
- 1 -  

Systems Theory  

Laboratory 6: Linear optimisation. 
 

 

Purpose of the exercise: 

Linear programming primal / dual problem formulation and solution using simplex method and 

MATLAB/Simulink environment. 

 

1. Introduction 

 

 Linear optimisation or linear programming is used to find an extremum of a problem 

represented by linear relationships. Linear programming algorithms are efficient solutions capable 

of solving complex optimisation problems. These solutions are applicable for problems with linear 

objective function, subject to linear inequality and/or equality constraints. 

 Linear programming may be used to solve a problem when the objective is to maximize some 

linear function, and there is a linear system of inequalities (equalities) that defines the constraints. 

Its feasible region is a set defined as the intersection of finitely many half spaces, each of which is 

defined by a linear inequality. Its objective function is a real-valued linear function defined on such 

a polyhedron (polytope). A linear optimisation algorithm finds a point in this polyhedron 

(polytope), where the objective function has an extremum, if such a point exists. 

 In a classical linear programming (LP) problem we consider continuous values of decisive 

variables. If the decisive variables are required to be integers (or binary), then the problem is called 

an integer programming, IP (or binary integer programming, BIP) problem. If only some decisive 

variables are required to be integers, then it is a mixed integer programming (MIP) problem. 

 

2. LP problem with inequality constraints 

 

 Determine a vector of variables: 𝒙 = [𝑥1, … , 𝑥𝑛]
𝑇 ∈ 𝑹𝑛, maximising an objective linear form: 

𝑚𝑎𝑥(𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛)         𝑂𝑅    𝑚𝑎𝑥(𝒄𝑇𝒙) 

subject to (s.t.) m inequality constraints: 

𝑎11𝑥1 +⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1
⋮

𝑎𝑚1𝑥1 +⋯+ 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

   𝑂𝑅         𝑨𝒙 ≤ 𝒃 

where: 

𝑥1 ≥ 0,… , 𝑥𝑛 ≥ 0                   𝑂𝑅          𝒙 ≥ 0 

defines a set of admissible elements X, i.e. a feasible region, being a convex polyhedron (polytope) 

solid. 

Theorem 1 (existence) 

If the set of admissible elements of the LP problem is non-empty, and if the value of the problem 

is finite, then the problem has a solution. 

Theorem 2 (globality and localisation)  

The extremum of the LP problem objective function is always global, and achieved in the extremum 

point of the convex polyhedron (polytope) X. 
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3. Augmented LP problem with equality constraints 

 

 Determine an augmented vector of variables: 𝒙 =  [𝒙 𝒙𝑠]𝑇 = [𝑥1, … , 𝑥𝑛, 𝑥𝑛+1, … 𝑥𝑛+𝑚]
𝑇 

∈ 𝑹𝑛+𝑚, maximising an objective: 

𝑚𝑎𝑥(𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛)                                           𝑂𝑅             𝑚𝑎𝑥(𝒄𝑇𝒙) 

s.t. m equality constraints: 

𝑎11𝑥1 +⋯+ 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1             = 𝑏1
⋮

𝑎𝑚1𝑥1 +⋯+ 𝑎𝑚𝑛𝑥𝑛          + 𝑥𝑛+𝑚 = 𝑏𝑚

          𝑂𝑅                𝑨𝒙 = 𝒃 

where: 

𝑥1 ≥ 0,… , 𝑥𝑛 ≥ 0, 𝑥𝑛+1 ≥ 0,… , 𝑥𝑛+𝑚 ≥ 0       𝑂𝑅                   𝒙 ≥ 0 

defines a feasible region being a convex polyhedron (polytope) surface, while:  

𝒙𝑠 = [𝑥𝑛+1, … 𝑥𝑛+𝑚]
𝑇 is a vector of additional (slack), non-negative variables, introduced to 

replace inequality constraints with equalities, and: 𝑨 = [𝑨 𝑰]. 

 Equivalent, partitioned matrix form of the augmented LP problem is to maximise 𝑓 = 𝒄𝑇𝒙 s.t.: 

[1 −𝒄𝑇 0
0 𝑨 𝑰

] [
𝑓
𝒙
𝒙𝑠
] = [

0
𝒃
] 

where: 𝒙 ≥ 0, 𝒙𝑠 ≥ 0. 

 

4. Dual linear programming (DLP) problem 

 

 A problem dual to the original (primal) LP problem with inequality constraints is formulated 

as follows (DLP): 

Determine a vector of dual variables: 𝒚 = [𝑦1, … , 𝑦𝑚]
𝑇 ∈ 𝑹𝑚, minimising an objective linear form: 

𝑚𝑖𝑛(𝑏1𝑦1 +⋯+ 𝑏𝑚𝑦𝑚)         𝑂𝑅      𝑚𝑖𝑛(𝒃𝑇𝒚) 

s.t. n inequality constraints: 

𝑎11𝑦1 +⋯+ 𝑎1𝑚𝑦𝑚 ≥ 𝑐1
⋮

𝑎𝑛1𝑦1 +⋯+ 𝑎𝑛𝑚𝑦𝑚 ≥ 𝑐𝑛

     𝑂𝑅        𝑨𝑇𝒚 ≥ 𝒄 

where: 

𝑦1 ≥ 0,… , 𝑦𝑚 ≥ 0                   𝑂𝑅            𝒚 ≥ 0 

Remarks 1 ÷ 4 

• The constraints 𝑏1, … , 𝑏𝑚 of the primal problem are the objective function coefficients in the 

dual problem.  

• The constraints 𝑐1, … , 𝑐𝑛 of the dual problem are the objective function coefficients in the 

primal problem.  

• Each constraint in the primal problem corresponds to a variable in the dual problem, and vice 

versa. 

• The problem dual to DLP is again the primal LP problem, and it makes sense to speak of  

a pair of dual (complementary) linear programming problems. 
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Theorem 3 (duality) 

The following alternative holds for a pair of dual linear programming problems: EITHER the values 

of both problems are finite and equal AND both problems have solutions,  

OR the set of admissible elements of one of the problems is empty AND in the other problem EITHER 

the set of admissible elements is empty OR the value of the problem is infinite.  

In the former case, vectors 𝒙∗ ∈ 𝑹𝑛 and 𝒚∗ ∈ 𝑹𝑚 are solutions of the primal and dual problems, 

respectively, IF AND ONLY IF they are admissible in these problems,  

AND satisfy one of the following two equivalent relations: 

𝒄𝑇𝒙∗ = 𝒃𝑇𝒚∗      (D.1) 

𝒚∗𝑇(𝑨𝒙∗ − 𝒃) = 𝒙∗𝑇(𝑨𝑇𝒚∗ − 𝒄) = 0  (D.2) 

 

5. Simplex method 

 

(a) Basic feasible solution  

 

Consider the augmented LP problem. A basis 𝑩 is a square, non-singular matrix consisting of 

m columns of 𝑨. A column vector of variables xB, associated with the columns in 𝑩 arranged in the 

same order, is the basic vector corresponding to it. Let D be the matrix consisting of n columns of 

𝑨 not in 𝑩, and let xD be the vector of variables associated with these columns. Then: 

• The columns in 𝑩 are called the basic, in D – nonbasic columns. 

• The variables in xB
  are called the basic, in xD – nonbasic variables. 

Rearranging the variables, (augmented) LP problem can be written in partitioned form: 

𝑨𝒙 = 𝒃       
yields

→        𝑩𝒙𝑩 +𝑫𝒙𝑫 = 𝒃,     𝒙𝑩 ≥ 0, 𝒙𝑫 ≥ 0 

The basic solution, corresponding to the basis B is obtained by setting 𝒙𝑫 = 0, and then solving 

the remaining system for the values of the basic variables: 𝒙𝑩 = 𝑩−1𝒃. This solution is feasible, if 

𝑩−1𝒃 ≥ 0, and in this  case 𝑩 is said to be a feasible basis, and the solution: 𝒙𝑩 = 𝑩−1𝒃, 𝒙𝑫=0 

is called the basic feasible solution (BFS) corresponding to it. 

(b) Pivot step  

 

Given a basis 𝑩, the canonical tableau with respect to it is obtained by multiplying the system 

of equality constraints on the left by 𝑩−1:  

[𝑩 𝑫] [
𝒙𝑩

𝒙𝑫
] = 𝒃 

[𝑰 𝑩−1𝑫] [
𝒙𝑩

𝒙𝑫
] = 𝑩−1𝒃 = 𝒃 

When the basic and nonbasic columns are rearranged in proper order, the canonical tableau 

becomes: 

     

The main step in the simplex algorithm for linear programs is the (Gauss Jordan elimination) pivot 

step. In each stage of the algorithm, the basis is changed by bringing into the basic vector exactly 

𝒙𝑩 𝒙𝑫 

𝑰   𝑩−𝟏𝑫 𝒙𝑩 𝑩−1𝒃 = 𝒃 

basic variables 
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one nonbasic variable known as the entering variable. Its updated column vector is the pivot 

column for this basis change. The dropping variable has to be determined accordingly to guarantee 

that the new basis obtained after the pivot step will also be a feasible basis (more details in [6]). 

 

(c) Implementation procedure 

 

 Simplex method may be effectively used to obtain an extreme point of a convex n-dimensional 

polyhedron (polytope) being a feasible region. For greater number of decisive variables (n), 

computer algorithms are developed to execute the pivotal transformations of the problem tableau, 

searching the feasible polyhedron (polytope) vertices for extremum.  

 In MATLAB/Simulink environment, linprog is intended for standard LP problems. For MIP 

and IP problems, intlinprog may be used. Regarding all: MIP, IP, BIP, and LP problems, also solve 

command may be used to solve a problem created with optimproblem and optimisation variable(s) 

defined with optimvar (see  LP problem example: search for optimproblem in MATLAB 

Documentation). 

  

6. Tasks 

 

 Consider stiff platform support optimisation LP (IP) problem, as follows.  

Maximise load capacity of a stiff platform support, assuming that: 

• the platform is supported by conceptual columns, 

• a total number of columns L is limited, as well as their total mass M, and total material price P, 

• two types of material may be used, each characterised with specific price per unit (P1 and P2, 

respectively, e.g. in thousands of PLN), mass per unit (M1 and M2, in tons), and load capacity 

per unit (S1 and S2, in MN). 

The parameters of the problem: 

 

The regarded problem is an example of a linear (integer) optimisation task, whereas the detailed 

distribution of load and columns layout analysis is out of the scope here, as well as possible 

consolidations of multiple conceptual columns to obtain the required spot load capacity (e.g. 5 

columns made of GradeA and 6 made of GradeB, or even: 2.5 of GradeA and 3.3 of GradeB). 

Remark 5 

If we search for an optimum in the whole set of Reals+, and the found x* is from Integers+ subset 

of Reals+, this is a solution of IP problem. IP problems are generally NP-hard  (non-deterministic 

polynomial-time hardness). 
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For the task described above: 

1. Formulate a primal LP / IP problem with the inequality constraints. 

2. Using linprog / intlinprog MATLAB function, solve the primal problem and determine optimal 

vector of decisive variables: 𝒙∗ = [𝑥1
∗, 𝑥2

∗]𝑇 ∈ 𝑹2 (𝑥1 ≥ 0 and 𝑥2 ≥ 0 are number of 

columns made of material Grade A and Grade B, respectively), as well as corresponding 

maximum value of the objective function: 𝑓 = 𝑆1𝑥1
∗ + 𝑆2𝑥2

∗. 

3. Formulate an augmented primal problem with the equality constraints by introduction of slack 

variables. 

4. Using linprog / intlinprog MATLAB function, solve the augmented primal problem and 

determine optimal vector of variables, as well as corresponding maximum objective function 

value.  

5. Formulate a dual linear programming problem (DLP) with the inequality constraints: 

minimise total means (price, mass, and number of columns) necessary to fulfil (equalise or 

exceed) the demanded dual problem constraints i.e. load capacity. 

6. Using linprog / intlinprog MATLAB function, solve the DLP problem and determine optimal 

vector of variables: 𝒚∗ = [𝑦1
∗, 𝑦2

∗, 𝑦3
∗]𝑇 ∈ 𝑹3, as well as corresponding minimum objective 

function 𝑓𝑑 = 𝑃𝑦1
∗ +𝑀𝑦2

∗ + 𝐿𝑦3
∗ value.  

7. Verify applicability of Theorem 3. Substitute the obtained 𝒙∗ and 𝒚∗ into equations (D.1) and 

(D.2). 

8. SUPPLEMENTARY: Solve IP versions of the regarded problems defined with optimproblem, 

using solve command (maximum of 1 additional point). 
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