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Systems Theory  

Laboratory 4: Selected continuous-time and discrete-time control 

algorithms. Optimal control. 
 

 

Purpose of the exercise: 

Design, analysis, and verification of continuous- and discrete-time optimal control solutions for 

complex system, using MATLAB/Simulink environment. 

 

1. Introduction 

 

 Most of real-time vibration control approaches are based on direct two-level (bang-bang) 

control such as displacement or velocity ground-hook, sliding mode control, fuzzy logic, heuristic 

algorithms, or, most widely, two-stage cascade algorithms with the calculation of an actuator 

required force using e.g. adaptive (positive or negative) stiffness and damping, control Lyapunov 

function based methods, or Pontryagin maximum principle based optimal control methods, 

including Linear Quadratic (Gaussian) Regulators (LQR/LQG), being a 1st stage, and force tracking 

algorithms using active or semiactive actuators, e.g. MR devices (being a 2nd stage); for MR 

dampers, a force tracking algorithm may include a feed-forward loop with an MR damper forward 

or inverse model, and a feedback loop with damper force sensor signal and e.g. PI control 

algorithm. Force tracking using semiactive actuators is compromised by their force value 

limitations, including impossibility to generate active forces. Another problem is that some 

advanced 1st stage algorithms need real-time oscillation frequency determination which may be an 

issue for polyperiodic or random (e.g. seismic) excitations – for such situations these algorithms 

switch to the passive operation mode. 

 

2. A regarded system 

 

 A vibration reduction system that comprises a spring (of stiffness k2) and an MR damper, built 

in parallel, with an additional stiff body of mass m2, operating all together as an MR TVA system, 

is regarded. Alternatively, an active element is considered in place of an MR damper.  

The analysed vibrating system/structure with an MR tuned vibration absorber (TVA) may be 

regarded as a two mass-spring-damper system, subjected to an external excitation force P (P(t)) 

(see Fig. 1): 
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where q1(t) is a horizontal displacement of a protected system/structure (e.g. corresponding to a 

tower-nacelle system 1st bending mode of vibration), while q2(t) is an absorber absolute 

displacement. Designations m1, c1, k1 state for (modal) mass, damping, and stiffness of the primary 

system/structure, according to dependencies (3) from Lab. 1. A vibration reduction system 

comprises a spring of stiffness k2 and an MR damper, built in parallel, with an additional stiff body 

of mass m2. PMR (t) is a force produced by the MR damper (alternatively by an active cylinder), see 

Fig. 1. 

To determine the MR damper resistance force PMR(t), hyperbolic tangent model given during 

Lab. 2, will be used. Two approaches of reproducing the MR damper force may be used, as 

developed during Lab. 3. 
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Fig. 1. A regarded system diagram 

 

3. Optimal control [9,10] 

 

(a) Pontryagin maximum principle 

Assume state equation of the regarded system: 

𝒛̇(𝑡) = 𝒇(𝒛(𝑡), 𝑢(𝑡), 𝑡),     𝑡 ∈ [𝑡0, 𝑡1]       (1) 

where 𝒛(𝑡) is the state vector with the initial value 𝒛(𝑡0) = 𝒛0, 𝑢(𝑡) is piecewise-continuous 

control vector with constraints, 𝑢(𝑡) ∈ 𝑈, and quality index to be minimised is: 

𝐺(𝒛, 𝑢) = ∫ 𝑔(𝒛(𝑡), 𝑢(𝑡), 𝑡)
𝑡1
𝑡0

𝑑𝑡         (2) 

Functions 𝑓 and 𝑔 are assumed to be continuously differentiable with respect to the state and 

continuous with respect to time and control. Let us define Hamiltonian in the form: 

𝐻(𝝃(𝑡), 𝒛(𝑡), 𝑢(𝑡), 𝑡) = −𝑔(𝒛(𝑡), 𝑢(𝑡), 𝑡) + 𝝃𝑇(𝑡)𝒇(𝒛(𝑡), 𝑢(𝑡), 𝑡)    (3) 

If (𝒛∗(𝑡), 𝑢∗(𝑡)) is an optimal controlled process (optimal trajectory of state, and optimal control, 

respectively), there exist an adjoint (co-state) variable 𝝃 satisfying the equation (𝒇𝑧 and 𝑔𝑧 are 𝒇 

and 𝑔 derivatives with respect to the state 𝒛): 

𝝃̇(𝑡) = −𝒇𝑧
∗𝑇(𝒛∗(𝑡), 𝑢∗(𝑡), 𝑡)𝝃(𝑡) + 𝑔𝑧

𝑇(𝒛∗(𝑡), 𝑢∗(𝑡), 𝑡),   𝑡 ∈ [𝑡0, 𝑡1]    (4) 

with a terminal (transversality) condition:  

𝝃(𝑡1) = 0            (5) 

so that 𝑢∗(𝑡) maximises the Hamiltonian over the set 𝑈 for almost all 𝑡 ∈ [𝑡0, 𝑡1], i.e.:  

           𝑢∗(𝑡) = arg max
𝒖(𝑡)∈𝑈

𝐻(𝝃(𝑡), 𝒛∗(𝑡), 𝑢(𝑡), 𝑡)         

thus: 

𝐻(𝝃(𝑡), 𝒛∗(𝑡), 𝑢∗(𝑡), 𝑡) ≥ 𝐻(𝝃(𝑡), 𝒛∗(𝑡), 𝑢(𝑡), 𝑡)   ∀𝑢(𝑡) ∈ 𝑈        (6) 
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(b) Optimal control as multiobjective optimisation problem 

A parametric scalarising approach (e.g. weighted sum approach) can be used to convert set of 

objectives (e.g. primary system displacement minimisation, actuator force and stroke 

minimisation) into a single parametric objective function. By varying the parameters (weights) and 

optimising so scalarised function, various Pareto-optimal solutions can be found.  

Remark 1: Weight of each objective should be proportional to its relative importance in scalarised 

multiobjective optimisation problem; inversely proportional to the allowable range of the 

particular quantity squared. 

 

(c) Optimal control for linear systems – infinite horizon continuous-time LQR 

A continuous Linear-Quadratic Regulator (LQR) is a state-feedback controller defined for 

continuous-time state-space system. Its parameters are calculated by solving the optimal problem 

called the continuous LQR problem. The LQR control algorithm can be employed for semi-active 

control of the tower-nacelle system with MR TVA, assuming PMR (a force produced by an MR 

damper) as a control input. Using this algorithm, the optimal control signal PMR is obtained. To 

induce the MR damper to generate the desired optimal control force, the MR damper force tracking 

algorithm / inverse model is used (see Fig. 2 and Fig. 3). 

Consider a controllable (stabilisable), linear, time-invariant (LTI), continuous system:  

𝒛̇(𝑡) = 𝑨𝒛(𝑡) + 𝑩𝑢(𝑡) 

where 𝒛(𝑡) = [𝑧1(𝑡) 𝑧2(𝑡) 𝑧3(𝑡) 𝑧4(𝑡)]
𝑇 is a state vector (𝑧1(𝑡) = 𝑞1(𝑡), 𝑧2(𝑡) = 𝑞̇1(𝑡), 

𝑧3(𝑡) = 𝑞2(𝑡), 𝑧4(𝑡) = 𝑞̇2(𝑡)), and a (multiobjective) quadratic cost functional over infinite 

interval: 

𝐽 =
1

2
∫ 𝒛𝑇(𝑡)𝑸𝒛(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)
∞

𝑡0

𝑑𝑡 

where: 𝑸 = 𝑸𝑇 ≥ 0, 𝑅 = 𝑅𝑇 > 0 are matrices of weights, 𝑢(𝑡) = 𝑃𝑀𝑅(𝑡), and terminal cost is 

assumed zero. The optimal control 𝑢∗(𝑡) law is given by: 

𝑢∗(𝑡) = −𝑲𝒛∗(𝑡) 

where: 
𝑲 = 𝑅−1𝑩𝑇𝑺 

while S, a constant (for infinite horizon case), positive definite, symmetric matrix, is a solution of 

a nonlinear Algebraic Riccati Equation: 

𝑸+ 𝑨𝑇𝑺 + 𝑺𝑨 − 𝑺𝑩𝑅−1𝑩𝑇𝑺 = 𝟎  

while the optimal trajectory is given by: 

𝒛̇∗(𝑡) = (𝑨 − 𝑩𝑅−1𝑩𝑇𝑺)𝒛∗(𝑡) 

The continuous-time LQR optimisation problem may be solved using lqr function  

from MATLAB/Simulink Optimization toolbox. That function calculates the optimal state-feedback 

gain that minimises the assumed quadratic cost functional. 
 

(d) Optimal control for linear systems – infinite horizon discrete-time LQR (DLQR) 

A discrete Linear-Quadratic Regulator  (DLQR) is a state-feedback controller defined for 

discrete-time state-space system. Its parameters are calculated by solving the optimal problem 

called the discrete LQR (DLQR) problem. Using this algorithm, the optimal control signal PMR is 

obtained. To induce the MR damper to generate the desired optimal control force, the MR damper 

force tracking algorithm / inverse model is used (see Fig. 2 and Fig. 3). 
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Consider linear, time-invariant, discrete system:  

𝒛(𝑘 + 1) = 𝑨𝑑𝒛(𝑘) + 𝑩𝑑𝑃𝑀𝑅(𝑘) 

where 𝒛(𝑘) = [𝑧1(𝑘) 𝑧2(𝑘) 𝑧3(𝑘) 𝑧4(𝑘)]
𝑇 is a state vector, and a (multiobjective) quadratic 

cost functional: 

𝐽 =
1

2
∑ [𝑧𝑇(𝑘)𝑸𝑑𝑧(𝑘) + 𝑢

𝑇(𝑘)𝑅𝑑𝑢(𝑘)]

∞

𝑘=𝑘0

 

The optimal control law is given by: 

𝑢∗(𝑘) = −𝑲𝑑𝒛
∗(𝑘) 

where: 

𝑲𝑑 = (𝑩𝑑
𝑇𝑺𝑑𝑩𝑑 + 𝑅𝑑)

−1
𝑩𝑑

𝑇𝑺𝑑𝑨𝑑 

while 𝑺𝑑 is a constant, positive definite solution of the discrete-time Algebraic Riccati Equation: 

𝑺𝑑 = 𝑨𝑑
𝑇 [𝑺𝑑 − 𝑺𝑑𝑩𝑑(𝑩𝑑

𝑇𝑺𝑑𝑩𝑑 + 𝑅𝑑)
−1
𝑩𝑑

𝑇𝑺𝑑] 𝑨𝑑 + 𝑸𝑑 

The continuous-time system may be discretised using zero-order hold with T0  being sampling 

period. Thus (also, MATLAB command c2d may be used): 

𝑨𝑑 = 𝑒
𝑨⋅𝑇0 

𝑩𝑑 = ∫ 𝑒𝑨𝜏𝑩𝑑𝜏
𝑇0
0

 or: 𝑩𝑑 = 𝑨
−1(𝑨𝑑 − 𝐼)𝑩 

𝑪𝑑 = 𝑪 

𝑫𝑑 = 𝑫 

The DLQR optimisation problem may be solved using dlqr or lqrd functions  

from MATLAB/Simulink Optimization toolbox. These functions calculate the optimal state-

feedback gain that minimises the assumed cost functional. 
 

  
Fig. 2. LQR with MR damper inverse model 

 

    
 

Fig. 3. LQR / DLQR with MR damper force tracking algorithm 

(e) Optimal control for nonlinear systems  

𝑥2
∗,  𝑥̇2

∗ 

𝑖MR 𝑃𝑀𝑅
∗ 

Inverse Model LQR / DLQR 

with MR actuator 

𝑞1,  𝑞̇1,  𝑞2,  𝑞̇2 

𝑞1,  𝑞̇1,  𝑞2,  𝑞̇2 

𝑖MR 𝑃𝑀𝑅
∗ 

Force Tracking LQR / DLQR 

𝑃𝑀𝑅 

with MR actuator 

𝑞1,  𝑞̇1,  𝑞2,  𝑞̇2 

𝑞1,  𝑞̇1,  𝑞2,  𝑞̇2 
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Pontryagin maximum principle based nonlinear optimal control solutions, i.e. optimal control 

/ model predictive control, or quasi-optimal control / optimal based modified ground-hook law, are 

directly applicable for on-line and real-time implementation. An actuator control signal (e.g. MR 

damper control current) is directly determined as their output rather than the required force (as for 

two-stage cascade approaches), thus a force tracking algorithm (MR damper inverse model) that 

always results in control inaccuracy is entirely omitted. Moreover, all of the system / actuator (e.g. 

MR damper) constraints: the inability to generate active forces, lower and upper force value 

limitations, nonlinear operational characteristics with hysteresis, are embedded as an intrinsic part 

of this nonlinear optimal control technique, thus the solution is optimal (or quasi optimal) for the 

assumed actuator, respecting its constraints.  

Consider the equation of motion of a vibrating system with an MR TVA (Fig. 1) in a form of 

(1), where 𝒛(𝑡) is a state vector assumed as in section 3(c). Thus: 

𝒇(𝒛(𝑡), 𝑢(𝑡), 𝑡) =  

[
 
 
 
 
 

𝑧2(𝑡)
1

𝑚1
(−(𝑘1 + 𝑘2)𝑧1(𝑡) − 𝑐1𝑧2(𝑡) + 𝑘2𝑧3(𝑡) − 𝑃𝑀𝑅(𝒛(𝑡), 𝑢(𝑡), 𝑡) + 𝑃(𝑡))

𝑧4(𝑡)
1

𝑚2
(𝑘2𝑧1(𝑡) − 𝑘2𝑧3(𝑡) + 𝑃𝑀𝑅(𝒛(𝑡), 𝑢(𝑡), 𝑡)) ]

 
 
 
 
 

       

(4)        

where: 

𝑃𝑀𝑅(𝒛(𝑡), 𝑢(𝑡), 𝑡) = 

= (𝐶1𝑖𝑀𝑅(𝑢(𝑡), 𝑡) + 𝐶2) 𝑡𝑎𝑛ℎ{𝜈[(𝑧2(𝑡) − 𝑧4(𝑡)) + (𝑧1(𝑡) − 𝑧3(𝑡))]} + 

+(𝐶3𝑖𝑀𝑅(𝑢(𝑡), 𝑡) + 𝐶4)[(𝑧2(𝑡) − 𝑧4(𝑡)) + (𝑧1(𝑡) − 𝑧3(𝑡))] 

is the MR damper force according to a hyperbolic tangent model, while 𝑖𝑀𝑅(𝑢(𝑡), 𝑡) is the MR 

damper coil current. To account for the control constraints, i.e. the MR damper current limitation 

to [0, 𝑖𝑚𝑎𝑥] range (𝑖𝑚𝑎𝑥 > 0), it may be assumed: 

𝑖𝑀𝑅(𝑢(𝑡), 𝑡) = 𝑖𝑚𝑎𝑥 𝑠𝑖𝑛
2(𝑢(𝑡)).         (6) 

The considered quality function in (2) is: 

𝑔(𝒛(𝑡), 𝑢(𝑡), 𝑡) = 

𝑔11𝑧1
2(𝑡) + 𝑔12𝑧2

2(𝑡) + 𝑔13(𝑧1(𝑡) − 𝑧3(𝑡))
2
+ 𝑔21𝑖𝑀𝑅

2(𝑢(𝑡), 𝑡) + 𝑔22𝑃𝑀𝑅
2(𝒛(𝑡), 𝑢(𝑡), 𝑡) 

to account for the primary system/structure displacement 𝑧1 and velocity 𝑧2 minimisation, the MR 

damper stroke (z1 − z3) minimisation, and the MR damper control current 𝑖𝑀𝑅 and force 𝑃𝑀𝑅 

minimisation. 

For the regarded system, the co-state vector is 𝝃(𝑡) = [𝜉1(𝑡) 𝜉2(𝑡) 𝜉3(𝑡) 𝜉4(𝑡)]
𝑇, while 

𝒇𝑧
∗𝑇(𝒛∗(𝑡), 𝑢∗(𝑡), 𝑡) in (4) is:  

𝒇𝑧
∗𝑇(𝒛∗(𝑡), 𝑢∗(𝑡), 𝑡) = 

[
 
 
 
 
 
 0 −

1

𝑚1
(𝑘1 + 𝑘2 + 𝑃̃𝑀𝑅(𝒛

∗(𝑡), 𝑢∗(𝑡), 𝑡)) 0
1

𝑚2
(𝑘2 + 𝑃̃𝑀𝑅(𝒛

∗(𝑡), 𝑢∗(𝑡), 𝑡))

1 −
1

𝑚1
(𝑐1 + 𝑃̃𝑀𝑅(𝒛

∗(𝑡), 𝑢∗(𝑡), 𝑡)) 0
1

𝑚2
𝑃̃𝑀𝑅(𝒛

∗(𝑡), 𝑢∗(𝑡), 𝑡)

0
1

𝑚1
(𝑘2 + 𝑃̃𝑀𝑅(𝒛

∗(𝑡), 𝑢∗(𝑡), 𝑡)) 0 −
1

𝑚2
(𝑘2 + 𝑃̃𝑀𝑅(𝒛

∗(𝑡), 𝑢∗(𝑡), 𝑡))

0
1

𝑚1
𝑃̃𝑀𝑅(𝒛

∗(𝑡), 𝑢∗(𝑡), 𝑡) 1 −
1

𝑚2
𝑃̃𝑀𝑅(𝒛

∗(𝑡), 𝑢∗(𝑡), 𝑡)

 

]
 
 
 
 
 
 

 (12) 
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where: 

𝑃̃𝑀𝑅(𝒛
∗(𝑡), 𝑢∗(𝑡), 𝑡)

= 𝜈(𝐶1𝑖𝑀𝑅(𝑢
∗(𝑡), 𝑡) + 𝐶2){1 − 𝑡𝑎𝑛ℎ

2[𝜈(𝑧1
∗(𝑡) + 𝑧2

∗(𝑡) − 𝑧3
∗(𝑡) − 𝑧4

∗(𝑡))]}

+ (𝐶3𝑖𝑀𝑅(𝑢
∗(𝑡), 𝑡) + 𝐶4) 

thus: 

𝑃̃𝑀𝑅(𝒛
∗(𝑡), 𝑢∗(𝑡), 𝑡) =

𝜕𝑃𝑀𝑅(𝒛
∗(𝑡),𝑢∗(𝑡),𝑡)

𝜕𝑧1
∗ =

𝜕𝑃𝑀𝑅(𝒛
∗(𝑡),𝑢∗(𝑡),𝑡)

𝜕𝑧2
∗ = −

𝜕𝑃𝑀𝑅(𝒛
∗(𝑡),𝑢∗(𝑡),𝑡)

𝜕𝑧3
∗ = −

𝜕𝑃𝑀𝑅(𝒛
∗(𝑡),𝑢∗(𝑡),𝑡)

𝜕𝑧4
∗   

and: 

𝑔𝑧
𝑇(𝒛∗(𝑡), 𝑢∗(𝑡), 𝑡) =

[
 
 
 
 
2𝑔11𝑧1

∗(𝑡)+2𝑔13(𝑧1
∗(𝑡)−𝑧3

∗(𝑡)) + 2𝑔22𝑃𝑀𝑅
′ (𝑧∗(𝑡), 𝑢∗(𝑡), 𝑡)

2𝑔12𝑧2
∗(𝑡) + 2𝑔22𝑃𝑀𝑅

′ (𝑧∗(𝑡), 𝑢∗(𝑡), 𝑡)

−2𝑔13(𝑧1
∗(𝑡) − 𝑧3

∗(𝑡)) − 2𝑔22𝑃𝑀𝑅
′ (𝑧∗(𝑡), 𝑢∗(𝑡), 𝑡)

−2𝑔22𝑃𝑀𝑅
′ (𝑧∗(𝑡), 𝑢∗(𝑡), 𝑡) ]

 
 
 
 

 

where: 

𝑃𝑀𝑅
′ (𝑧∗(𝑡), 𝑢∗(𝑡), 𝑡) = 𝑃𝑀𝑅(𝒛

∗(𝑡), 𝑢∗(𝑡), 𝑡)𝑃̃𝑀𝑅(𝒛
∗(𝑡), 𝑢∗(𝑡), 𝑡). 

The Hamiltonian maximisation condition is: 

𝜕𝐻(𝝃(𝑡), 𝒛∗(𝑡), 𝑢(𝑡), 𝑡)

𝜕𝑢(𝑡)
= 

{(−
1

𝑚1
𝜉2(𝑡) +

1

𝑚2
𝜉4(𝑡) − 2𝑔22𝑃𝑀𝑅(𝒛

∗(𝑡), 𝑢(𝑡), 𝑡))
𝜕𝑃𝑀𝑅(𝒛

∗(𝑡),𝑢(𝑡),𝑡)

𝜕𝑖𝑀𝑅(𝑢(𝑡),𝑡)
− 2𝑖𝑚𝑎𝑥𝑔21 𝑠𝑖𝑛

2(𝑢(𝑡))} 𝑠𝑖𝑛(2𝑢(𝑡))𝑖𝑚𝑎𝑥 = 0  

        (7) 

with the appropriate sign change regime, where: 

𝜕𝑃𝑀𝑅(𝒛
∗(𝑡), 𝑢(𝑡), 𝑡)

𝜕𝑖𝑀𝑅(𝑢(𝑡), 𝑡)
= 𝐶1 𝑡𝑎𝑛ℎ[𝜈(𝑧1

∗(𝑡) + 𝑧2
∗(𝑡) − 𝑧3

∗(𝑡) − 𝑧4
∗(𝑡))] + 𝐶3(𝑧1

∗(𝑡) + 𝑧2
∗(𝑡) − 𝑧3

∗(𝑡) − 𝑧4
∗(𝑡)) 

From equation (7) we obtain:  

   𝑠𝑖𝑛(2𝑢(𝑡)) = 0  

or: 

𝑠𝑖𝑛2(𝑢(𝑡)) =
1

2𝑖𝑚𝑎𝑥𝑔21
(−

1

𝑚1
𝜉2(𝑡) +

1

𝑚2
𝜉4(𝑡) − 2𝑔22𝑃𝑀𝑅(𝑧

∗(𝑡), 𝑢(𝑡), 𝑡))
𝜕𝑃𝑀𝑅(𝑧

∗(𝑡),𝑢(𝑡),𝑡)

𝜕𝑖𝑀𝑅(𝑢(𝑡),𝑡)
  (8) 

Thus, finally: 

𝑖𝑀𝑅
∗ (𝑢∗(𝑡), 𝑡) = 

{
 
 

 
                                                                                                                           0, 𝑖𝑓 𝑅𝐻𝑆(8) < 0

1

2𝑔21
(−

1

𝑚1
𝜉2(𝑡) +

1

𝑚2
𝜉4(𝑡) − 2𝑔22𝑃𝑀𝑅(𝑧

∗(𝑡), 𝑢(𝑡), 𝑡))
𝜕𝑃𝑀𝑅(𝑧

∗(𝑡),𝑢(𝑡),𝑡)

𝜕𝑖𝑀𝑅(𝑢(𝑡),𝑡)
, 𝑖𝑓 𝑅𝐻𝑆(8) ∈ (0  1)

                                                                                                                    𝑖𝑚𝑎𝑥, 𝑖𝑓 𝑅𝐻𝑆(8) > 1
                 (9) 

where 𝑅𝐻𝑆(8) is the right-hand side of equation (8); an exemplary range of [0,  𝜋) was considered 

here to fix an attention (regarding a period of both: 𝑠𝑖𝑛(2𝑢(𝑡)) and 𝑠𝑖𝑛2(𝑢(𝑡))). 
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(f) Implementation of optimal control for nonlinear systems – model predictive control (MPC) 

 

The common approach to the optimal control of nonlinear systems is computation of 𝑢∗(𝑡) 
using the maximum principle by solving the two point boundary value problem (TPBVP) (1)÷(5) 

offline. However, so calculated open loop control suffers from a lack of robustness to operating 

uncertainties, perturbations of external forces/disturbances or initial conditions, and to unmodeled 

dynamics that is always present for strongly nonlinear systems. To improve robustness to various 

types of uncertainties, perturbation control technique, among others, is used. In this method, the 

(correcting) feedback control 𝜕𝑢∗(𝑡) is determined on-line from a linearization of the system about 

the optimal control pair (𝒛∗(𝑡), 𝑢∗(𝑡)), on the basis of e.g. LQR theory. However, for highly 

nonlinear systems with implicit relations between state, co-state and control, proper linearization 

may be an issue.  

To cope with that problem, TPBVP (1)÷(5) may be solved at every sample step, with the state 

and co-state dynamics on-line implementation. An optimisation horizon length (𝑡1−𝑡0) may be 

equal to some finite N integration (sample) steps, including N=1 case (one-step optimality).  

A standard model predictive control (MPC) approach is to minimise an objective function 

repeatedly at each sample step over a finite prediction horizon of N steps. The solution of such an 

optimal control problem depends on the current state and leads to an optimal control sequence of 

length N, whose first sample 𝑢∗(𝑡) is applied to the system, while the remaining future samples 

are discarded. The optimisation is repeated at the next sample step over a shifted time horizon, and 

so on (thus this procedure is also known as receding horizon control). 

 

MATLAB/Simulink implementation procedure of optimal control MPC: 

• in Simulink, state (1) and co-state (4) dynamics, as well as Hamiltonian maximisation 

condition (9) should be implemented, as well as: 

• a dedicated level-2 s-function, implementing (1)(4) dynamics and (e.g.) bvp4c MATLAB 

function, should be called at every sample / integration step with actual external disturbances 

value(s) and actual control value(s) as the inputs for (1) and (4), actual state as the initial 

condition for (1), along with zero (5) as the terminal condition for (4),  

• in this way a TPBVP problem (1)÷(5) is solved at every sample / integration step with an 

optimisation horizon length equal to some finite integral number of N (N≥1) steps, yielding 

the (missing) initial condition for co-state (4); then, all co-state Integrator blocks are reset to 

these initial condition values, and the procedure is repeated for the next sampling step. 

 

Remark 2: As thorough research along with simulation and experimental analyses proved [5,6], 

for some nonlinear systems (e.g. tower-nacelle model with MR or hybrid TVA(s)), the TPBVP 

solving at every sample / integration step may be omitted to avoid a large computational load; in 

this case the co-state Integrator blocks are reset to zero initial condition values at each sample / 

integration step. The error of this approach is negligible (except for a numerable number of time 

instants at which the displacement/deflection of the primary system/structure changes sign) and 

the quality of vibration control does not noticeably differ from the quality of optimal control MPC 

implementation, assuming the appropriate sampling frequency. This solution is termed quasi-

optimal control. 

 

Remark 3: Another simplified procedure not requiring the TPBVP solving is two-level modified 

ground-hook law; it does not require the implementation of the Hamiltonian maximization 

condition (9), nor the model of the state (1) and co-state dynamics (4); in its basic approach it 

minimises the displacement/deflection amplitude of the primary system/structure. 
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4. Tasks 

 

 For the regarded system with parameters m1, c1, k1 m2, k2 determined during Lab. 1, MR 

damper RD-1097-1 model and parameters according to Lab. 2, and 𝑖𝑚𝑎𝑥=0.5 [A]: 

1. build LQR / DLQR controllers according to section 3, points (c)(d) (assume T0=1 ms, and 

T0=10 ms; use MR damper inverse model and force tracking algorithm from Lab. 3), using 

MATLAB/Simulink environment; assume weights 𝑸 and 𝑅 with regard to minimisation of:  

the primary system/structure displacement 𝑧1, the MR damper stroke (z1 − z3), and the MR 

damper force 𝑃𝑀𝑅; assume excitation P(t) as a sine input of amplitude 61 N and angular 

frequency vector Ω=ω1d*[0.50:0.05:1.50] rd/s with ω1d according to relation (5b) from  

Lab. 1,  

2. SUPPLEMENTARY: build optimal control MPC solution according to section 3, points (e)(f) 

(assume T0=1 ms), using MATLAB/Simulink environment; assume weights with regard to 

minimisation of: the primary system/structure displacement 𝑧1, the MR damper stroke  

(z1 − z3), and the MR damper force 𝑃𝑀𝑅 or current 𝑖𝑀𝑅; assume excitation P(t) as a sine input 

of amplitude 61 N and angular frequency vector Ω – see Task 1 (maximum of 3 additional 

points), 

3. for each of the control solutions execute 21 simulations applying each of the consecutive 

excitation angular frequencies from the regarded vector Ω (Task 1), and determine DAF for 

steady state oscillations; consider simulation time long enough (longer than a transient 

response);  
 

Remark 4: for each of the LQR / DLQR controllers use both MR-damper-based configurations 

(according to Fig. 2 and Fig. 3), as well as one additional configuration with an ideal active 

cylinder/actuator of [–100, 100] N output force range, instead of the MR damper (see Fig. 1), 

4. print DAF frequency response characteristics (DAF [-] vs. angular frequency [rd/s] curve) for 

all of the regarded control solutions in one graph; for each solution print in a legend section 

its design parameters i.e.: T0, 𝑄1, 𝑄2, 𝑄3, 𝑅 (designations in the Appendix below; controllers 

from section 3(c)(d)), or: 𝑔11, 𝑔12, 𝑔13, 𝑔21, 𝑔22 (controllers from section 3(e)(f)). 

5. compare DAF frequency responses of Task 4 with those obtained for constant MR damper 

current values (from the vector IMR=[0.0, 0.1, 0.2, 0.5] A), using graph/data (or Simulink 

model) from Lab. 2. 

 

Appendix: LQR weights selection 

LQR cost functional for displacement (𝑧1 = 𝑞1), MR damper stroke (z1 − z3 = 𝑞1 − 𝑞2), and MR 

damper force (𝑢 = 𝑃𝑀𝑅) minimisation: 

𝐽 =
1

2
∫ 𝒛𝑇(𝑡)𝑸𝒛(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)
∞

𝑡0

𝑑𝑡 

where:  

𝑸 = 𝑸𝑇 = [

𝑄1 + 𝑄3 0
0 𝑄2

−𝑄3 0
0 0

−𝑄3     0
 0     0

   
𝑄3 0
0 0

] ≥ 0, 𝑅 = 𝑅𝑇 > 0 

are matrices of weights, thus: 
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𝐽 =
1

2
∫ [𝑞1(𝑡) 𝑞̇1(𝑡) 𝑞2(𝑡) 𝑞̇2(𝑡)] [

𝑄1 + 𝑄3 0
0 𝑄2

−𝑄3 0
0 0

−𝑄3     0
 0     0

   
𝑄3 0
0 0

]

[
 
 
 
𝑞1(𝑡)

𝑞̇1(𝑡)

𝑞2(𝑡)

𝑞̇2(𝑡)]
 
 
 

𝒛(𝑡) + 𝑃𝑀𝑅(𝑡)𝑅𝑃𝑀𝑅(𝑡)
∞

𝑡0

𝑑𝑡 

𝐽 =
1

2
∫ 𝑄1𝑞1

2(𝑡) + 𝑄2𝑞̇1
2(𝑡) + 𝑄3(𝑞1(𝑡) − 𝑞2(𝑡))

2
+ 𝑅𝑃𝑀𝑅

2(𝑡)
∞

𝑡0

𝑑𝑡 

It may be assumed e.g.: 𝑄1 = 106 (or greater);  𝑄2 = 1; 𝑄3 = 1 or 𝑄3 = 10
4;  𝑅 = 10−4 (try your 

own weight value selections). 
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