Laboratory 4

Designing automatic systems
 with MATLAB / Simulink

1.Purpose of the exercise:

- learning methods of creating linear automatic systems models \& transforming model forms
- creating block diagrams of automatic systems
- drawing time responses and frequency responses

2.Theoretical introduction

2.1. Automatic systems models

MATLAB often uses two types of linear dynamic models:

- state-space and output equation

To achieve a complete definition of the model, you should define matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
For instance:

$$
A=\left[\begin{array}{cc}
-3 & -2 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad D=[0]
$$

Using $\boldsymbol{s s}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$ we get model presentation in Command Window.

- matrix transfer function (for SIMO systems only - Single-Input Multi-Output).

To define a transfer function you should input two vectors, containing coefficients of numerator and denominator. Coefficients are put in descending order of operator s powers. For instance: vectors NUM=[lllll 12$], \mathrm{DEN}=\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]$ give the transfer function shown below:

$$
G(s)=\frac{s+2}{s^{2}+3 s+2}
$$

Using printsys(NUM,DEN) command, the transfer function is printed on the screen.

2.2. Transforming model forms

- \quad ss2tf and $t f 2 s s$ functions

Syntax :

$$
\begin{array}{ll}
{[\mathrm{NUM}, \mathrm{DEN}]=s s 2 t f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{Ui})} & - \text { state-space to transfer function conversion } \\
{[\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}]=\operatorname{tf} 2 s s(\mathrm{NUM}, \mathrm{DEN})} & - \text { transfer function to state-space conversion }
\end{array}
$$

A - state (system) matrix, B - input (control) matrix, C - output matrix, D - feedthrough matrix, Ui - input number (for multi-input systems only).
For more information use help ss2tf or help tf2ss in MATLAB.

2.3. Block diagrams modeling

Several functions that allow to receive resultant models for systems with feedback, serial and parallel connections, are shown below:

- feedback - feedback connection of the two models [NUM, DEN]= feedback(NUM1, DEN1, NUM2, DEN2, SIGN)
- series - series connection of the two models
[NUM, DEN]=series(NUM1, DEN1, NUM2, DEN2)
- paralell - parallel connection of the two models
[NUM, DEN]=paralell(NUM1, DEN1, NUM2, DEN2)
If SIGN $=1$ then positive feedback is used. If SIGN $=-1$ or SIGN is omitted, negative feedback is used. For more information use HELP in MATLAB.

2.4. Time response determination

Unit impulse response of a linear system is calculated by impulse. The impulse response is a response to a Dirac input for continuous-time systems. Syntax:

- impulse(A,B,C,D,Ui)
- impulse(NUM, DEN)
- [Y,X,T]=impulse(A,B,C,D,Ui)
- [Y,X,T]=impulse(NUM, DEN)
step calculates the unit step response of a linear system. Syntax:
- step(A,B,C,D,Ui)
- step(NUM, DEN)
- $[\mathrm{Y}, \mathrm{X}, \mathrm{T}]=\operatorname{step}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{Ui})$
- $[\mathrm{Y}, \mathrm{X}, \mathrm{T}]=\operatorname{step}(\mathrm{NUM}, \mathrm{DEN})$

2.5 Frequency response determination

nyquist calculates the Nyquist frequency response of the model. Syntax:

- nyquist(A,B,C,D,Ui)
- nyquist(NUM, DEN)
- [re,im,w]=nyquist(NUM, DEN)
bode computes the magnitude and phase of the frequency response. Syntax:
- bode(A,B,C,D,Ui)
- bode(NUM, DEN)
- [amplitude,phase,w]=bode(NUM, DEN)

3. Procedure of the laboratory

3.1. For matrices given below, convert state-space model to a transfer function
a) $\mathbf{A}=\left[\begin{array}{cc}-4, & 2 \\ 2, & -1\end{array}\right]$
$\mathbf{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$\mathbf{C}=\left[\begin{array}{ll}0 & 0\end{array}\right]$
$\mathbf{D}=[0]$
b) $\mathbf{A}=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & 0\end{array}\right]$
$\mathbf{B}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
$C=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$
$\mathbf{D}=[0]$
3.2. For transfer functions given below, convert models to state-space
a) $G(s)=\frac{4 s}{2 s+1}$,
b) $G(s)=\frac{2}{s^{2}+4 s+6}$,
c) $G(s)=\frac{1}{5 s}$,
d) $G(s)=3$

3.3. Determine time and frequency responses for the following automatics elements:

a) proportional element: $\mathrm{K}=2$;
b) ideal integral element: $\mathrm{K}=3$;
c) ideal differential element: $\mathrm{K}=5$;
d) real differential element (with 1st order inertia): $\mathrm{K}=0.1, \mathrm{~T}=8$;
e) 1 st order inertial element: $K=3, T=1$;
f) 2 nd order inertial element: $K=2, T_{1}=2, T_{2}=4$;
g) 2nd order oscillatory element: $\mathrm{K}=1, \omega=1, \zeta=0.2$;
h) 2 nd order oscillatory element: $\mathrm{K}=1, \omega=2, \zeta=0.2$;

Example 1

Determine time and frequency responses for 1st order inertial element:

$$
\begin{array}{lll}
G(s) & =\frac{K}{T s+1} & \mathrm{~K}=1, \mathrm{~T}=3 \\
& & \\
& \gg \mathrm{I}=[1] ; & \\
\gg \mathrm{m}=[3,1] ; & & \text { >> impulse }(\mathrm{l}, \mathrm{~m}) \\
& \gg \text { step }(1, \mathrm{~m}) &
\end{array}
$$


```
>> nyquist(l,m)
>> bode(l,m)
```


3.4. Assuming: $\mathrm{Kr}=1.5 ; \mathrm{T}_{\mathrm{d}}=3 ; \mathrm{T}_{\mathrm{i}}=2 ; \mathrm{T}=1$, write the m -file that plots step and impulse responses, Nyquist frequency response, and Bode magnitude and phase frequency responses for a system given below.

Example 2

Assuming: $\mathrm{K}=2 ; \mathrm{T}=4$, write the m -file that plots Nyquist frequency response, and Bode magnitude and phase frequency responses for a system given below.

\%Data
$k=1.5 ; T=3 ;$
\%Numerator and denominator of: $K+1 / T s$
[NUM, DEN]=parallel([k],[1],[1],[T 0]); w=0:0.01:200;
[mod,phase,w]=bode(NUM, DEN);
\% magnitude and phase of the frequency response
nyquist(NUM,DEN,w);axis([-1 5-5 2]);grid;pause
\% logarithmic magnitude characteristics
semilogx($w, 20 * \log 10(m o d))$; grid;ylabel('Lm [dB]');pause
\% logarithmic phase characteristics
semilogx(w,phase); grid;ylabel('phase [degrees]');pause;

3.5. For the system below:

(a) write the MATLAB m-file to calculate a resultant transfer function; present the results with printsys,
(b) draw the step response of the system using step MATLAB command,
(c) build a Simulink model of the system with Step input block, and compare its output with the result obtained with step MATLAB command,
(d) ADDITIONAL: calculate the resultant transfer function analytically and compare it with the transfer function (a) calculated in MATLAB (enclose the solution).

3.6. Observe the influence of $\xi, \mathrm{k}^{\left(\omega_{\underline{o}}\right.}$ on the logarithmic plots of 2 nd order oscillatory element:

$$
G(s)=\frac{k \omega_{o}^{2}}{s^{2}+2 \xi \omega_{o} s+\omega_{o}^{2}}
$$

Write the m-file that allows to draw logarithmic plots on the assumption that:
(a) $\xi=$ var , $\mathrm{k}, \omega_{\mathrm{o}}=$ const
(b) $\mathrm{k}=\mathrm{var}, \xi, \omega_{\mathrm{o}}=$ const
(c) $\omega_{\mathrm{o}}=\mathrm{var}, \mathrm{k}, \xi=\mathrm{const}$

Use instructions like input, pause, hold on, ...

Task assignment:

PC no.		Observe the influence of	
$7 / 14$	$4 / 11$	ξ	k
$2 / 9$	$5 / 12$	k	ω_{0}
$3 / 10$	$6 / 13$	ξ	ω_{0}
$1 / 8 / 15$		ξ	k

Matching parameters:

$\xi_{1}=0.2$	$\mathrm{k}_{1}=1.5$	$\omega_{1}=1.0$
$\xi_{2}=0.5$	$\mathrm{k}_{2}=4.5$	$\omega_{2}=2.5$
$\xi_{3}=0.8$	$\mathrm{k}_{3}=7.5$	$\omega_{3}=4.5$
$\xi_{4}=0.3$	$\mathrm{k}_{4}=2.0$	$\omega_{4}=2.5$
$\xi_{5}=0.6$	$\mathrm{k}_{5}=5.5$	$\omega_{5}=5.0$
$\xi_{6}=0.9$	$\mathrm{k}_{6}=8.0$	$\omega_{6}=7.5$

Determine time and frequency responses and formulate comments about parameter influence.

References:

[1] G.F. Franklin, J.D. Powell, E. Emami-Naeini "Feedback control of dynamic systems", Prentice Hall, New York, 2006.
[2] K. Ogata "Modern control engineering", Prentice Hall, New York, 1997.
[3] R.H. Cannon "Dynamics of physical systems", Mc-Graw Hill, 1967 (available in Polish as: R.H. Cannon "Dynamika układów fizycznych", WNT, Warszawa, 1973).
[4] J. Kowal "Podstawy automatyki", v. 1 and 2, UWND, Kraków, 2006, 2007 (in Polish).
[5] W. Pełczewski "Teoria sterowania", WNT, Warszawa, 1980 (in Polish).
[6] Brzózka J., Ćwiczenia z Automatyki w MATLABIE i Simulinku, Wydawnictwo Mikon, Warszawa 1997 (in Polish).
[7] Zalewski A., Cegieła R., MATLAB: obliczenia numeryczne i ich zastosowania, Wydawnictwo Nakom, Poznań 1996 (in Polish).
[8] MATLAB/Simulink documentation: http://www.mathworks.com/help/

