Laboratory 6

Stability analysis of control systems

Purpose of the exercise:

Determination of the gain and phase margins on the basis of the frequency characteristics:

- amplitude and phase logarithmic characteristics (Bode plots),

- Nyquist plots.

MATLAB environment is used.

1. Determination of the gain and phase margins on the basis of frequency logarithmic characteristics (Bode plots)

Transfer functions of the open-loop systems:

(a)
$$G_1(s) = \frac{K}{(s+1)(s^2+s+1)}$$
 (b) $G_2(s) = \frac{K}{2s^2+2s+1}$
where: $K = 1; 2; 3; 4; 5$.

For each value of K:

1.1. Determine the step response in MATLAB. While inputting the transfer function into MATLAB, instruction *conv* may be used for denominator polynomial multiplication,

- -

- 1.2. Determine the amplitude and phase frequency logarithmic characteristics using instruction *margin* <u>without</u> left hand side operands (observe ΔL and $\Delta \varphi$ margin values in graph header),
- 1.3. Determine the gain $\Delta \mathbf{K}$ and phase $\Delta \boldsymbol{\varphi}$ margin values using instruction *margin* with left hand side operands (type in Command Window: *help margin*),
- 1.4. Input the determined values of $\Delta \mathbf{K}$ and $\Delta \boldsymbol{\varphi}$ into the Table 1,
- 1.5. Determine ΔL on the basis of the formula (1) (input the results into the Table 1).

 $\Delta \boldsymbol{L} = 20 \log(\Delta \boldsymbol{K}) \tag{1}$

2. Determination of the gain and phase margins on the basis of Nyquist characteristics

For the systems (a) and (b) introduced in the point 1, for each value of K:

- 2.1. Determine the Nyquist characteristics (instruction *nyquist*) using angular frequency input vector with step 0.001 [rd/s] (type in Command Window: *help nyquist*),
- 2.2. Determine for the each case gain $\Delta \mathbf{K}$ and phase $\Delta \boldsymbol{\varphi}$ margins on the basis of drawn Nyquist characteristics; for the purpose of $\Delta \boldsymbol{\varphi}$ determination draw unit circle in the same coordinate plane,
- 2.3. Input the determined values into the Table 1,
- 2.4. Calculate ΔL on the basis of the formula (1) (input the results into the Table 1).

		Bode plots			Nyquist plots		
G(s)	K	$\Delta L[dB]$	Δ Κ [-]	$\Delta \boldsymbol{\varphi}$ [°]	$\Delta L[dB]$	Δ Κ [-]	$\Delta \boldsymbol{\varphi}$ [°]
G ₁ (s)	1						
G ₁ (s)	2						
G ₁ (s)	3						
G ₁ (s)	4						
G ₁ (s)	5						
$G_2(s)$	1						
G ₂ (s)	2						
G ₂ (s)	3						
$G_2(s)$	4						
$G_2(s)$	5						

Table 1.

<u>Remark</u>

All step responses should be grouped in one coordinate plane for (a) case, and one (separate) coordinate plane for (b) case; the same applies for Bode plots, and for Nyquist plots.

3. Determine gain and phase margins for the following elements:

proportional, ideal / real integral and differential elements; 1st, 2nd and 3rd order inertial element

References:

- [1] G.F. Franklin, J.D. Powell, E. Emami-Naeini "Feedback control of dynamic systems", Prentice Hall, New York, 2006.
- [2] K. Ogata "Modern control engineering", Prentice Hall, New York, 1997.
- [3] R.H. Cannon "Dynamics of physical systems", Mc-Graw Hill, 1967 (available in Polish as: R.H. Cannon "Dynamika układów fizycznych", WNT, Warszawa, 1973).
- [4] J. Kowal "Podstawy automatyki", v.1 and 2, UWND, Kraków, 2006, 2007 (in Polish).
- [5] W. Pełczewski "Teoria sterowania", WNT, Warszawa, 1980 (in Polish).
- [6] Brzózka J., Ćwiczenia z Automatyki w MATLABIE i Simulinku, Wydawnictwo Mikon, Warszawa 1997 (in Polish).
- [7] Zalewski A., Cegieła R., MATLAB: obliczenia numeryczne i ich zastosowania, Wydawnictwo Nakom, Poznań 1996 (in Polish).
- [8] MATLAB/Simulink documentation: <u>http://www.mathworks.com/help/</u>