
Systems Theory  

Laboratory 5: Analogue and digital signal filtering methods. 

Kalman state observer for discrete-time systems. 
 

 

Purpose of the exercise: 

Learning analogue and digital signal filtering methods, including Kalman state observer for 

discrete-time systems and LQG control, using MATLAB/Simulink environment. 

 

1. Introduction  

 

A filter is the primary block used in signal processing. Due to the type of signals 

processed, filters are divided into: 

• Analogue – processing analogue signals (i.e. signals, which information parameter can 

take an infinitely large number of values).  

• Digital – processing digital signals (a digital / binary signal information parameter can 

take a certain number / two value levels); types of digital filters: 

o Finite Impulse Response (FIR), 

o Infinite Impulse Response (IIR), 

o Moving Average, 

o Adaptive Filters. 

Due to the energy demand needed to operate, filters are divided into: 

• Passive – they do not need an additional external energy source for proper operation 

(are based on input signal energy only), e.g. simple RC or LC circuits, 

• Active – they need an additional external power source for proper operation (they use 

signal amplifiers), e.g. operational amplifier circuits. 

Due to the range of frequencies passed through and blocked by the filter, they can be divided 

into (see Fig. 1): 

• Lowpass – filters that transmit signals with a frequency lower than the threshold and 

suppress signals with a higher frequency. 

• Highpass – filters that transmit signals with a frequency higher than the threshold 

frequency and suppress signals with a lower frequency. 

• Bandpass – filters that transmit signals within a certain frequency range and suppress 

signals with frequencies outside that range. 

• Bandstop – filters that suppress signals from a certain frequency range and transmit 

signals with frequencies outside that range. 



   

Fig. 1. Bode diagrams of 1st order (e.g. single RC passive) filters: (a) lowpass, (b) highpass 

2. Filter designs and characteristics 

 

Chebyshev filter 

Chebyshev filters are used when the most important criterion is high attenuation in the 

stopband, and at the same time magnitude change in the passband is allowed. Their amplitude-

frequency characteristics are characterised by ripples, and a very sharp roll off (the sharper roll 

off, the greater ripples, associated with an increase of the filter order). 

• The magnitude response of a Chebyshev type I filter is equiripple in the passband and 

monotonic in the stopband (Fig. 2(a)). The magnitude response of a Chebyshev type II 

filter is monotonic in the passband and equiripple in the stopband (Fig. 2(b)). 

Butterworth filter 

Butterworth filters are used when the most important criterion is that the amplitude-

frequency characteristics in the passband are as flat as possible with sharp roll off at the cut-off 

frequency.  

• The magnitude response of a Butterworth filter is flat in the passband and monotonic 

overall (Fig. 2(c)). 

Bessel filter 

Bessel filters are used where the most important criterion is the most accurate 

representation of the signal waveform in the passband, which is achieved for the possibly flat 

characteristics of group delay. Amplitude-frequency characteristics is flat in the passband, 

while its roll off sharpness is greater than for simple RC filters. This is a preferred filter for 

rectangular pulses thanks to meeting the condition of constant of group delay over a wide 

frequency range (phase shift proportional to frequency). 

• The magnitude response of a Bessel filter is possibly flat in the passband and monotonic 

overall. The filter has a linear phase response (Fig. 2(d)). 

(a)  (b)  



 

Fig. 2. Amplitude-frequency characteristics of 4th order filters:  

a) Chebyshev type I, b) Chebyshev type II, c) Butterworth, d) Bessel 

3. Analogue vs. digital filters 
 

Analogue filters characteristic features: 

• Soft, indistinct transition between the passband and the stopband 

• Non-linear phase 

• Less accuracy due to component tolerances  

• Drift due to component variations 

• Difficult to simulate and design 

• Adaptive filters difficult to implement 

• Analog filters are required at high frequencies and for anti-aliasing filters 

• No A/D and  D/A converters nor DSP required 

 

Digital filters characteristic features: 

• High accuracy 

• Linear phase (FIR filters) 

• No drift due to component variations 

(a)  

(d)  (c)  

(b)  



• High resistance to disturbances and amplitude distortions 

• Flexible, adaptive filtering possible 

• Easy to simulate and design 

• The computation must be completed within the sampling period – this limits the real-

time operation 

• Require high performance A/D and D/A converters along with DSP to operate in real-

time (the requirements depending on the sampling frequency and filter complexity)  

Assuming a bandwidth fa of the analogue signal to be processed, the A/D 

sampling frequency fs ≥ 2fa is required (Nyquist-Shannon condition), thus the sampling 

period is 1/fs. All digital filter computations (including overhead) must be completed 

during this sampling interval. The computation time depends on the number of taps (i.e. 

filter length – number of  input samples processed) in the filter structure and the 

speed/efficiency of the DSP. Each tap on the filter requires one multiplication and one 

addition (multiply-accumulate).  

There are two fundamental types of digital filters: finite impulse response (FIR) 

and infinite impulse response (IIR). By varying the weight of the coefficients and the 

number of taps, virtually any frequency response characteristic can be realised with an 

FIR filter. FIR filters can achieve performance levels which are not possible with 

analogue filter techniques (such as perfect linear phase response). However, high 

performance FIR filters generally require a large number of multiply-accumulates and 

therefore require fast and efficient DSPs. On the other hand, IIR filters may mimic the 

performance of traditional analogue filters and make use of feedback. Therefore their 

impulse response extends over an infinite period of time. Because of feedback, IIR 

filters can be implemented with fewer coefficients than for an FIR filter. The digital 

filters may be used in adaptive filtering applications due to their speed and ease with 

which the filter characteristics can be altered by varying the filter coefficients. 
 

FIR filters features: 

o Linear phase 

o Easy to design 

o Computationally intensive 
 

IIR filters features: 

o Based on classical analogue filters 

o Computationally efficient 

 

General advantages of analogue circuits over digital techniques:  

• Speed – even simple operational amplifiers can operate at 100 kHz to 1 MHz, 

• Amplitude dynamic range – the ratio between the largest signal that can be passed 

through, and the inherent noise of the system; e.g. a 12 bit A/D converter yields a 

dynamic range of about 14000; in comparison, a standard operational amplifier has a 

dynamic range of about ten million, 

• Frequency dynamic range – an operational amplifier circuit can handle frequencies 

between 0.01 Hz and 100 kHz (7 decades); in digital techniques this would require fs of 

200 kHz, thus 20 million time samples are needed to capture one complete cycle at 0.01 

Hz. The digital filters often use a linear frequency scale to show their performance, 

while analogue filters need the logarithmic scale to show their large dynamic range. 



General advantages of digital techniques over analogue circuits:  

• Passband flatness achievable with analogue filters is limited by the accuracy of the 

resistors and capacitors. Even for a Butterworth filter design (0% ripple), a residual 

ripple of ca. 1% is expected. The flatness of digital filters is primarily limited by round-

off error, making them hundreds of times flatter than their analogue counterparts. 

• The digital filters are preferable with regard to both roll-off and stopband attenuation. 

Even if the analogue performance is improved by adding additional stages, it still can't 

compare to the digital filter. 

In MATLAB/Simulink environment, Analog Filter Design block may be used to design an 

analogue filter of the demanded type, order, passband edge frequency and passband ripple, 

while Digital Filter Design block is intended for both FIR and IIR filters design, analysis, and 

realisation according to the demanded characteristics. 

 

4. Kalman filter (state-observer) 

 

 The Kalman filter (Kalman state-observer) is used to restore unmeasurable states. This 

method provides a full state estimation, considering the measurement and process noises. 

Consider the following system: 

𝒙(𝑘 + 1) = 𝑨𝑘𝒙(𝑘) + 𝑩𝑘𝑢(𝑘) + 𝝑(𝑘) (1) 

𝑦(𝑘) = 𝑯𝑘𝒙(𝑘) + 𝜓(𝑘) 

where: 𝒙 = [𝑞  𝑣  𝑎 ]
𝑇 is a state vector that includes: displacement 𝑞 (𝑞1 or 𝑞2), velocity 𝑣 (𝑣1 

or 𝑣2),  and acceleration 𝑎 (𝑎1 or 𝑎2, respectively; acceleration is estimated for other 

applications), while 𝝑(𝑘) and 𝜓(𝑘) are independent process and measurement (respectively) 

white gaussian noises (i.e. random signals with constant power spectral density and 

normal/gaussian probability density distribution) satisfying: 

𝐸[𝝑(𝑘)] = 𝟎,    𝐸[𝜓(𝑘)] = 0,    𝐸[𝝑(𝑘)𝝑𝑇(𝑘)] = 𝑸𝑘,    𝐸[𝜓(𝑘)𝜓𝑇(𝑘)] = 𝑅𝑘, 

 

where 𝑸𝑘, 𝑅𝑘 are covariance matrices. 

 Assuming that only displacements are being measured, i.e. 𝑦 (𝑘) = 𝑞(𝑘) (𝑞1(𝑘) or 

𝑞2(𝑘)) is the measured displacement value at a kth time step, the following matrices Ak, Bk, and 

Hk of the equation set (1) are considered: 

𝑨𝑘 = [
1 𝑇0 𝑇0

2 2⁄

0 1 𝑇0

0 0 1

],   𝑩𝑘 = [
0
0
0

],   𝑯𝑘 = [1 0 0], 

where T0 is the sampling (discretisation) period. For the calculation purposes, the following 

values of the covariance matrices 𝑸𝑘, 𝑅𝑘 are assumed (𝜈, 𝑟 are tuning constants): 

𝑸𝑘 = 𝜈 [

𝑇0
5/20 𝑇0

4/8 𝑇0
3/6

𝑇0
4/8 𝑇0

3/3 𝑇0
2/2

𝑇0
3/6 𝑇0

2/2 𝑇0

],   𝑅𝑘 = [𝑟]. 

  

The considered Kalman filter algorithm consists of the two basic steps: prediction and 

correction. 

  



Prediction step: 

𝒙̂𝑘
− = 𝑨𝑘𝒙̂𝑘 – predicted value of the state x, 

𝑷𝑘
− = 𝑨𝑘𝑷𝑘𝑨𝑘

𝑇 + 𝑸𝑘 – predicted value of the error covariance: 𝑷𝑘 = 𝐸[(𝒙𝑘 − 𝒙̂𝑘)(𝒙𝑘 − 𝒙̂𝑘)𝑇]. 

Correction step: 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑅𝑘)−1 – gain of the Kalman filter, 

𝒙̂𝑘 = 𝒙̂𝑘
− + 𝑲𝑘[𝑞 (𝑘) − 𝑯𝑘𝒙𝑘

−] – optimal, estimated value of the state x, 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘
− – optimal, estimated value of the covariance (I is the identity matrix). 

 

 The above algorithm may be implemented in the form of a Simulink diagram. Figs. 3 

and 4 present comparison of the 𝑞1 displacements and 𝑣1 velocities time responses of the tower-

nacelle system, determined from the experiment and estimated by the Kalman filter. The 

estimated velocity 𝑣1 was compared to the one calculated by simple differentiation of 𝑞1 (Euler 

method). Regarding the displacements, time responses practically coincide (Fig. 3). Analysis 

of the velocity patterns (Fig. 4) shows the advantage of the Kalman filter over the simple 

differentiation calculation method.  
  

              

                 Fig. 3. Comparison of the   Fig. 4. Comparison of the  

                    q1 [m] time responses     v1 [m/s] time responses  

 

5. Tasks 

 

1. build Simulink model of the Kalman filter according to section 4; assume: T0=1 ms, 

𝜈=4, r=10–9, and zero initial conditions for x and 𝑷𝑘; 

2. build Simulink model of the lowpass 1st order inertial filter of 500 [rad/s] cut-off 

angular frequency (at –3dB magnitude), and the highpass 1st order differential filter 

with inertia of 1.0 [rad/s] cut-off angular frequency (at –3dB magnitude) – see 

Appendix1; 

3. Using From Workspace blocks, input ScopeData displacement (q1) and ScopeData1 

minus acceleration (–a1) measurement signals from files available at: 

https://dysk.agh.edu.pl/s/2mBDLwrPLHX5YCZ 

4. determine velocity v1 time pattern using both displacement q1 and acceleration a1 

signals, and Derivative (or Discrete Derivative) and Integrator (or Discrete-Time 

Integrator) blocks, respectively, without any filters, and with lowpass (along with 

differentiation) and highpass (along with integration) continuous or discrete-time 

filters versions build in Task 2; 

5. determine velocity v1 time pattern using the Kalman filter build in Task 1 and 

displacement q1 signal; compare all the obtained v1 time patterns. 

https://dysk.agh.edu.pl/s/2mBDLwrPLHX5YCZ


Appendix1: Real-time signal processing 

 

 Two of the most frequent real-time signal processing challenges are noise attenuation 

and value drift.  

Measurement and process noises are intrinsic phenomena present in real-world 

measurement-control systems. These noises are associated with imperfectness of real-world 

structures/systems and measurement sensors/conditioners as well as external disturbances (e.g. 

electromagnetic or acoustic noise, vibration), quantisation, etc. To remove noise content from 

the measurement signal, lowpass filters are used. In real-time control implementation, a close-

to-zero phase shift of the measured signal is one of the major elements of control efficiency; 

therefore, simple low order filters are used as, e.g. 1st / 2nd order inertial elements (RC circuits) 

of a time constant tuned to the demanded cut-off frequency (Fig. 1(a)). 

Signal value drift phenomena are often present when piezoelectric transducers are used 

or signal integration performed. Piezoelectric effect yields constant electric charge of the crystal 

element used under static stress. However, due to nonzero resistance, its discharge occurs over 

time; thus, output signal low frequency drift. Signal integration (e.g. to obtain velocity based 

on acceleration measurement), on the other hand, is associated with integration constant, which 

added at every sample step yields mean value drift. Again, as a close-to-zero phase shift of 

signals utilised in real-time control systems is crucial, simple low order filters are used as, e.g. 

1st order differential elements with inertia (RC circuits) of a time constant tuned to the 

demanded cut-off frequency (Fig. 1(b)). 

Both of the above real-time signal processing challenges may be addressed using a 

Kalman filter (see section 4). 

 

Appendix2: LQG controller synthesis 

 

 The LQG (Linear-Quadratic-Gaussian) controllers are built for uncertain linear systems 

disturbed by additive white gaussian noises, having incomplete state information. The LQG is 

a combination of the Kalman filter (Kalman state-observer) with a Linear-Quadratic Regulator 

(LQR) – see Fig. 5. The LQR problem is defined for the system dynamics described by a set of 

linear differential (continuous-time) / difference (discrete-time) equations and a quadratic cost 

function. The discrete-time LQR (DLQR) optimisation problem may be solved using dlqr.m 

function (or dlqry.m with output weighting) from MATLAB/Simulink Optimization toolbox.  

The separation principle allows that each of these two parts of the LQG can be designed 

and tested independently. LQG controller may be applied to both linear time-invariant and 

linear time-varying systems. It should be noted that the LQG control problem is one of the most 

fundamental problems of optimal control. Application of a Kalman filter enables to restore 

unmeasured state variables and then use them in the state-feedback LQR controller. A typical 

structure of the LQG controller is shown in Fig. 5. 

 
 

 

𝑢 – control input of the system, 

𝜗 – system noise (stochastic), 

𝜓 – measurement noise 

(stochastic), 

𝑦 – output of the system, 

𝑦̂ – estimation of the system 

output, 

𝑧̂ – estimation of the system 

state. 

Fig. 5. Structure of the LQG controller 



 The description of the LQG controller focuses on the following discrete-time linear 

system of equations: 

𝒛(𝑘 + 1) = 𝑨𝑑𝒛(𝑘) + 𝑩𝑑𝑢(𝑘) + 𝝑(𝑘)  

𝑦(𝑘) = 𝑪𝑑𝒛(𝑘) + 𝑫𝑑𝑢(𝑘) + 𝜓(𝑘) 

where z is a state vector, while process and measurement noises, respectively: (k) and (k) 

are independent, zero mean, white gaussian random processes. 

 The LQG control algorithm can be employed for e.g. semi-active vibration control of 

the wind turbine tower-nacelle system with MR TVA, assuming 𝑢=𝑃𝑀𝑅 (MR damper force) as 

a control input – see Lab. 1 and DLQR implementation in Lab. 4. Using this algorithm, the 

optimal control signal PMR, which is the force generated by an actuator (MR damper) is 

obtained. To induce the actuator (MR damper) to generate the desired optimal control force, 

the force tracking / inverse model of the MR damper is used. As q1 and q2 displacements of the 

tower-nacelle system are measured only, the full state vector: 𝒛 = [𝑧1 𝑧2 𝑧3 𝑧4]𝑇 with 

𝑧1 = 𝑞1, 𝑧2 = 𝑣1, 𝑧3 = 𝑞2, 𝑧4 = 𝑣2 is not accessible for the DLQR controller. To solve this 

problem, the state is replaced in the control law by an optimal state estimate generated by a 

Kalman filter.  

The LQR controller and Kalman filter are integrated, forming the LQG controller. The 

integration stage is executed according to the scheme shown in Fig. A1. 

 

 
 

Fig. A1. Structure of the integrated LQG controller 

 

Most of the applications of the LQG controller concern control of the civil structures 

(buildings) excited by severe earthquakes or strong winds. The existing solutions of the LQG 

semiactive control algorithm use, most frequently, the mathematical model of the analysed 

mechanical structure. In opposition to the Linear-Quadratic-Regulator (LQR) algorithm, they 

do not need a measurement of the full-state for all DOFs. The Kalman state observer is 

responsible for the estimation of unmeasurable state variables, based on the measured positions 

or accelerations. In many cases, obtaining sufficiently accurate model is difficult, therefore a 

model-free LQG control is also used, computing the LQG parameters directly from the 

measurement data. Output feedback strategy based on measured acceleration (or position) at 

limited number of structure points may be realised. The LQG controller calculates demanded 

actuator (e.g. MR damper) force on the basis of state variables vector restored by the Kalman 

filter. The LQR / DLQR problem is solved using a linearised model, considering two state 

variables (displacement q and velocity v) for each vibrating body (m1 and m2, see Fig. 1, Lab. 



4) – in this LQG design two Kalman filters of the same structure may be used: one for v1 (and 

possibly a1) estimation based on q1 measurement, the other for v2 (a2) estimation based on q2. 
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