Systems Theory

Laboratory 6: Linear optimisation.

Purpose of the exercise:

Linear programming primal / dual problem formulation and solution using simplex method and MATLAB/Simulink environment.

1. Introduction

Linear optimisation or linear programming is used to find an extremum of a problem represented by linear relationships. Linear programming algorithms are efficient solutions capable of solving complex optimisation problems. These solutions are applicable for problems with linear objective function, subject to linear inequality and/or equality constraints.

Linear programming may be used to solve a problem when the objective is to maximize some linear function, and there is a linear system of inequalities (equalities) that defines the constraints. Its feasible region is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued linear function defined on such a polyhedron (polytope). A linear optimisation algorithm finds a point in this polyhedron (polytope), where the objective function has an extremum, if such a point exists.

In a classical linear programming (LP) problem we consider continuous values of decisive variables. If the decisive variables are required to be integers (or binary), then the problem is called an integer programming, IP (or binary integer programming, BIP) problem. If only some decisive variables are required to be integers, then it is a mixed integer programming (MIP) problem.

2. LP problem with inequality constraints

Determine a vector of variables: $\boldsymbol{x}=\left[x_{1}, \ldots, x_{n}\right]^{T} \in \boldsymbol{R}^{n}$, maximising an objective linear form:

$$
\max \left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right) \quad \text { OR } \quad \max \left(\boldsymbol{c}^{T} \boldsymbol{x}\right)
$$

subject to (s.t.) m inequality constraints:

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \leq b_{m}
\end{gathered} \quad \text { OR } \quad \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}
$$

where:

$$
x_{1} \geq 0, \ldots, x_{n} \geq 0 \quad O R \quad x \geq 0
$$

defines a set of admissible elements \boldsymbol{X}, i.e. a feasible region, being a convex polyhedron (polytope) solid.

Theorem 1 (existence)
If the set of admissible elements of the LP problem is non-empty, and if the value of the problem is finite, then the problem has a solution.

Theorem 2 (globality and localisation)
The extremum of the LP problem objective function is always global, and achieved in the extremum point of the convex polyhedron (polytope) \boldsymbol{X}.

3. Augmented LP problem with equality constraints

Determine an augmented vector of variables: $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}\boldsymbol{x} & \boldsymbol{x}^{s}\end{array}\right]^{T}=\left[\begin{array}{ll}x_{1}, \ldots, x_{n}, x_{n+1}, \ldots x_{n+m}\end{array}\right]^{T}$ $\in \boldsymbol{R}^{n+m}$, maximising an objective:

$$
\max \left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right) \quad O R \quad \max \left(\boldsymbol{c}^{T} \boldsymbol{x}\right)
$$

s.t. m equality constraints:

$$
\begin{array}{clll}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}+x_{n+1} & =b_{1} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} & +x_{n+m} & =b_{m} & O R
\end{array} \quad \overline{\boldsymbol{A}} \overline{\boldsymbol{x}}=\boldsymbol{b}
$$

where:

$$
x_{1} \geq 0, \ldots, x_{n} \geq 0, x_{n+1} \geq 0, \ldots, x_{n+m} \geq 0 \quad O R \quad \bar{x} \geq 0
$$

defines a feasible region being a convex polyhedron (polytope) surface, while: $\boldsymbol{x}^{s}=\left[x_{n+1}, \ldots x_{n+m}\right]^{T}$ is a vector of additional (slack), non-negative variables, introduced to replace inequality constraints with equalities, and: $\overline{\boldsymbol{A}}=\left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{I}\end{array}\right]$.

Equivalent, partitioned matrix form of the augmented LP problem is to maximise $f=\boldsymbol{c}^{T} \boldsymbol{x}$ s.t.:

$$
\left[\begin{array}{ccc}
1 & -\boldsymbol{c}^{T} & 0 \\
0 & \boldsymbol{A} & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{c}
f \\
\boldsymbol{x} \\
\boldsymbol{x}^{s}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\boldsymbol{b}
\end{array}\right]
$$

where: $x \geq 0, x^{s} \geq 0$.

4. Dual linear programming (DLP) problem

A problem dual to the original (primal) LP problem with inequality constraints is formulated as follows (DLP):
Determine a vector of dual variables: $\boldsymbol{y}=\left[y_{1}, \ldots, y_{m}\right]^{T} \in \boldsymbol{R}^{m}$, minimising an objective linear form:

$$
\min \left(b_{1} y_{1}+\cdots+b_{m} y_{m}\right) \quad O R \quad \min \left(\boldsymbol{b}^{T} \boldsymbol{y}\right)
$$

s.t. n inequality constraints:

$$
\begin{gathered}
a_{11} y_{1}+\cdots+a_{1 m} y_{m} \geq c_{1} \\
\vdots \\
a_{n 1} y_{1}+\cdots+a_{n m} y_{m} \geq c_{n}
\end{gathered} \quad \text { OR } \quad \boldsymbol{A}^{T} \boldsymbol{y} \geq \boldsymbol{c}
$$

where:

$$
y_{1} \geq 0, \ldots, y_{m} \geq 0 \quad \text { OR } \quad y \geq 0
$$

Remarks $1 \div 4$

- The constraints b_{1}, \ldots, b_{m} of the primal problem are the objective function coefficients in the dual problem.
- The constraints c_{1}, \ldots, c_{n} of the dual problem are the objective function coefficients in the primal problem.
- Each constraint in the primal problem corresponds to a variable in the dual problem, and vice versa.
- The problem dual to DLP is again the primal LP problem, and it makes sense to speak of a pair of dual (complementary) linear programming problems.

Theorem 3 (duality)

The following alternative holds for a pair of dual linear programming problems: EITHER the values of both problems are finite and equal AND both problems have solutions, OR the set of admissible elements of one of the problems is empty AND in the other problem EITHER the set of admissible elements is empty OR the value of the problem is infinite.

In the former case, vectors $\boldsymbol{x}^{*} \in \boldsymbol{R}^{n}$ and $\boldsymbol{y}^{*} \in \boldsymbol{R}^{m}$ are solutions of the primal and dual problems, respectively, IF AND ONLY IF they are admissible in these problems, AND satisfy one of the following two equivalent relations:

$$
\begin{align*}
& \boldsymbol{c}^{T} \boldsymbol{x}^{*}=\boldsymbol{b}^{T} \boldsymbol{y}^{*} \tag{D.1}\\
& \boldsymbol{y}^{* T}\left(\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right)=\boldsymbol{x}^{* T}\left(\boldsymbol{A}^{T} \boldsymbol{y}^{*}-\boldsymbol{c}\right)=0 \tag{D.2}
\end{align*}
$$

5. Simplex method

(a) Basic feasible solution

Consider the augmented LP problem. A basis \boldsymbol{B} is a square, non-singular matrix consisting of m columns of $\overline{\boldsymbol{A}}$. A column vector of variables $\boldsymbol{x}^{\boldsymbol{B}}$, associated with the columns in \boldsymbol{B} arranged in the same order, is the basic vector corresponding to it. Let \boldsymbol{D} be the matrix consisting of n columns of $\overline{\boldsymbol{A}}$ not in \boldsymbol{B}, and let $\boldsymbol{x}^{\boldsymbol{D}}$ be the vector of variables associated with these columns. Then:

- The columns in \boldsymbol{B} are called the basic, in \boldsymbol{D} - nonbasic columns.
- The variables in $\boldsymbol{x}^{\boldsymbol{B}}$ are called the basic, in $\boldsymbol{x}^{\boldsymbol{D}}$ - nonbasic variables.

Rearranging the variables, (augmented) LP problem can be written in partitioned form:

$$
\bar{A} \bar{x}=b \quad \xrightarrow{\text { yields }} \quad B x^{B}+D x^{D}=b, \quad x^{B} \geq 0, x^{D} \geq 0
$$

The basic solution, corresponding to the basis \boldsymbol{B} is obtained by setting $\boldsymbol{x}^{\boldsymbol{D}}=0$, and then solving the remaining system for the values of the basic variables: $\boldsymbol{x}^{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}$. This solution is feasible, if $\boldsymbol{B}^{-1} \boldsymbol{b} \geq 0$, and in this case \boldsymbol{B} is said to be a feasible basis, and the solution: $\boldsymbol{x}^{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}, \boldsymbol{x}^{\boldsymbol{D}}=0$ is called the basic feasible solution (BFS) corresponding to it.

(b) Pivot step

Given a basis \boldsymbol{B}, the canonical tableau with respect to it is obtained by multiplying the system of equality constraints on the left by \boldsymbol{B}^{-1} :

$$
\begin{gathered}
{\left[\begin{array}{ll}
B & D
\end{array}\right]\left[\begin{array}{l}
x^{B} \\
x^{D}
\end{array}\right]=b} \\
{\left[\begin{array}{ll}
\boldsymbol{I} & B^{-1} D
\end{array}\right]\left[\begin{array}{l}
x^{B} \\
x^{D}
\end{array}\right]=B^{-1} b=\bar{b}}
\end{gathered}
$$

When the basic and nonbasic columns are rearranged in proper order, the canonical tableau becomes:

basic variables	$\boldsymbol{x}^{\boldsymbol{B}}$	$\boldsymbol{x}^{\boldsymbol{D}}$	
$\boldsymbol{x}^{\boldsymbol{B}}$	\boldsymbol{I}	$\boldsymbol{B}^{-1} \boldsymbol{D}$	$\boldsymbol{B}^{-1} \boldsymbol{b}=\overline{\boldsymbol{b}}$

The main step in the simplex algorithm for linear programs is the (Gauss Jordan elimination) pivot step. In each stage of the algorithm, the basis is changed by bringing into the basic vector exactly
one nonbasic variable known as the entering variable. Its updated column vector is the pivot column for this basis change. The dropping variable has to be determined accordingly to guarantee that the new basis obtained after the pivot step will also be a feasible basis (more details in [6]).

(c) Implementation procedure

Simplex method may be effectively used to obtain an extreme point of a convex n-dimensional polyhedron (polytope) being a feasible region. For greater number of decisive variables (n), computer algorithms are developed to execute the pivotal transformations of the problem tableau, searching the feasible polyhedron (polytope) vertices for extremum.

In MATLAB/Simulink environment, linprog is intended for standard LP problems. For MIP and IP problems, intlinprog may be used. Regarding all: MIP, IP, BIP, and LP problems, also solve command may be used to solve a problem created with optimproblem and optimisation variable(s) defined with optimvar (see LP problem example: search for optimproblem in MATLAB Documentation).

6. Tasks

Consider stiff platform support optimisation LP (IP) problem, as follows.

Maximise load capacity of a stiff platform support, assuming that:

- the platform is supported by conceptual columns,
- a total number of columns L is limited, as well as their total mass M, and total material price P,
- two types of material may be used, each characterised with specific price per unit (P_{1} and P_{2}, respectively, e.g. in thousands of PLN), mass per unit (M_{1} and M_{2}, in tons), and load capacity per unit (S_{1} and S_{2}, in MN).

The parameters of the problem:

Material Grade A		Material Grade B		Total Means		
Parameter	Value	Parameter	Value		Parameter	
MAX Value						
P_{1}	2.5	P_{2}	2.0	P	110	
M_{1}	0.8	M_{2}	0.6	M	36	
S_{1}	6.0	S_{2}	5.0	L	50	

The regarded problem is an example of a linear (integer) optimisation task, whereas the detailed distribution of load and columns layout analysis is out of the scope here, as well as possible consolidations of multiple conceptual columns to obtain the required spot load capacity (e.g. 5 columns made of GradeA and 6 made of GradeB, or even: 2.5 of GradeA and 3.3 of GradeB).

Remark 5

If we search for an optimum in the whole set of Reals+, and the found x^{*} is from Integers+ subset of Reals+, this is a solution of IP problem. IP problems are generally NP-hard (non-deterministic polynomial-time hardness).

For the task described above:

1. Formulate a primal LP / IP problem with the inequality constraints.
2. Using linprog / intlinprog MATLAB function, solve the primal problem and determine optimal vector of decisive variables: $\boldsymbol{x}^{*}=\left[x_{1}{ }^{*}, x_{2}{ }^{*}\right]^{T} \in \boldsymbol{R}^{2}\left(x_{1} \geq 0\right.$ and $x_{2} \geq 0$ are number of columns made of material Grade A and Grade B, respectively), as well as corresponding maximum value of the objective function: $f=S_{1} x_{1}{ }^{*}+S_{2} x_{2}{ }^{*}$.
3. Formulate an augmented primal problem with the equality constraints by introduction of slack variables.
4. Using linprog / intlinprog MATLAB function, solve the augmented primal problem and determine optimal vector of variables, as well as corresponding maximum objective function value.
5. Formulate a dual linear programming problem (DLP) with the inequality constraints: minimise total means (price, mass, and number of columns) necessary to fulfil (equalise or exceed) the demanded dual problem constraints i.e. load capacity.
6. Using linprog / intlinprog MATLAB function, solve the DLP problem and determine optimal vector of variables: $\boldsymbol{y}^{*}=\left[y_{1}{ }^{*}, y_{2}{ }^{*}, y_{3}{ }^{*}\right]^{T} \in \boldsymbol{R}^{3}$, as well as corresponding minimum objective function $f_{d}=P y_{1}{ }^{*}+M y_{2}{ }^{*}+L y_{3}{ }^{*}$ value.
7. Verify applicability of Theorem 3. Substitute the obtained \boldsymbol{x}^{*} and \boldsymbol{y}^{*} into equations (D.1) and (D.2).
8. SUPPLEMENTARY: Solve IP versions of the regarded problems defined with optimproblem, using solve command (maximum of 1 additional point).

References:

[1] MATLAB/Simulink documentation: http://www.mathworks.com
[2] G.B. Dantzig „Linear Programming and Extensions", The RAND Co., Princeton University Press, 1963.
[3] W.A. Poe and S. Mokhatab „Modeling, Control, and Optimization of Natural Gas Processing Plants", Elsevier, 2017.
[4] A.D. Ioffe and V.M. Tihomirov „Theory of extremal problems. Studies in mathematics and its applications", Amsterdam-New York-Oxford: North-Holland Publishing Company, 1979.
[5] W. Pogorzelski „Teoria systemów i metody optymalizacji", Oficyna Wydawnicza PW, Warszawa, 1996.
[6] K.G. Murty „Linear Complementarity, Linear And Nonlinear Programming", 1997.
[7] D.S. Naidu „Optimal Control Systems", CRC Press, 2003.

