Laboratory 2

State space modeling of the linear systems

Prepare state-space models (i.e.find matrices A, B, C, D) using symbolic expressions before the classes!

1. Purpose of the exercise:

Modeling of the dynamic systems using state space approach. MATLAB/Simulink environment is used.

2. Mechanical system modeling

Simulate the system presented in Fig. 1 with MATLAB/Simulink software:

Fig. 1. Mechanical system

While constructing this system model consider:

- *input signal* force **f(t)** (step and sine functions)
- output signal displacement y(t)
- parameters values:

Parameter	Unit	PC no. 1 / 6 / 11	PC no. 2 / 7 / 12	PC no. 3 / 8 / 13	PC no. 4 / 9 / 14	PC no. 5 / 10 / 15
c	Ns/m	1.5	1	0.5	2	2.5
k	N/m	10	5	2.5	15	20
m	kg	1	1.5	2	2.5	3

(2)

State space modeling of the mechanical system

General form of a state space model is as follows:

$$\frac{dx}{dt} = Ax + Bu$$
$$y = Cx + Du$$

where:

 \mathbf{x} (n x 1) – vector representing the state, \mathbf{u} (m x 1) – vector representing the input, \mathbf{v} (r x 1) – vector representing the output.

The matrices A (n x n), B (n x m), C (r x n) and D (r x m) determine the relationships between state variables and inputs or outputs. Note that the state equation corresponds to n first-order differential equations. While modeling the above system assume the state vector:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, where: $x_1 = y$, $x_2 = \frac{dy}{dt}$

Tasks:

- (a) simulate the system described by the state space model with MATLAB/Simulink software using *Step* input block (*Sources* library), *State-Space* block (*Continuous* library), and *Scope* (*Sinks* library); plot the response in a graphical window with *plot* command,
- (b) generate bode characteristics and determine system resonance angular frequency ω_r ,
- (c) simulate the system using *Sine* input block at the angular frequency ω_r with input amplitude of 1 [N]; use also *State-Space*, and *Scope* blocks assume <u>simulation time</u> long enough to obtain (more or less) constant amplitude of sine response (at least 10-15 periods); plot the response in a graphical window,
- (d) assume damping coefficient value of **0.5c** and repeat steps (a)÷(c).

3. Electrical system modeling

Simulate the system presented in Fig. 2 with MATLAB/Simulink software:

Fig. 2. Electrical system

While constructing this system model consider:

- input signal electromotive force $\mathbf{u}_{\mathbf{w}}(\mathbf{t})$ (step and sine functions),
- output signal 1 voltage drop across the induction coil $\mathbf{u}_{L}(\mathbf{t})$
- output signal 2 voltage drop across the capacitor $\mathbf{u}_{c}(\mathbf{t})$
- parameters values (note the units!):

Parameter	Unit	PC no. 1 / 6 / 11	PC no. 2 / 7 / 12	PC no. 3 / 8 / 13	PC no. 4 / 9 / 14	PC no. 5 / 10 / 15
R	Ω	5	7.5	10	12.5	15
L	mН	1	1.5	2	2.5	3
C	μF	3	2.5	2	1.5	1

State space modeling of the electrical system

While modeling the electrical system given above, assume the state vector:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, where: $x_1 = u_c$, $x_2 = i$

Note that two versions of output equation (i.e. two versions of matrices C, D) are needed (using either output signal 1, or output signal 2).

Tasks – **only** *output signal* 2 ($\mathbf{u}_{c}(\mathbf{t})$) should be used below:

- a) simulate the system described by the state space model with MATLAB/Simulink software using *Step* input block, *State-Space*, and *Scope* blocks (plot the response in a graphical window),
- b) generate bode characteristics and determine system resonance angular frequency ω_r ,
- c) simulate the system using *Sine* input block at the angular frequency ω_r , $0.5\omega_r$ and $1.5\omega_r$ with input amplitude of 1 [V]; use also *State-Space*, and *Scope* blocks assume <u>simulation time</u> long enough to obtain (more or less) constant amplitude of sine response (at least 10-15 periods); plot the responses in three separate graphical windows.

References:

- [1] G.F. Franklin, J.D. Powell, E. Emami-Naeini "Feedback control of dynamic systems", Prentice Hall, New York, 2006.
- [2] K. Ogata "Modern control engineering", Prentice Hall, New York, 1997.
- [3] R.H. Cannon "Dynamics of physical systems", Mc-Graw Hill, 1967 (available in Polish as: R.H. Cannon "Dynamika układów fizycznych", WNT, Warszawa, 1973).
- [4] J. Kowal "Podstawy automatyki", v.1 and 2, UWND, Kraków, 2006, 2007 (in Polish).
- [5] W. Pełczewski "Teoria sterowania", WNT, Warszawa, 1980 (in Polish).
- [6] Brzózka J., Ćwiczenia z Automatyki w MATLABIE i Simulinku, Wydawnictwo Mikon, Warszawa 1997 (in Polish).
- [7] Zalewski A., Cegieła R., MATLAB: obliczenia numeryczne i ich zastosowania, Wydawnictwo Nakom, Poznań 1996 (in Polish).
- [8] MATLAB/Simulink documentation: http://www.mathworks.com/help/