjecture 1.1 for graphs with finite maximum degree.

An anonymous referee suggested that the conclusion of our main result remains true if
instead of infinite motion we assume large enough finite motion. While our techniques do
not seem to be strong enough to prove this stronger statement, this leads to an interesting
question for further research.

Question 1.2. Are there functions f: N — N with f(n) = o(n), and g: N — N such
that every graph with maximum degree A and motion at least g(A) has an asymmetric
colouring with f(A) colours? If yes, what is the relation between f and g? What is the
smallest possible function f?

2 Definitions and auxiliary results

Throughout this paper G will denote an infinite, connected graph with vertex set 1, edge set
E, and finite maximal degree A. Let d denote the usual geodesic distance between vertices
of G. For a vertex vy € V denote the ball with centre vy and radius k by B(vg, k) = {v €
V| d(vo,v) < k}, and the sphere with centre vy and radius k by S(vg, k) = {v € V|
d(vp,v) = k}. As usual, we write N (v) for the set of neighbours of a vertex v.

For a set €, denote by Sym(€2) the group of all bijective functions from €2 to itself.
Further denote by Sym,, := Sym({1,...,n}).

Let I' be a group acting on a set {). For S C (), denote the setwise stabilizer of S
by's = {y € T'| Vs € S: vs € S} and denote the pointwise stabilizer of S by
Iy ={y el |VsecS:vys = s} Observe that I\ is a normal subgroup of I', but
the same isn’t necessarily true for I'(g) for S C (2. In particular, it makes sense to speak
about the quotient I'/I ), which is isomorphic to the group of all different permutations
induced by T" on Q. The stabilizer of a colouring ¢ of Q is definedby I'. = {y € ' | Vv €
Q: c(v) = c¢(yv)}. A colouring c of  is called asymmetric if T'. = I'(). Note that in the
special case of Aut GG acting on the vertices of G, a vertex colouring is asymmetric if and
only if its stabilizer only contains the identity automorphism.

The proof of our main result relies on the following result proved in [3]. We point out
that unlike the proof of the optimal bound % in [6], the proof of this result does not depend
on the classification of finite simple groups.

Lemma 2.1. The length of a chain of subgroups in Sym,, is at most 2n.
The following corollary to Lemma 2.1 is one of our main tools.

Lemma 2.2. Let T be a group acting on two non-empty finite sets Q and Q'. If I' gy <
L'(q), then there is S C ) such that |S| < 2|€Y'|, and T'(sy = T'(q).

Proof. If T acts trivially on Q we can choose S = (). Otherwise, pick s; €  with
I,y < Tandset Sy = {s1}. If I'(g,) # I'(), we can inductively pick s;11 € Q which
is not stabilized by I'(g,) and set Sit1 = S; U {si+1}. This process terminates when
Lisi) =L

Clearly, 'y < T'(g) < F(Si) < T, and since I'(g/y I T' we also have I'q/) QT (g,.
In particular, we have a chain of subgroups

Sym(Q') > T/T(ar) = Tsy) /Ty Z - 2 Tisy /T,
and thus k£ < 2|Q’| by Lemma 2.1. O
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3 Proof of the main result

Theorem 3.1. Every connected graph with infinite motion and finite maximal degree A
has an asymmetric colouring with at most (v/A + 1)(21logy A + 3) colours.

Proof. We will inductively define colourings ¢, using colours in the set {0,1,2,3,...} U
{1,2,3,...} U{oco}. This set is infinite, but we will later determine bounds on the number
of colours that we actually use.

Choose an arbitrary root vy € V. The colouring ¢ will satisfy the following properties

for every k > 0.
(a) cx(v) = 0if and only if v = vy,
(b) ci(v) = oo if and only if d(v, vg) > k,

(©) cklB(wok—1) = Ch—1|B(vo,k—1) if & >0,
(d) Let I'y, be the stabilizer of ¢;, in I' = Aut G, then

* Tk < T(Bo,k—1)) itk >0,
* all orbits under 'y, in B(vp, k) have size at most [\/K]

Note that (a) implies that every automorphism which preserves ¢, must fix B(vg, k) set-
wise, and thus it makes sense to speak of orbits of I'y, in B(vg, k).

3.1 An asymmetric limit colouring

Before we turn to the construction of the colourings ci, let us show that they yield an
asymmetric colouring of G. By (c) we can define a colouring ¢, = limg_, ci by
Coo| B(vo,k) = Ck|B(vo.k) fOr every k. By (a), the only vertex with co(v) = 0 is vo, hence
vg is fixed by every automorphism preserving c... Consequently, B(vy, k) is fixed setwise
by each colour preserving automorphism. Since coo|B(vy,k) = Ck+1|B(vo,k)» Property (d)
implies that every automorphism in the stabilizer of c., fixes B(vg, k) pointwise. This is
true for every k whence ¢, is asymmetric.

3.2 Inductive construction

In this section, we inductively construct colourings cy, satisfying (a) to (d). For & = 0 let
¢o(vo) = 0 and ¢(v) = oo for v # vg. Properties (a) to (d) are trivially satisfied for this
colouring.

For the inductive definition of cg1, assume that we already have defined c; with the
desired properties. By (b) and (c), the only vertices where ¢y and ¢y can differ are those
in S(vg, k 4+ 1), hence it suffices to describe the colouring ci1 on S(vg, k + 1).

Recall that by (a), the stabilizer I'y, of ¢, must fix S(vg, k) and S(vg, k+1) setwise. Let
Aq, ..., A, be the orbits of I';, on S(vg, k). Define equivalence relations R; for 0 < ¢ < n
on S(vo, k + 1) by

Ry <= Vj<i:N(z)NA; =N(y)NA,,

see Figure 1 for an illustration.
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Figure 1: An example illustrating the equivalence relations R;. The vertices x and y have
the same neighbours in A; and Ao, so xR1y and x Roy, but y has a neighbour in A3 which
is not adjacent to x, so xR,y for every i > 3.

Note that the condition is void for ¢ = 0, hence all vertices are equivalent under Rj.
Further note that R; has at most one equivalence class of size larger than A, namely the
class of vertices which have no neighbours in A; for any j < 4. All other equivalence
classes are contained in the neighbourhood of some vertex and thus have size at most A.
This argument also shows that all equivalence classes with respect to R,, have size at most
A since every vertex in S(vg, k + 1) has a neighbour in S(vo, k) = U, <, 4;-

Denote by B; the set of equivalence classes with respect to the relation R;. Observe
that 5; 11 is a refinement of B;, that is, for every B € B, there is a unique B’ € B; with
BCDPB.

Let xR;y and ¢ € T'y,. Then ¢x R;¢py because ¢ maps neighbours of x and y to neigh-
bours of ¢z and ¢y while fixing every A; setwise. This shows that ¢ permutes the equiva-
lence classes in B;, and hence Ty, in its natural action on subsets of S(vg, k + 1) preserves
the partition B;, thereby inducing a natural action of I';, on B;. Let I'y ; := (Fk-)(lgi), in
other words, Iy, ; is the pointwise stabilizer of 3; in I';, with respect to this action.

Before we turn to the construction of c41, we need one last definition. For every
colouring ¢: S(vp, k + 1) — N we define the induced colouring c[B;]: B; — N by

B;](B) = mi .
c[B.](B) = minc(v)
We note that if c: S(vo, k + 1) — Nis a colouring, then (I'y). < (), <;<,,(I'x)¢[s,] due to
the definition of induced colourings and the fact that 'y, acts on B;.

We now inductively define colourings ¢, ; of S(vg, k + 1) for 0 < i < n satisfying the
following properties.

@) Ck,i[Bj] = Ckyifl[Bj] fori>1 andj < 1.
(ii) Every B € B; is monochromatic under cy, ;.

(i) Tri = j<i(Th)ey 8, < Trie

Define c; o = 1. The statement (i) is vacuously true for : = 0, and properties (ii) and
(iii) are readily verified.

For the inductive definition of ¢, ;41 let us assume that we already defined ¢y, ; with the
desired properties. Recall that 'y, ; = (I'x)(,). Note that if two vertices in S(vo, k + 1)
are contained in the same orbit with respect to I'y, ;, then they are equivalent with respect
to R;. Therefore two such vertices can only be inequivalent with respect to R, 1, if they
have different neighbours in A;;;1. This shows that the pointwise stabilizer of A;;1 in
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' fixes B;y1 pointwise, and hence (I'xi)(a,,,) < Tk it1. Since fk,i < Ty ; we have
(Cri) Ay < Tri NThiv1r < (Tkyi)(B,,,)- Therefore, by Lemma 2.2 there is a subset
S C B, 41 such that

S| < 2| Aipa|

and
(Tr,i)s) = Cri) By

Note that this implies that |S| < 2[v/A] because by induction hypothesis |4, 1| < [VA].

LetS = {S,...,S¢} beasubsetof B; 1 of minimal cardinality satisfying (fk,i)(s) =
(fk’i)(8i+l). Forj € {1,...,¢} and each v € S let ¢ ;41 (v) = cx,;(v) + j. For all other
vertices set ¢y ;+1(v) = ck,;(v). Property (ii) for ¢y ;41 trivially follows from (ii) for ¢ ;.
It remains to show that c;, ;41 satisfies (i) and (iii).

For (i), let j < ¢ and recall that every B; € B; can be written as a disjoint union of
members of B; 1. Since ¢y ; satisfies (ii), for every B; € B, there is some B; € B; with
B; C B; such that all vertices in B; are coloured with colour ¢, ;[5;](B;). It thus suffices
to show that for every B; € B; there is some B € B, such that B; D B ¢ S.

Assume for a contradiction that there is some B; € B; for which every B € B; 1 with
B C B, is contained in S. Pick B € § with B C B; and let S’ = S\ {B}. Minimality
of § implies that there is some v € (fk,i)(‘g/) which acts non-trivially on B; . Since (iii)
holds for I'y ; we have that yB C B;. If yB = B, then vy € (T'y;)(s) which is impossible.
Otherwise, 7B € &', and therefore vB is fixed by v € (fk,i)(S’) which is also impossible.

Note that by minimality of S, if B € S, then B is not stabilised by IN’;W». In particular
if B; € B; with B; D B € S, then there is some 7y € f‘k,i such that B # yvB C B; and
hence |B| < @ This fact will be used later to bound the number of used colours.

For the proof of (iii), note that by (i) we have (I'x)c, ,18,] = (Uk)ey.y1(8,) for every
7 < 1, and consequently

Fk,i+1 = Fk,i N (Fk)ck,i+1[8i+l] = (Fkai)ck,i+1[8i+l]7

where the second equality simply uses the fact that fk,i < T'j. Further note that by defini-
tion of S we have (I'x ;) (s) < (ki) (Bi41) = Lk i+1- So all we need to show is that
(Fkai)ck,i+1[8i+l] < (Fk,i)(S)a

that is, every element of fk,i which preserves ¢y ;+1[B;+1] must fix S pointwise.

Let B € S, lety € (fk,i)ck,i+l[6i+l] and let B; € B; such that B C B;. Since ¢
satisfies (iii) we know that v € I'y ; and thus yB C B;. Since B € S we have (by (ii)
for ¢y ; and the definition of ¢y, ;1) that the colour of the vertices of B is different from
the colour with respect to cj ;41 of the vertices in every other subclass of B;, and hence
vB = B.

We obtain ¢ from ¢y, 5, as follows. Split every equivalence class in 3,, into at most
[V/A] subsets of size at most [/A]. This is possible because every equivalence class with
respect to R,, contains at most A vertices. Now for each B € 15,,, one of the subclasses
keeps the same colour as in ¢y ,,, while the others are recoloured with distinct colours in

1,2,....[VAl
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Finally, we need to check that ci,; has the desired properties. By construction, it
satisfies (a), (b), and (c). These properties also immediately imply that I'y 11 < T'g, or
more precisely that 'y, 1 = (I'x)c,,,. The colouring ¢;41 was constructed from ¢, ,, in a
way that every B € B, still contains some vertices with the same colour as in ¢, ,,. Hence,
every element of I';, which preserves cj, 1 must also preserve ci, ,,, whence I'y, 11 < I'y,
by (iii) for cg .

In particular, I';,; setwise fixes all equivalence classes with respect to R,,, and by
construction of ¢4 from ¢y, ,, we conclude that there are no orbits with respect to I'y, 1 of
size more than [v/A] in S(vg, k + 1). The second part of (d) follows by induction.

For the first part of (d), assume for a contradiction that there is v € I';.;; fixing setwise
every B € B, but not fixing B(vg, k) pointwise. Thus the neighbours of v and v in
B(vo, k) coincide for every v € B(vg, k + 1). Hence, we can define an automorphism ~’
of G by

. {v if v € B(vo, k),
YU = .
~yv  otherwise.

This contradicts infinite motion, as v~ !4/ only moves vertices inside B(vg, k). Thus, we
have proved that every element of I'; 1 fixes B(vo, k) pointwise.

Note that in this last argument finite motion (no matter how large) is not enough since
the number of vertices in B(vo, k) is unbounded. Indeed, this is the only part of the proof
requiring infinite motion; in particular, replacing this argument by something that works
under the assumption of large finite motion would lead to an answer to Question 1.2.

3.3 Counting the colours

To determine the number of colours used in the colouring procedure, first note that at most
[V/A] colours from the set {1,2,...} are used. It only remains to determine the number
of colours from N used throughout the procedure.

Let v be a vertex with c¢oo(v) € N. Assume that v € S(vg,k + 1), and as be-
fore, let Ay, ..., A, be the orbits of I';, on S(vg, k). By construction, ¢ (v) = ¢jn =
max;<n(ck i (v)), so it suffices to check how large ¢, ;(v) can get.

By definition ¢ o(v) = 1. For 0 < i < n, let B; € B, be the equivalence class with
respect to R; containing v, and let S; be the set of blocks in B;; whose colour with respect
to ¢y, i+1 differs from their colour with respect to ¢y, ;, that is,

Si ={B € Bit1 | ck,i[Bit1](B) # ckiv1[Bit1](B)}
By construction,
chit1[Bit1](B) — crilBiy1](B) < |Si] < 2[VA] < 2VA +1
for every B € S;. Soif ¢ ;(v) # ck,i+1(v), then B;11 € S;, and
Ch,it1(v) < cpi(v) + WA +1.

It only remains to determine an upper bound for the number of steps ¢ for which B; 1 €
S;. Note that for each such 4, there must be some v € I';, ; such that B; 1 # vB;+1 € Bit1
For the minimal ¢ such that B;;1 € S, this implies that B;;; is not the equivalence
class with no neighbours in A; for any j < i. Thus |B;;+1| < A. For every subsequent
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such ¢, we have that B; ;1 and vB;41 are subclasses of B; with |B; 11| = |yBit1|, so
|Bit1] < ‘BQiI . This implies that B; 1 € S for at most (1 + logy A) many values of i.

Summing up, we get that
cri1(0) = cpn(v) <1+ (2VA+1)(1 +logy A) < 2(VA +1)(logy A + 1)

Together with the additional [v'A] < v/A + 1 colours from the set {1,2,...} we have
thus used no more than (v/A + 1)(21og, A + 3) colours as claimed. O

ORCID iDs

Florian Lehner & https://orcid.org/0000-0002-0599-2390
Monika Pil$niak “= https://orcid.org/0000-0002-3734-7230
Marcin Stawiski ‘& https://orcid.org/0000-0003-2554-1754

References

[1] M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Comb. 3 (1996),
Research Paper 18, approx. 17 pp., doi:10.37236/1242, https://doi.org/10.37236/
1242.

[2] L. Babai, Asymmetric trees with two prescribed degrees, Acta Math. Acad. Sci. Hun-
gar. 29 (1977), 193-200, doi:10.1007/BF01896481, https://doi.org/10.1007/
BF01896481.

[3] L. Babai, On the length of subgroup chains in the symmetric group, Comm. Algebra 14
(1986), 1729-1736, doi:10.1080/00927878608823393, https://doi.org/10.1080/
00927878608823393.

[4] L. Babai, Asymmetric coloring of locally finite graphs and profinite permutation groups:
Tucker’s conjecture confirmed, J. Algebra 607 (2022), 64—106, doi:10.1016/j.jalgebra.2021.
10.033, https://doi.org/10.1016/7.jalgebra.2021.10.033.

[5] P. J. Cameron, P. M. Neumann and J. Saxl, On groups with no regular orbits on the set of
subsets, Arch. Math. (Basel) 43 (1984), 295-296, doi:10.1007/BF01196649, ht tps://doi .
org/10.1007/BF011966409.

[6] P.J. Cameron, R. Solomon and A. Turull, Chains of subgroups in symmetric groups, J. Alge-
bra 127 (1989), 340-352, doi:10.1016/0021-8693(89)90256-1, https://doi.org/10.
1016/0021-8693(89) 90256-1.

[7] K. L. Collins and A. N. Trenk, The distinguishing chromatic number, Electron. J. Comb. 13
(2006), Research Paper 16, 19 pp., doi:10.37236/1042, https://doi.org/10.37236/
1042.

[8] S. Hiining, W. Imrich, J. Kloas, H. Schreiber and T. W. Tucker, Distinguishing graphs of max-
imum valence 3, Electron. J. Comb. 26 (2019), Paper No. 4.36, 27 pp., doi:10.37236/7281,
https://doi.org/10.37236/7281.

[9] W. Imrich, S. KlavZar and V. Trofimov, Distinguishing infinite graphs, Electron. J. Comb. 14
(2007), Research Paper 36, 12 pp., doi:10.37236/954, https://doi.org/10.37236/
954,

[10] W. Imrich, S. M. Smith, T. W. Tucker and M. E. Watkins, Infinite motion and 2-
distinguishability of graphs and groups, J. Algebraic Comb. 41 (2015), 109-122, doi:10.1007/
s10801-014-0529-2, https://doi.org/10.1007/s10801-014-0529-2.


https://orcid.org/0000-0002-0599-2390
https://orcid.org/0000-0002-3734-7230
https://orcid.org/0000-0003-2554-1754
https://doi.org/10.37236/1242
https://doi.org/10.37236/1242
https://doi.org/10.1007/BF01896481
https://doi.org/10.1007/BF01896481
https://doi.org/10.1080/00927878608823393
https://doi.org/10.1080/00927878608823393
https://doi.org/10.1016/j.jalgebra.2021.10.033
https://doi.org/10.1007/BF01196649
https://doi.org/10.1007/BF01196649
https://doi.org/10.1016/0021-8693(89)90256-1
https://doi.org/10.1016/0021-8693(89)90256-1
https://doi.org/10.37236/1042
https://doi.org/10.37236/1042
https://doi.org/10.37236/7281
https://doi.org/10.37236/954
https://doi.org/10.37236/954
https://doi.org/10.1007/s10801-014-0529-2

FE Lehner et al.: On asymmetric colourings of graphs with bounded degrees and infinite motion 9

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

S. Klavzar, T.-L. Wong and X. Zhu, Distinguishing labellings of group action on vector spaces
and graphs, J. Algebra 303 (2006), 626—641, doi:10.1016/j.jalgebra.2006.01.045, https://
doi.org/10.1016/7.Jalgebra.2006.01.045.

F. Lehner, Random colourings and automorphism breaking in locally finite graphs, Comb.
Probab. Comput. 22 (2013), 885-909, doi:10.1017/S0963548313000382, https://doi.
org/10.1017/50963548313000382.

F. Lehner, Distinguishing graphs with intermediate growth, Combinatorica 36
(2016), 333-347, doi:10.1007/s00493-015-3071-5, https://doi.org/10.1007/
s00493-015-3071-5.

F. Lehner, Breaking graph symmetries by edge colourings, J. Comb. Theory Ser. B
127 (2017), 205-214, doi:10.1016/j.jctb.2017.06.001, https://doi.org/10.1016/7.
jctb.2017.06.001.

F. Lehner, M. Pil$niak and M. Stawiski, Distinguishing infinite graphs with bounded degrees, J.
Graph Theory 101 (2022), 52-65, doi:10.1002/jgt.22809, https://doi.org/10.1002/
gt .22800.

A. Russell and R. Sundaram, A note on the asymptotics and computational complexity of graph
distinguishability, Electron. J. Comb. 5 (1998), Research Paper 23, 7 pp., doi:10.37236/1361,
https://doi.org/10.37236/1361.

T. W. Tucker, Distinguishing maps, Electron. J. Comb. 18 (2011), Paper 50, 21 pp., doi:10.
37236/537, https://doi.org/10.37236/537.

M. E. Watkins and X. Zhou, Distinguishability of locally finite trees, Electron. J. Comb. 14
(2007), Research Paper 29, 10 pp., doi:10.37236/947, https://doi.org/10.37236/
947.


https://doi.org/10.1016/j.jalgebra.2006.01.045
https://doi.org/10.1016/j.jalgebra.2006.01.045
https://doi.org/10.1017/S0963548313000382
https://doi.org/10.1017/S0963548313000382
https://doi.org/10.1007/s00493-015-3071-5
https://doi.org/10.1007/s00493-015-3071-5
https://doi.org/10.1016/j.jctb.2017.06.001
https://doi.org/10.1016/j.jctb.2017.06.001
https://doi.org/10.1002/jgt.22809
https://doi.org/10.1002/jgt.22809
https://doi.org/10.37236/1361
https://doi.org/10.37236/537
https://doi.org/10.37236/947
https://doi.org/10.37236/947

	Introduction
	Definitions and auxiliary results
	Proof of the main result
	An asymmetric limit colouring
	Inductive construction
	Counting the colours


