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Systems Theory  

Laboratory 1: Modelling and analysis of linear systems. 
 

 

Purpose of the exercise: 

Modelling and analysis of complex linear system using MATLAB/Simulink environment. 

 

1. Introduction 

 

 Wind turbines are crucial renewable energy solutions nowadays. The wind load (and also sea 

waves load for offshore structures) that is varying in time as well as rotation of turbine elements, are 

major contributors to the structural vibration of tower and blades. This vibration is generally lightly 

damped. Damping ratio for the first two tower bending modes is usually less than or equal to 0.5%, 

excluding aerodynamic damping. 

 Wind turbine tower vibration may be analysed using a tower-nacelle beam model, in which 

all turbine components (a nacelle, blades, a hub, a shaft, a generator, and possibly a gearbox) are 

represented by beam tip mass. 

 The main solutions utilised to reduce wind turbines towers vibration are: collective pitch 

control of the blades, generator torque control, and tuned vibration absorbers (TVAs) / tuned mass 

dampers (TMDs). TVAs are widely spread structural vibration reduction solutions for slender 

structures.  

 In a standard approach, a TVA is being installed at/close to the top of the structure, and it 

consists of an additional moving mass, a spring and viscous damper, which parameters are tuned to 

the selected (most often first) mode of structure vibration. 

 

2. A regarded model 

 

 According to the design assumptions, the analysed 

model consists of a full circular cross-section rod of 

diameter d and length L aligned vertically, fixed to the 

ground (representing a tower), and a stiff body of mass M 

connected rigidly to the top of the rod (representing both 

nacelle and turbine assemblies). A vibration reduction 

system that comprises a spring and a damper (built in 

parallel) with an additional stiff body, operating all together 

as a TVA system, is located at the top of the tower. A 

diagram of the regarded system is presented in Fig. 1. 

 A horizontal disturbance load may either be 

concentrated at the nacelle (P(t), representing rotor or 

rotating machinery unbalance interaction), or applied to the 

arbitrary tower section (F(t), representing wind / blade pass 

or sea interaction), both enable to force tower bending 

modes of vibration. The TVA direction of operation is the 

same as a direction of the applied excitation (assuming 

small bending angles).  

Fig. 1. Diagram of the regarded system   
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The dependences describing the wind, sea, etc., excitations, as well as tower dynamics, 

geometry, internal damping and stiffness are usually nonlinear. However, when displacements are 

small, often linearized model is used. Assuming constant mass and cross-section distribution along a 

beam that is regarded to be slender, as well as small bending deflections and angles, the tower-nacelle 

subsystem is modelled as a prismatic Euler-Bernoulli cantilever beam, which does not include 

sections shear deformations (sections assumed as planes perpendicular to the beam neutral axis), fixed 

at the bottom and free at the top, with a tip mass M (gravity components neglected for simplicity): 

   

𝜌𝐴
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+ 𝐸𝐽𝛼𝑖

𝜕5𝑤(𝑥, 𝑡)

𝜕𝑥4𝜕𝑡
+ 𝐸𝐽

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
= 𝐹(𝑡)𝛿(𝑥 − 𝑥0) + 𝑃(𝑡)𝛿(𝑥 − 𝑥1) 

            (1) 

where: 

𝜌 is a beam density,  

αi = 2i/ωi – retardation time of viscoelastic material (Voigt-Kelvin beam material model assumed)   

     for the i-th bending mode of natural frequency ωi; i – damping ratio,  

E – modulus of elasticity of beam material,  

A – cross-section area, 

J = πd4/64 – area moment of inertia, 

δ – Dirac’s delta. 

Considering a fundamental bending mode of vibration only, and neglecting the excitation 

F(t), the whole system may be regarded as a two mass-spring-damper system (2) (see Fig. 2): 
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where q1(t)=w1(L,t) (1) is a displacement of tower tip associated with tower-nacelle system 1st 

bending mode of vibration as w(x,t)=q(t)X(x) (Fourier’s separation of variables), thus: 

w1(L,t)=q1(t)X1(L), where X1(x) is the 1st bending mode shape normalised such as X1(L)=1. In (2ab) 

and Fig. 2, designations m1, c1, k1 represent modal mass, damping, and stiffness associated with the 

1st bending mode, according to dependencies (3): 
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Fig. 2. Two mass-spring-damper system 

The 1st mode shape X1(x) is given by (4): 

( ) xxxxxX
111111111

coshDsinhCcosBsinA  +++=      (4) 

with: β1=0.5474, A1=2.7292, B1=–2.2174, C1=–2.7292, D1=2.2174 being a solution of a beam 

equation (1) for the assumed mass-geometry parameters and boundary conditions. Value of β for the 

particular bending mode (1st in this case, i.e. β1) yields natural angular frequency ω1:  
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whereas damped natural angular frequency ω1d is:  
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In (2ab) and Fig. 2, designations: m2, c2, k2 are mass, damping, and stiffness coefficients of the TVA, 

given after Den Hartog:  
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where: 
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3. Tasks 

 

 For the assumed system parameters: ρ=4430 kg/m3, M=162.64 kg, E=110 GPa, d=70.5 mm, 

L=1.507 m, 1=0.5 %: 

1. calculate m1, c1, k1 according to (3), using e.g. integral evaluation function along with 

properly built MATLAB functions representing X1(x) (4) and X1”(x); otherwise, int or 

vpaintegral integration of symbolic expressions X1(x) and X1”(x) may be used, 

2. tune the TVA according to (5a)(6)(7) assuming =6.37 % mass ratio, 

3. build Simulink model representing the system (2ab), using Integrator blocks; assume P(t) as 

a sine input of amplitude 61 N and angular frequency vector Ω=ω1d*[0.50:0.05:1.50] rd/s 

(5b) (execute 21 simulations in total, use each of the consecutive angular frequencies from 

the regarded vector Ω); for each of the angular frequencies determine amplitude of q1(t) 

(consider simulation time Tsim long enough to obtain steady state oscillations; Tsim>>10 s), 

4. plot q1(t) amplitude frequency response characteristic (amplitude of q1(t) [mm] vs. angular 

frequency [rd/s] graph), 

5. repeat steps 3-4 for the system (2a) without the TVA. 

6. SUPPLEMENTARY: plot q1(t) amplitude frequency response characteristic using system (2ab), 

Fig. 2, and cosine representation of all q1(t), q2(t), and P(t) (assume different amplitudes and 

phase shifts). Build a system of 4 equations with 4 unknown amplitudes and solve it with 

e.g. MATLAB inv command (as it was presented at the lecture). 
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