
1

Laboratory 2

Solving differential equations with MATLAB/Simulink

symbolic and numerical methods

1. Purpose of the exercise:
- learning symbolic and numerical methods of differential equations solving with

MATLAB

- using Simulink to create models of differential equations

- saving received solutions

2. Theoretical introduction

2.1. Symbolic solution of differential equations – function dsolve

Symbolic method consists in mathematical-expressions-based calculations rather than

numbers-based calculations (as for numerical methods), resulting also in mathematical

expression. Using symbolic variables and function dsolve, one can solve ordinary differential

equation of any order.

In symbolic representation of differential equation initial conditions, symbol D is used.

D corresponds to first order derivative, while D2 – to second order derivative, etc. The letter

D denotes differentiation with respect to the independent variable, i.e. usually d/dt.

Function dsolve may also be used for solving of system of differential equations as well as

initial conditions definition. Consecutive equations are separated by commas, and are

followed by initial conditions, also separated by commas:

dsolve(‘equation1’, ‘equation2’, … , ‘condition1’ , ‘condition2’);

Remark. Support of character vectors and strings will be removed in the future –

use sym objects in future MATLAB releases to define differential equations instead, as

in Example 1 below.

Example 1:

Solve differential equation:

𝑑2𝑥

𝑑𝑡2
+ 3

𝑑𝑥

𝑑𝑡
+ 2𝑥 = 0

with initial conditions: 𝑥(0) = 0,
𝑑𝑥

𝑑𝑡
(0) = 2, using function dsolve.

To solve a problem, create m-file solv1.m:

% Current syntax

syms x y; % define symbolic variables ‘x’ and ‘y’

y = dsolve('D2x + 3*Dx + 2*x=0' , 'x(0)=0' , 'Dx(0)=2') % solve equation with initial conditions

% Syntax required for future releases

syms x(t) y(t) % define symbolic variables ‘x’, ‘y’ representing functions of the independent variable ‘t’

Dx = diff(x); % assign diff(x) to Dx

D2x = diff(x,2); % assign diff(x,2) to D2x

y(t) = dsolve(D2x + 3*Dx + 2*x == 0, x(0) == 0, Dx(0) == 2) % solve equation with initial conditions

2

pretty(y); % print a symbolic solution formula in a semi-graphical form

t=0:0.01:9.99; % define time vector ‘t’
w=subs(y); % calculate solution vector ‘w’ by substitution of time vector ‘t’
plot(t,w,'r'); % plot 'w' versus 't' in red face

xlabel('Time [s]');
ylabel('Signal amplitude');

title('Solution of the ordinary differential equation');

grid;

Solution of the differential equation as a mathematical expression and time graph is

obtained by execution of solv1 in MATLAB Command Window.

2.2. Numerical solution of differential equations – function ode

MATLAB contains some functions which solve an initial value problem of ordinary differential
equation by, among others:
- Runge-Kutta low order method (function ode23),

- Runge-Kutta medium order method (function ode45).

These functions solve an initial value problem of ordinary system of equations like:

Function syntax:

[T, X] = ode23(‘F(t, x)’, [t0 tk], x0, options)

[T, X] = ode45(‘F(t, x)’, [t0 tk], x0, options)

Input parameters should comply with the following criteria :

• first parameter should be a string, containing defined by the user name of the

function that returns a value of F(t, x),

• [t0, tk] – time range in which the solution is being calculated,

• x0 – initial condition – a vector containing a solution at the starting point,

• options – an additional optional parameters that may be set with the help of odeset

instruction: options = odeset(‘Parameter_name_1’, value_1,

‘Parameter_name_2’, value_2,…).

Each row in the solution array X corresponds to a time step returned in the column vector T.

Example 2:

Solve differential equation numerically:

 with initial conditions:

Use ode45 function and equation model prepared in Simulink. Compare received results. To

solve this problem with the use of ode method family, we need two files:

3

• first is MATLAB function function1.m – to define the equation:

function xdot=function1(t,x) % System of differential equations

xdot=zeros(2,1);

xdot(1)=x(2);

xdot(2)=(-2*x(1)-3*x(2));

• second is standard MATLAB script solv2.m – to insert input parameters, call ode45
function and draw solution graph:

 t0=0;

clc

disp(This function solves ordinary differential equation using ');

disp('Runge – Kutta method and gives its graph representation ');
disp(' ');disp(‘Equation form:');disp(' ');

disp(' x``+ 3•x`+ 2•x = 0');

x01=input('Insert x01 = ');

x02=input('Insert x02 = ');

tk=input('Give simulation time tk = ');

x0=[x01 x02];

[t,x]=ode45('function1', [t0, tk], x0)
plot(t,x,'r-.');

xlabel('Time [s]'); ylabel('Signal amplitude');

title('Solution of the ordinary differential equation ');

grid;

To show the final graph you should execute:

>> solv2

2.3. Numerical solution of differential equations – Simulink

Another way of solving ordinary differential equations is by using Simulink. Assuming

variables:

you get a system of equations:

On the basis of it, we create a Simulink model as presented below:

4

After inserting initial conditions into the integrators (Int1 and Int2) and choosing suitable

simulation parameters, finally we get the graph:

3. Procedure of the laboratory:

3.1. Solve these differential equations:

Use dsolve and ode45 functions as well as equation model prepared in Simulink. Draw y(t)

plot received as a result of simulation. Compare results achieved with all of these methods.

3.2. Prepare differential equation model in Simulink:

Use Transfer Fcn, State-Space, and Integrator blocks. Register and compare so obtained step

responses when amplitude of input is 1.

Equation a) represented by a transfer function model (Transfer Fcn) is shown below:

5

Simulink model of the equation a) using Integrator blocks is of the form:

After choosing suitable simulation parameters, we get the graphical solutions that are similar

to one another.

3.3. Write the results using a function save

Create a Simulink model:

Open Scope block y1 and press its Configuration Properties icon (the one with 'cogwheel') to

obtain dialogue window:

In the 'Logging' ('History' or 'Data history' in older Simulink versions) tab, mark 'Log data to

workspace' checkbox and enter 'Variable name' (e.g. y1).

results

6

After simulation completion, two matrices results and y1 will be created in MATLAB

workspace: results containing three column vectors of variables including simulation time,

input and step response, and y1 containing two column vectors of variables including

simulation time and step response. To write these matrices to the hard disk, execute the

command:

>> save filename results y1

or:

>> save filename to save all the workspace. Default file format is binary MAT-file.

Use clear command to empty the workspace, then insert matrices results and y1 into the

workspace by typing:

>> load filename

To receive the graphical results of equation 3.2 a) again, follow the instructions below:

>> t = results(:,1) % time vector

>> u = results(:,2) % forcing vector

>> y = results(:,3) % response vector

>> plot(t, u, 'r', t, y, 'g')

>> grid

Alternatively, using the scope data:
>> t = y1(:,1) % time vector

>> y = y1 (:,2) % response vector

>> plot(t, y, 'g')

>> grid

or simply:
>> plot(y1(:,1), y1(:,2)); grid

3.4 Solve differential equations:

Draw y(t) plot received as a result of simulation and compare it with the solution obtained

with MATLAB code.

References:
[1] G.F. Franklin, J.D. Powell, E. Emami-Naeini “Feedback control of dynamic systems”,

Prentice Hall, New York, 2006.

[2] K. Ogata “Modern control engineering”, Prentice Hall, New York, 1997.

[3] R.H. Cannon “Dynamics of physical systems”, Mc-Graw Hill, 1967 (available in Polish

as: R.H. Cannon “Dynamika układów fizycznych”, WNT, Warszawa, 1973).

[4] J. Kowal “Podstawy automatyki”, v.1 and 2, UWND, Kraków, 2006, 2007 (in Polish).

[5] W. Pełczewski “Teoria sterowania”, WNT, Warszawa, 1980 (in Polish).

[6] Brzózka J., Ćwiczenia z Automatyki w MATLABIE i Simulinku, Wydawnictwo

Mikon, Warszawa 1997 (in Polish).

[7] Zalewski A., Cegieła R., MATLAB: obliczenia numeryczne i ich zastosowania,

Wydawnictwo Nakom, Poznań 1996 (in Polish).

[8] MATLAB/Simulink documentation: http://www.mathworks.com/help/

http://www.mathworks.com/help/

