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Abstract

A vertex colouring of a graph is called asymmetric if the only automorphism which
preserves it is the identity. Tucker conjectured that if every automorphism of a connected,
locally finite graph moves infinitely many vertices, then there is an asymmetric colouring
with 2 colours. This conjecture was recently confirmed by Babai, using the heavy ma-
chinery of the classification of finite simple groups. We make progress towards a purely
combinatorial proof of this conjecture in the special case of graphs with bounded maximal
degree. More precisely, using only elementary combinatorial methods, we prove that if
every automorphism of a connected graph with maximal degree ∆ moves infinitely many
vertices, then there is an asymmetric colouring using O(

√
∆ log∆) colours. This is the

first improvement which does not depend on the classification of finite simple groups over
the trivial bound of O(∆).
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1 Introduction
Call a (not necessarily proper) vertex colouring of a graph asymmetric if the only auto-
morphism which preserves it is the identity. This notion was first introduced by Babai [2]
in 1977, who proved that 2 colours suffice for an asymmetric colouring of every regular
tree. The concept was later reintroduced by Albertson and Collins [1] under the name
distinguishing colouring, and since has received a considerable amount of attention.

In this paper we investigate connections between the maximal degree ∆ of a graph and
the number of colours needed for an asymmetric colouring. It is not hard to see that every
connected finite graph has an asymmetric colouring with at most ∆+1 colours, and it was
shown independently by Collins and Trenk [7], and Klavžar, Wong, and Zhou [11] that the
only graphs which attain this bound are complete graphs, complete bipartite graphs, and
the cycle on 5 vertices. In 2007, Imrich, Klavžar and Trofimov [9] extended this result to
infinite graphs, showing that every connected infinite graph with maximal degree ∆ has
an asymmetric colouring with at most ∆ colours. In [15], the authors of the present paper
improved this bound to ∆ − 1 for infinite graphs with maximal degree at least 3 and this
bound is sharp for every ∆ ≥ 3.

It is worth noting that all known examples achieving this bound have an automorphism
moving only few vertices. This motivates the concept of motion. We say that a graph has
motion m, if the minimal number of vertices moved by a non-trivial automorphism is m.
Motion turns out to be a powerful tool for bounding the number of colours needed in an
asymmetric colouring. It is often used in the form of the so-called Motion Lemma, which
states that if G is finite graph with motion m such that 2

m
2 ≥ |AutG|, then G has an

asymmetric colouring with 2 colours. Perhaps the first to explicitly state this result were
Russell and Sundaram [16], but it is worth pointing out that Cameron, Neumann, and Saxl
[5] implicitly use a generalization to permutation groups to show that primitive permutation
groups admit an asymmetric colouring with 2 colours, unless they are symmetric groups,
alternating groups, or one of finitely many exceptions. The following conjecture due to
Tucker [17] can be seen as a generalization of the Motion Lemma to infinite graphs.

Conjecture 1.1 (Tucker [17]). Let G be a connected, locally finite graph with infinite
motion. Then there is an asymmetric colouring of G with 2 colours.

After the first preprint of the present paper was published, this conjecture was confirmed
by Babai [4]. However, it is worth pointing out that the proof depends on the classification
of finite simple groups; Babai poses the question whether the conjecture can also be proved
by purely combinatorial methods.

Despite numerous partial results (see for example [10, 12, 13, 14, 18]) a combinatorial
proof of Conjecture 1.1 remains elusive. In particular, no such proof is known if we restrict
ourselves to graphs with finite maximum degree. Recently, Hüning et al. [8] provided such
a proof for graphs with maximum degree at most 3, in [15] this was extended to graphs
with maximum degree at most 5, and by using similar arguments one can show that there
is an asymmetric colouring for connected graphs with infinite motion with at most ∆

3 + 1
colours. We note that, although this is a substantial improvement over the trivial bound of
∆+ 1 it is still linear in ∆.

In this short note we show by elementary combinatorial methods that a graph with infi-
nite motion and maximum degree ∆ admits an asymmetric colouring with
(
√
∆ + 1)(2 log2 ∆ + 3) = O(

√
∆ log∆) colours. To our best knowledge, this is the
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first combinatorial proof of a bound which is sublinear in ∆ thus constituting a significant
step towards an elementary proof of Conjecture 1.1 for graphs with finite maximum degree.

An anonymous referee suggested that the conclusion of our main result remains true if
instead of infinite motion we assume large enough finite motion. While our techniques do
not seem to be strong enough to prove this stronger statement, this leads to an interesting
question for further research.

Question 1.2. Are there functions f : N → N with f(n) = o(n), and g : N → N such
that every graph with maximum degree ∆ and motion at least g(∆) has an asymmetric
colouring with f(∆) colours? If yes, what is the relation between f and g? What is the
smallest possible function f?

2 Definitions and auxiliary results
Throughout this paper G will denote an infinite, connected graph with vertex set V , edge set
E, and finite maximal degree ∆. Let d denote the usual geodesic distance between vertices
of G. For a vertex v0 ∈ V denote the ball with centre v0 and radius k by B(v0, k) = {v ∈
V | d(v0, v) ≤ k}, and the sphere with centre v0 and radius k by S(v0, k) = {v ∈ V |
d(v0, v) = k}. As usual, we write N(v) for the set of neighbours of a vertex v.

For a set Ω, denote by Sym(Ω) the group of all bijective functions from Ω to itself.
Further denote by Symn := Sym({1, . . . , n}).

Let Γ be a group acting on a set Ω. For S ⊆ Ω, denote the setwise stabilizer of S
by ΓS = {γ ∈ Γ | ∀s ∈ S : γs ∈ S} and denote the pointwise stabilizer of S by
Γ(S) = {γ ∈ Γ | ∀s ∈ S : γs = s}. Observe that Γ(Ω) is a normal subgroup of Γ, but
the same isn’t necessarily true for Γ(S) for S ⊊ Ω. In particular, it makes sense to speak
about the quotient Γ/Γ(Ω), which is isomorphic to the group of all different permutations
induced by Γ on Ω. The stabilizer of a colouring c of Ω is defined by Γc = {γ ∈ Γ | ∀v ∈
Ω : c(v) = c(γv)}. A colouring c of Ω is called asymmetric if Γc = Γ(Ω). Note that in the
special case of AutG acting on the vertices of G, a vertex colouring is asymmetric if and
only if its stabilizer only contains the identity automorphism.

The proof of our main result relies on the following result proved in [3]. We point out
that unlike the proof of the optimal bound 3n

2 in [6], the proof of this result does not depend
on the classification of finite simple groups.

Lemma 2.1. The length of a chain of subgroups in Symn is at most 2n.

The following corollary to Lemma 2.1 is one of our main tools.

Lemma 2.2. Let Γ be a group acting on two non-empty finite sets Ω and Ω′. If Γ(Ω′) ≤
Γ(Ω), then there is S ⊆ Ω such that |S| ≤ 2|Ω′|, and Γ(S) = Γ(Ω).

Proof. If Γ acts trivially on Ω we can choose S = ∅. Otherwise, pick s1 ∈ Ω with
Γ(s1) ⪇ Γ and set S1 = {s1}. If Γ(Si) ̸= Γ(Ω), we can inductively pick si+1 ∈ Ω which
is not stabilized by Γ(Si) and set Si+1 = Si ∪ {si+1}. This process terminates when
Γ(Sk) = Γ(Ω).

Clearly, Γ(Ω′) ≤ Γ(Ω) ≤ Γ(Si) ≤ Γ, and since Γ(Ω′) ⊴ Γ we also have Γ(Ω′) ⊴ Γ(Si).
In particular, we have a chain of subgroups

Sym(Ω′) ≥ Γ/Γ(Ω′) ⪈ Γ(S1)/Γ(Ω′) ⪈ · · · ⪈ Γ(Sk)/Γ(Ω′),

and thus k ≤ 2|Ω′| by Lemma 2.1.
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3 Proof of the main result
Theorem 3.1. Every connected graph with infinite motion and finite maximal degree ∆
has an asymmetric colouring with at most (

√
∆+ 1)(2 log2 ∆+ 3) colours.

Proof. We will inductively define colourings ck using colours in the set {0, 1, 2, 3, . . .} ∪
{1, 2, 3, . . .} ∪ {∞}. This set is infinite, but we will later determine bounds on the number
of colours that we actually use.

Choose an arbitrary root v0 ∈ V . The colouring ck will satisfy the following properties
for every k ≥ 0.

(a) ck(v) = 0 if and only if v = v0,

(b) ck(v) = ∞ if and only if d(v, v0) > k,

(c) ck|B(v0,k−1) = ck−1|B(v0,k−1) if k > 0,

(d) Let Γk be the stabilizer of ck in Γ = AutG, then

• Γk ≤ Γ(B(v0,k−1)) if k > 0,

• all orbits under Γk in B(v0, k) have size at most ⌈
√
∆⌉.

Note that (a) implies that every automorphism which preserves ck must fix B(v0, k) set-
wise, and thus it makes sense to speak of orbits of Γk in B(v0, k).

3.1 An asymmetric limit colouring

Before we turn to the construction of the colourings ck, let us show that they yield an
asymmetric colouring of G. By (c) we can define a colouring c∞ = limk→∞ ck by
c∞|B(v0,k) = ck|B(v0,k) for every k. By (a), the only vertex with c∞(v) = 0 is v0, hence
v0 is fixed by every automorphism preserving c∞. Consequently, B(v0, k) is fixed setwise
by each colour preserving automorphism. Since c∞|B(v0,k) = ck+1|B(v0,k), property (d)
implies that every automorphism in the stabilizer of c∞ fixes B(v0, k) pointwise. This is
true for every k whence c∞ is asymmetric.

3.2 Inductive construction

In this section, we inductively construct colourings ck satisfying (a) to (d). For k = 0 let
c0(v0) = 0 and c0(v) = ∞ for v ̸= v0. Properties (a) to (d) are trivially satisfied for this
colouring.

For the inductive definition of ck+1, assume that we already have defined ck with the
desired properties. By (b) and (c), the only vertices where ck+1 and ck can differ are those
in S(v0, k + 1), hence it suffices to describe the colouring ck+1 on S(v0, k + 1).

Recall that by (a), the stabilizer Γk of ck must fix S(v0, k) and S(v0, k+1) setwise. Let
A1, . . . , An be the orbits of Γk on S(v0, k). Define equivalence relations Ri for 0 ≤ i ≤ n
on S(v0, k + 1) by

xRiy ⇐⇒ ∀j ≤ i : N(x) ∩Aj = N(y) ∩Aj ,

see Figure 1 for an illustration.
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S(v0, k)

S(v0, k + 1)

A1 A2 A3

· · ·

x y

Figure 1: An example illustrating the equivalence relations Ri. The vertices x and y have
the same neighbours in A1 and A2, so xR1y and xR2y, but y has a neighbour in A3 which
is not adjacent to x, so x ̸Riy for every i ≥ 3.

Note that the condition is void for i = 0, hence all vertices are equivalent under R0.
Further note that Ri has at most one equivalence class of size larger than ∆, namely the
class of vertices which have no neighbours in Aj for any j ≤ i. All other equivalence
classes are contained in the neighbourhood of some vertex and thus have size at most ∆.
This argument also shows that all equivalence classes with respect to Rn have size at most
∆ since every vertex in S(v0, k + 1) has a neighbour in S(v0, k) =

⋃
j≤n Aj .

Denote by Bi the set of equivalence classes with respect to the relation Ri. Observe
that Bi+1 is a refinement of Bi, that is, for every B ∈ Bi+1 there is a unique B′ ∈ Bi with
B ⊆ B′.

Let xRiy and ϕ ∈ Γk. Then ϕxRiϕy because ϕ maps neighbours of x and y to neigh-
bours of ϕx and ϕy while fixing every Aj setwise. This shows that ϕ permutes the equiva-
lence classes in Bi, and hence Γk in its natural action on subsets of S(v0, k + 1) preserves
the partition Bi, thereby inducing a natural action of Γk on Bi. Let Γk,i := (Γk)(Bi), in
other words, Γk,i is the pointwise stabilizer of Bi in Γk with respect to this action.

Before we turn to the construction of ck+1, we need one last definition. For every
colouring c : S(v0, k + 1) → N we define the induced colouring c[Bi] : Bi → N by

c[Bi](B) = min
v∈B

c(v).

We note that if c : S(v0, k + 1) → N is a colouring, then (Γk)c ≤
⋂

1≤i≤n(Γk)c[Bi] due to
the definition of induced colourings and the fact that Γk acts on Bi.

We now inductively define colourings ck,i of S(v0, k + 1) for 0 ≤ i ≤ n satisfying the
following properties.

(i) ck,i[Bj ] = ck,i−1[Bj ] for i ≥ 1 and j < i.

(ii) Every B ∈ Bi is monochromatic under ck,i.

(iii) Γ̃k,i :=
⋂

j≤i(Γk)ck,i[Bj ] ≤ Γk,i.

Define ck,0 ≡ 1. The statement (i) is vacuously true for i = 0, and properties (ii) and
(iii) are readily verified.

For the inductive definition of ck,i+1 let us assume that we already defined ck,i with the
desired properties. Recall that Γk,i = (Γk)(Bi). Note that if two vertices in S(v0, k + 1)
are contained in the same orbit with respect to Γk,i, then they are equivalent with respect
to Ri. Therefore two such vertices can only be inequivalent with respect to Ri+1, if they
have different neighbours in Ai+1. This shows that the pointwise stabilizer of Ai+1 in
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Γk,i fixes Bi+1 pointwise, and hence (Γk,i)(Ai+1) ≤ Γk,i+1. Since Γ̃k,i ≤ Γk,i we have
(Γ̃k,i)(Ai+1) ≤ Γ̃k,i ∩ Γk,i+1 ≤ (Γ̃k,i)(Bi+1). Therefore, by Lemma 2.2 there is a subset
S ⊆ Bi+1 such that

|S| ≤ 2|Ai+1|

and
(Γ̃k,i)(S) = (Γ̃k,i)(Bi+1).

Note that this implies that |S| ≤ 2⌈
√
∆⌉ because by induction hypothesis |Ai+1| ≤ ⌈

√
∆⌉.

Let S = {S1, . . . , Sℓ} be a subset of Bi+1 of minimal cardinality satisfying (Γ̃k,i)(S) =

(Γ̃k,i)(Bi+1). For j ∈ {1, . . . , ℓ} and each v ∈ Sj let ck,i+1(v) = ck,i(v) + j. For all other
vertices set ck,i+1(v) = ck,i(v). Property (ii) for ck,i+1 trivially follows from (ii) for ck,i.
It remains to show that ck,i+1 satisfies (i) and (iii).

For (i), let j < i and recall that every Bi ∈ Bi can be written as a disjoint union of
members of Bi+1. Since ck,i satisfies (ii), for every Bj ∈ Bj there is some Bi ∈ Bi with
Bi ⊆ Bj such that all vertices in Bi are coloured with colour ck,i[Bj ](Bj). It thus suffices
to show that for every Bi ∈ Bi there is some B ∈ Bi+1 such that Bi ⊇ B /∈ S.

Assume for a contradiction that there is some Bi ∈ Bi for which every B ∈ Bi+1 with
B ⊆ Bi is contained in S. Pick B ∈ S with B ⊆ Bi and let S ′ = S \ {B}. Minimality
of S implies that there is some γ ∈ (Γ̃k,i)(S′) which acts non-trivially on Bi+1. Since (iii)
holds for Γ̃k,i we have that γB ⊆ Bi. If γB = B, then γ ∈ (Γ̃k,i)(S) which is impossible.
Otherwise, γB ∈ S ′, and therefore γB is fixed by γ ∈ (Γ̃k,i)(S′) which is also impossible.

Note that by minimality of S, if B ∈ S, then B is not stabilised by Γ̃k,i. In particular
if Bi ∈ Bi with Bi ⊇ B ∈ S, then there is some γ ∈ Γ̃k,i such that B ̸= γB ⊆ Bi and
hence |B| ≤ |Bi|

2 . This fact will be used later to bound the number of used colours.
For the proof of (iii), note that by (i) we have (Γk)ck,i[Bj ] = (Γk)ck,i+1[Bj ] for every

j ≤ i, and consequently

Γ̃k,i+1 = Γ̃k,i ∩ (Γk)ck,i+1[Bi+1] = (Γ̃k,i)ck,i+1[Bi+1],

where the second equality simply uses the fact that Γ̃k,i ≤ Γk. Further note that by defini-
tion of S we have (Γ̃k,i)(S) ≤ (Γk,i)(Bi+1) = Γk,i+1. So all we need to show is that

(Γ̃k,i)ck,i+1[Bi+1] ≤ (Γ̃k,i)(S),

that is, every element of Γ̃k,i which preserves ck,i+1[Bi+1] must fix S pointwise.
Let B ∈ S, let γ ∈ (Γ̃k,i)ck,i+1[Bi+1] and let Bi ∈ Bi such that B ⊆ Bi. Since ck,i

satisfies (iii) we know that γ ∈ Γk,i and thus γB ⊆ Bi. Since B ∈ S we have (by (ii)
for ck,i and the definition of ck,i+1) that the colour of the vertices of B is different from
the colour with respect to ck,i+1 of the vertices in every other subclass of Bi, and hence
γB = B.

We obtain ck+1 from ck,n as follows. Split every equivalence class in Bn into at most
⌈
√
∆⌉ subsets of size at most ⌈

√
∆⌉. This is possible because every equivalence class with

respect to Rn contains at most ∆ vertices. Now for each B ∈ Bn, one of the subclasses
keeps the same colour as in ck,n, while the others are recoloured with distinct colours in

1, 2, . . . , ⌈
√
∆⌉.
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Finally, we need to check that ck+1 has the desired properties. By construction, it
satisfies (a), (b), and (c). These properties also immediately imply that Γk+1 ≤ Γk, or
more precisely that Γk+1 = (Γk)ck+1

. The colouring ck+1 was constructed from ck,n in a
way that every B ∈ Bn still contains some vertices with the same colour as in ck,n. Hence,
every element of Γk which preserves ck+1 must also preserve ck,n, whence Γk+1 ≤ Γk,n

by (iii) for ck,n.
In particular, Γk+1 setwise fixes all equivalence classes with respect to Rn, and by

construction of ck+1 from ck,n we conclude that there are no orbits with respect to Γk+1 of
size more than ⌈

√
∆⌉ in S(v0, k + 1). The second part of (d) follows by induction.

For the first part of (d), assume for a contradiction that there is γ ∈ Γk+1 fixing setwise
every B ∈ Bn but not fixing B(v0, k) pointwise. Thus the neighbours of v and γv in
B(v0, k) coincide for every v ∈ B(v0, k + 1). Hence, we can define an automorphism γ′

of G by

γ′v =

{
v if v ∈ B(v0, k),

γv otherwise.

This contradicts infinite motion, as γ−1γ′ only moves vertices inside B(v0, k). Thus, we
have proved that every element of Γk+1 fixes B(v0, k) pointwise.

Note that in this last argument finite motion (no matter how large) is not enough since
the number of vertices in B(v0, k) is unbounded. Indeed, this is the only part of the proof
requiring infinite motion; in particular, replacing this argument by something that works
under the assumption of large finite motion would lead to an answer to Question 1.2.

3.3 Counting the colours

To determine the number of colours used in the colouring procedure, first note that at most
⌈
√
∆⌉ colours from the set {1, 2, . . . } are used. It only remains to determine the number

of colours from N used throughout the procedure.
Let v be a vertex with c∞(v) ∈ N. Assume that v ∈ S(v0, k + 1), and as be-

fore, let A1, . . . , An be the orbits of Γk on S(v0, k). By construction, c∞(v) = ci,n =
maxi≤n(ck,i(v)), so it suffices to check how large ck,i(v) can get.

By definition ck,0(v) = 1. For 0 ≤ i ≤ n, let Bi ∈ Bi be the equivalence class with
respect to Ri containing v, and let Si be the set of blocks in Bi+1 whose colour with respect
to ck,i+1 differs from their colour with respect to ck,i, that is,

Si = {B ∈ Bi+1 | ck,i[Bi+1](B) ̸= ck,i+1[Bi+1](B)}.

By construction,

ck,i+1[Bi+1](B)− ck,i[Bi+1](B) ≤ |Si| ≤ 2⌈
√
∆⌉ < 2

√
∆+ 1

for every B ∈ Si. So if ck,i(v) ̸= ck,i+1(v), then Bi+1 ∈ Si, and

ck,i+1(v) < ck,i(v) + 2
√
∆+ 1.

It only remains to determine an upper bound for the number of steps i for which Bi+1 ∈
Si. Note that for each such i, there must be some γ ∈ Γk,i such that Bi+1 ̸= γBi+1 ∈ Bi+1

For the minimal i such that Bi+1 ∈ Si, this implies that Bi+1 is not the equivalence
class with no neighbours in Aj for any j ≤ i. Thus |Bi+1| ≤ ∆. For every subsequent
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such i, we have that Bi+1 and γBi+1 are subclasses of Bi with |Bi+1| = |γBi+1|, so
|Bi+1| ≤ |Bi|

2 . This implies that Bi+1 ∈ S for at most (1 + log2 ∆) many values of i.
Summing up, we get that

ck+1(v) = ck,n(v) ≤ 1 + (2
√
∆+ 1)(1 + log2 ∆) < 2(

√
∆+ 1)(log2 ∆+ 1)

Together with the additional ⌈
√
∆⌉ <

√
∆ + 1 colours from the set {1, 2, . . . } we have

thus used no more than (
√
∆+ 1)(2 log2 ∆+ 3) colours as claimed.
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