Experiments in Computational Social Choice

 (Using Maps of Elections)Niclas Boehmer Piotr Faliszewski Stanisław Szufa
Tomasz Wąs

Using Maps of Elections
 Experiments in Computational Social Choice

Niclas Boehmer Piotr Faliszewski Stanisław Szufa

An Election

$$
\begin{aligned}
& \text { v: } a^{3} \gg \\
& v_{i} a \text {, }=\boldsymbol{a} \\
& \text { v: } n>=4 \\
& \text { vi }\langle=1 \gg \\
& \mathrm{E}=(\mathrm{C}, \mathrm{~V}) \\
& C=\{a, e, \dot{G}, G \\
& \mathrm{V}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right)
\end{aligned}
$$

An Election

$$
E=(C, V)
$$

$$
V=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
$$

Also an election

$$
\begin{aligned}
& v_{4}:\left\{\left(\frac{1}{2}\right), \operatorname{m}\right\}
\end{aligned}
$$

We mostly focus on the ordinal setting, but approvals will come!

$$
\begin{aligned}
& v_{1}: h h^{3}>Q^{-}
\end{aligned}
$$

Winner Determination

An Election

$$
v_{i} \pi>=\mid
$$

$$
v_{i}\| \|>n>c
$$

Winner Determination

An Election

W. Zwicker, Introduction to the Theory of Voting. Handbook of Computational Social Choice 2016

Winner Determination

An Election

W. Zwicker, Introduction to the Theory of Voting. Handbook of Computational Social Choice 2016

Winner Determination

An Election

W. Zwicker, Introduction to the Theory of Voting. Handbook of Computational Social Choice 2016

An Election

W. Zwicker, Introduction to the Theory of Voting. Handbook of Computational Social Choice 2016

Winner Determination

An Election

Result Modification/Analysis

Robustness / Winner ${ }^{6}$ Assessment / Margin of Victory

Possible/Necessary

Winner (in various shapes)

Strategic Candidacy

Winner Determination

An Election

Result Modification/Analysis

Possible/Necessary
Winner (in various shapes)

\square

Robustness / Winner ${ }^{6}$ Assessment / Margin of Victory

Winner Determination

Result Modification/Analysis

An Election

Normative Properties

- Monotonicity
- Homogeneity
- Consistency
- Condorecet Consistency
- (Something) Justified Representation
- Core
- Priceability

Winner Determination

An Election

Result Modification/Analysis

Normative Properties
Portioning

New Rules, New Settings
Sortition

Schulze

Participatory Budgeting

Winner Determination

An Election

Result Modification/Analysis

Normative Properties

New Rules, New Settings

An Election

$$
v_{3}: \Omega \cdot n^{2}>\left\langle Q^{2}\right.
$$

$$
\mathrm{v}_{4}:\left\langle Z_{2}\right\rangle>R_{0}>
$$

Largely studied

theoretically

We want more experiments!

Benefits of Experiments

- More complex settings

We want more experiments!

- Observe actual phenomena instead of merely predicting their possibility
- Condorcet winners often exist
- No-show paradox is/is-not a problem
- Voting rules do/do-not give very different results

Problems with Experiments

- They don't generalize
- May be misleading

Fixed, hard to control number of candidates/voters

Collected under specific circumstances

Often incomplete
But it's real!

We want more

 experiments!All models are wrong but some are wronger than others ;)

5 minutes

Basic Statistical Cultures

Statistical Cultures

Impartial Culture (IC): Every preference order comes with the same proba-bility (a.k.a. uniform distribution)

Polya-Eggenberger Urn Model:

Form an urn of all possible m! votes. To generate a vote:

1) Choose a vote from the urn and add it to your election
2) Return the vote to the urn, together with $\alpha \cdot m$! copies.

Statistical Cultures

Impartial Culture (IC): Every preference order comes with the same proba-bility (a.k.a. uniform distribution)

Polya-Eggenberger Urn Model:

Form an urn of all possible m! votes. To generate a vote:

1) Choose a vote from the urn and add it to your election
2) Return the vote to the urn, together with $\alpha \cdot m$! copies.

Statistical Cultures

Impartial Culture (IC): Every preference order comes with the same proba-bility (a.k.a. uniform distribution)

Polya-Eggenberger Urn Model:

Form an urn of all possible m! votes. To generate a vote:

1) Choose a vote from the urn and add it to your election
2) Return the vote to the urn, together with $\alpha \cdot m$! copies.

Mallows Model: Choose a center vote u. The probability of generating vote v is:

$$
\frac{1}{Z} \Phi^{\operatorname{swap}(u, v)}
$$

(There are some algorithms that generate votes from this distribution... effectively.)

Impartial Culture (IC):
Every preference order comes with the same proba-bility (a.k.a. uniform distribution)

Mallows Model: Choose a center vote u. The probability of generating vote v is:

$$
\frac{1}{Z} \Phi^{s w a p(u, v)}
$$

There are fast sampling algorithms.
$\Phi=1$

Impartial Culture (IC):
Every preference order comes with the same proba-bility (a.k.a. uniform distribution)

Mallows Model: Choose a center vote u. The probability of generating vote v is:

$$
\frac{1}{Z} \Phi^{s w a p(u, v)}
$$

There are fast sampling algorithms.

Impartial Culture (IC):
Every preference order
comes with the same proba-bility (a.k.a.
uniform distribution)

Mallows Model: Choose a center vote u. The probability of generating vote v is:

```
\frac{1}{Z}}\mp@subsup{\Phi}{}{swap(u,v)
```

There are fast sampling algorithms.

Statistical Cultures

Impartial Culture (IC): Every preference order comes with the same proba-bility (a.k.a. uniform distribution)

Polya-Eggenberger Urn Model:

Form an urn of all possible m! votes. To generate a vote:

1) Choose a vote from the urn and add it to your election
2) Return the vote to the urn, together with $\alpha \cdot m$! copies.

Mallows Model: Choose a center vote u. The probability of generating vote v is:

$$
\frac{1}{Z} \Phi^{\operatorname{swap}(u, v)}
$$

(There are some algorithms that generate votes from this distribution... effectively.)

15 minutes

Microscope View of Statistical Cultures

Swap Distance

Number of swaps of adjacent candidates needed to transform one preference order into the other

Swap Distance

Number of swaps of adjacent candidates needed to transform one preference order into the other

Swap Distance

Number of swaps of adjacent candidates needed to transform one preference order into the other

Swap Distance

Number of swaps of adjacent candidates needed to transform one preference order into the other

Election microscope:

1. Generate an election from a statistical culture
2. Compute swap distances between all pairs of votes
3. Represent each vote as a dot in 2D space, so that Euclidean distances are similar to the swap distances \rightarrow map!

The Map Idea

We have some objects:

$$
a, b, c, d, e
$$

We (somehow) know the distances between each pair

-	a	b	c	d	e
a	-	2	2	4	4
b	2	-	2	4	4
c	2	2	-	3	3
d	4	4	3	-	1
e	4	4	3	1	-

(a) Distance Matrix

Can we arrange them in 2D space?

The Map Idea

We have some objects:

$$
a, b, c, d, e
$$

We (somehow) know the distances between each pair

-	a	b	c	d	e
a	-	2	2	4	4
b	2	-	2	4	4
c	2	2	-	3	3
d	4	4	3	-	1
e	4	4	3	1	-

(a) Distance Matrix

Can we arrange them in 2D space?

The Map Idea: Sometimes You Fail

Consider objects:

$$
z_{1}, z_{2}, z_{3}, \ldots, z_{100}
$$

For each $i, j \in[100]$, we have:

$$
d\left(z_{i j} z_{j}\right)=1
$$

How to arrange these in the 2D space?

Not much you can do without errors... But we still do it

The Map Idea: Computing The Embedding

$\left[\begin{array}{llllllll}a_{00} & a_{01} & a_{02} & a_{03} & a_{04} & a_{05} & a_{06} & a_{07} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} & a_{17} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} & a_{27} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} & a_{37} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} & a_{47} \\ a_{50} & a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} & a_{57} \\ a_{60} & a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} & a_{67} \\ a_{70} & a_{71} & a_{72} & a_{73} & a_{74} & a_{75} & a_{76} & \\ a_{80} & a_{81} & a_{82} & a_{83} & a_{84} & a_{85} & & \\ a_{90} & a_{91} & a_{92} & a_{93} & a_{94} & & & \end{array}\right.$
simple geometric dataset
(embedding algorithms only have Euclidean distances of points as inputs)

The Map Idea: Computing The Embedding

simple geometric dataset (embedding algorithms only have Euclidean distances of points as inputs)

(d)

(g)
(b)

(e)

(h)
(c)

(f)

(i)

The Map Idea: Computing The Embedding

simple geometric dataset (embedding algorithms only have Euclidean distances of points as inputs)

(b)

(d)

(g)

(e)

(h)
(c)

(f)

(i)

Swap Distance

Number of swaps of adjacent candidates needed to transform one preference order into the other

Election microscope:

1. Generate an election from a statistical culture
2. Compute swap distances between all pairs of votes
3. Represent each vote as a dot in 2D space, so that Euclidean distances are similar to the swap distances \rightarrow map!

Impartial Culture (IC): Every preference order comes with the same proba-bility (a.k.a. uniform distribution)

Polya-Eggenberger Urn Model: Form an urn of all possible m ! votes. To generate a vote:

1) Choose a vote from the urn and add it to your election
2) Return the vote to the urn, together with $\alpha \cdot m$! copies.

Mallows Model: Choose a center vote u. The probability of generating vote v is:

$$
\frac{1}{Z} \Phi^{\operatorname{swap}(u, v)}
$$

(There are some algorithms that generate votes from this distribution... effectively.)

Election microscope:

1. Generate an election from a statistical culture
2. Compute swap distances between all pairs of votes
3. Represent each vote as a dot in 2D space, so that Euclidean distances are similar to the swap distances (MDS)

Microscope

Impartial Culture (IC): Every preference order comes with the same proba-bility (a.k.a. uniform distribution)

Polya-Eggenberger Urn Model: Form an urn of all possible m ! votes. To generate a vote:

1) Choose a vote from the urn and add it to your election
2) Return the vote to the urn, together with $\alpha \cdot m$! copies.

Mallows Model: Choose a center vote u. The probability of generating vote v is:

$$
\frac{1}{Z} \Phi^{\operatorname{swap}(u, v)}
$$

(There are some algorithms that generate votes from this distribution... effectively.)

Election microscope:

1. Generate an election from a statistical culture
2. Compute swap distances between all pairs of votes
3. Represent each vote as a dot in 2D space, so that Euclidean distances are similar to the swap distances (MDS)

N-Mal. 0.5

Urn 0.05

Urn 1

Impartial Culture (IC): Every preference order comes with the same proba-bility (a.k.a. uniform distribution)

Polya-Eggenberger Urn Model: Form an urn of all possible m ! votes. To generate a vote:

1) Choose a vote from the urn and add it to your election
2) Return the vote to the urn, together with $\alpha \cdot m$! copies.

Mallows Model: Choose a center vote u. The probability of generating vote v is:

$$
\frac{1}{Z} \Phi^{\operatorname{swap}(u, v)}
$$

(There are some algorithms that generate votes from this distribution... effectively.)

Election microscope:

1. Generate an election from a statistical culture
2. Compute swap distances between all pairs of votes
3. Represent each vote as a dot in 2D space, so that Euclidean distances are similar to the swap distances (MDS)

Urn-Mallows Model: First generate an election according to the urn model and then replace each vote v with one generated using Mallows model, with v as the center vote.

Comparison to real-life elections:

Sushi contains preferences about sushi types. Grenoble and Irish are political elections

Restricted Domains

Restricted Domains

Single-Peaked (SP): Fix a societal axis, e.g., the following ordering of the candidates. Every singlepeaked vote for this axis satisfies the property that „for each t, the top t candidates form an interval on the axis).
single-peakedness

Restricted Domains

Single-Peaked (SP): Fix a societal axis, e.g., the following ordering of the candidates. Every singlepeaked vote for this axis satisfies the property that „for each t, the top t candidates form an interval on the axis).
single-peakedness

Conitzer model (top-down)

$$
1 / n * 1 / 2 * 1 / 2 * 1 * 1
$$

Restricted Domains

Single-Peaked (SP): Fix a societal axis, e.g., the following ordering of the candidates. Every singlepeaked vote for this axis satisfies the property that „for each t, the top t candidates form an interval on the axis).
single-peakedness

Walsh model (bottom-up)

Uniform distribution

Restricted Domains

Single-Peaked (SP): Fix a societal axis, e.g., the following ordering of the candidates. Every singlepeaked vote for this axis satisfies the property that „for each t, the top t candidates form an interval on the axis).

Single-Crossing: Order voters so going from top to bottom, each pair of candidates crosses at most once.

Restricted Domains

Single-Peaked (SP): Fix a societal axis, e.g., the following ordering of the candidates. Every singlepeaked vote for this axis satisfies the property that „for each t, the top t candidates form an interval on the axis).

Single-Crossing: Order voters so going from top to bottom, each pair of candidates crosses at most once.

Restricted Domains

Single-Peaked (SP): Fix a societal axis, e.g., the following ordering of the candidates. Every singlepeaked vote for this axis satisfies the property that „for each t, the top t candidates form an interval on the axis).

Single-Crossing: Order voters so going from top to bottom, each pair of candidates crosses at most once.

single-peakedness

single-crossingness

Restricted Domains

Single-Peaked (SP): Fix a societal axis, e.g., the following ordering of the candidates. Every singlepeaked vote for this axis satisfies the property that „for each t, the top t candidates form an interval on the axis).

Single-Crossing: Order voters so going from top to bottom, each pair of candidates crosses at most once.

single-peakedness

single-crossingness

Restricted Domains

Single-Peaked (SP): Fix a societal axis, e.g., the following ordering of the candidates. Every singlepeaked vote for this axis satisfies the property that „for each t, the top t candidates form an interval on the axis).

Single-Crossing: Order voters so going from top to bottom, each pair of candidates crosses at most once.

single-peakedness

single-crossingness

Group-Separable Preferences

A profile is group-separable if each subset A, $|A| \geq 2$, of candidates can be partitioned into A^{\prime} and $A^{\prime \prime}$ so that each voter prefers all members of one to all members of the other

Group-Separable Preferences

A profile is group-separable if each subset A, $|A| \geq 2$, of candidates can be partitioned into A^{\prime} and $A^{\prime \prime}$ so that each voter prefers all members of one to all members of the other

Group-Separable Preferences

A profile is group-separable if each subset A, $|A| \geq 2$, of candidates can be partitioned into A^{\prime} and $A^{\prime \prime}$ so that each voter prefers all members of one to all members of the other

Group-Separable Preferences

A profile is group-separable if each subset A, $|A| \geq 2$, of candidates can be partitioned into A^{\prime} and $A^{\prime \prime}$ so that each voter prefers all members of one to all members of the other

A. Karpov, On the Number of Group-Separable Preference Profiles, Group Decision and Negotiation, 2019

Group-Separable Preferences

Caterpillar Trees
Balanced Trees

Euclidean Preferences

Euclidean Model: Choose points for the voters and candidates from Euclidean space \mathbb{R}^{t}. Voter v prefers candidate x to y if x^{\prime} s point is closer to v than y^{\prime} s.

Euclidean Preferences

Euclidean Preferences

Euclidean Model: Choose points for the voters and candidates from Euclidean space \mathbb{R}^{t}. Voter v prefers candidate x to y if $x^{\prime} s$ point is closer to v than y 's.

Euclidean Preferences

Euclidean Model: Choose points for the voters and candidates from Euclidean space \mathbb{R}^{t}. Voter v prefers candidate x to y if x 's point is closer to v than y 's.

Microscope of Structured Domains

Euclidean Model: Choose points for the voters and candidates from Euclidean space \mathbb{R}^{t}. Voter v prefers candidate x to y if x^{\prime} s point is closer to v than y^{\prime} s.
Interval Square SPOC Balanced
Impartial Culture Identity

What's Used?

Collecting the Data

Papers

- AAAI, AAMAS, IJCAI
- 2010-2023
- Downloaded all the papers using the XML file from DBLP (September 2023)

Screening Process

- Automated script looking for electionand experiment-related keywords
- election, vote, ballot
- experiment, empirical, simulation
- Manual check of the shortlist
- E.g., IJCAI-23:
- 846 papers
- Script shortlisted 41
- Manual check retained 7

Basic Statistics

- Papers: 163
- 130 ordinal
- 35 approval
- Puzzle?
- Experiments: 257
- 211 ordinal
- 46 approval
- Authors: 273 (+/-)
P. Faliszewski --> 26 paper(s) (18 ordinal, 8 approval)
P. Skowron --> 14 paper(s) (8 ordinal, 6 approval)
N. Talmon --> 14 paper(s) (11 ordinal, 3 approval)
M. Lackner --> 12 paper(s) (3 ordinal, 9 approval)
S. Szufa --> 11 paper(s) (8 ordinal, 3 approval)
A. Procaccia --> 8 paper(s) (ordinal)
A. Slinko --> 8 paper(s) (7 ordinal, 1 approval)
N. Boehmer --> 7 paper(s) (ordinal)
N. Mattei --> 7 paper(s) (5 ordinal, 2 approval)
N. Shah --> 7 paper(s) (6 ordinal, 1 approval)
L. Xia $\quad-->7$ paper(s) (ordinal)
C. Boutilier $\quad->6$ paper(s) (ordinal)
U. Endriss --> 6 paper(s) (4 ordinal, 2 approval)
J. Lang $\quad-->6$ paper(s) (3 ordinal, 3 approval)
O. Lev --> 6 paper(s) (ordinal)
D. Peters --> 6 paper(s) (4 ordinal, 2 approval)
T. Walsh $\quad-->6$ paper(s) (ordinal)
R. Bredereck --> 5 paper(s) (4 ordinal, 1 approval)
M. Brill $\quad-->5$ paper(s) (2 ordinal, 3 approval)
E. Elkind $\quad-->5$ paper(s) (3 ordinal, 2 approval)
R. Meir --> 5 paper(s) (3 ordinal, 3 approval)
R. Niedermeier --> 5 paper(s) (4 ordinal, 1 approval)
J. Rosenschein $\quad->5$ paper(s) (ordinal)
F. Rossi --> 5 paper(s) (ordinal)
H. Aziz --> 4 paper(s) (ordinal)
F. Brandt $\quad->4$ paper(s) (ordinal)
I. Caragiannis --> 4 paper(s) (ordinal)
S. Kraus --> 4 paper(s) (ordinal)
Y. Lewenberg $\quad->4$ paper(s) (ordinal)
S. Nath $\quad->4$ paper(s) (ordinal)
K. Sornat $\quad->4$ paper(s) (2 ordinal, 2 approval)
A. Wilczynski --> 4 paper(s) (ordinal)

Experiments on Elections in COMSOC

Papers in recent Al conferences

Papers in recent Al conferences that include experiments on elections*

Experiments on Elections in COMSOC

Papers in recent Al conferences that include experiments on elections*

Ordinal preferences versus approval (as covered in the papers)

What Elections to Study?

Structure of the preference orders?

Reasonable numbers of candidates and voters?

Ground-truth search (sporting events, meta-search engines, recommendation systems, etc.)

Small committees (e.g., hiring), friends voting on frivolous stuff, „usual life"

Candidate Historgram, Synthetic Elections

Large-scale politics
Candidates

What Elections to Study?

Structure of the preference orders?

Reasonable numbers of candidates and voters?

Ground-truth search (sporting events, meta-search engines, recommendation systems, etc.)

Small committees (e.g., hiring), friends voting on frivolous stuff, „usual life"

Candidate Historgram, Synthetic Elections

Large-scale politics
Candidates

Heatmap, Pabulib Elections

Ground-truth search (sporting events, metasearch engines, recommendation systems, etc.)

Small committees (e.g., hiring), friends voting on frivolous stuff, „usual life"

Heatmap, Synthetic Elections

Voters

What Elections to Study?

Structure of the preference orders?

Ordinal

Approval

Statistical cultures

Co-Occurence of Cultures

Matrix entries - How frequently two given cultures happen together

Diagonal - How frequently a given culture is used alone

30 minutes

Map of Elections

all possible preference orders
uniformity

How different?

Count the number of swaps that make the elections isomorphic (i.e., identical up to renaming the candidates and reordering the voters)

Identical preference orders
identity

Isomorphic Swap Distance

Q.

1. Match the candidates
2. Match the voters
3. Count the swaps

Isomorphic Swap Distance

1. Match the candidates
2. Match the voters
3. Count the swaps

Isomorphic Swap Distance

1. Match the candidates
2. Match the voters
3. Count the swaps

Isomorphic Swap Distance

1. Match the candidates
2. Match the voters
3. Count the swaps

Isomorphic Swap Distance

1. Match the candidates
2. Match the voters
3. Count the swaps

Thm. In an election with m candidates and $\mathrm{n}=\mathrm{t}^{*} \mathrm{~m}$! votes, every two elections are at distance at most $1 / 4 \mathrm{n}\left(\mathrm{m}^{2}-\mathrm{m}\right)$.

Identical preference orders
identity

$$
\begin{array}{lll}
\\
\\
\text { two reverse orders } \\
\text { antagonism }
\end{array}
$$

$$
\begin{array}{lll}
\\
\\
\text { two reverse orders } \\
\text { antagonism }
\end{array}
$$

P. Faliszewski, A. Kaczmarczyk, K. Sornat, S. Szufa, T. Wąs, Diversity, Agreement and Polarization in Elections, IJCAI 2023

Computing Isomorphic Swap distance is:

- NP-hard
- Hard to approximate
- $O(m)$-approx. and no better
- FPT-computable, but impractical
- Infeasible using ILP
- Just plain tough!

- Bruteforce works up to 10×50 elections, if you have hundreds of cores and plenty of time...

How to Go Around Isomorphic Swap Distance?

1. Match the candidates
2. Match the voters
3. Count the swaps

How to Go Around Isomorphic Swap Distance?

Distance Between Vectors

Distance Between Vectors

ℓ_{1}-distance

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
3 & 1 & 0 & 1 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
1 & 3 & 0 & 1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
2 & 2 & 0 & 0 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

Distance Between Vectors

ℓ_{1}-distance

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
3 & 1 & 0 & 1 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 3 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
2 & 0 & 0 & 2 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

Distance Between Vectors

ℓ_{1}-distance

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
3 & 1 & 0 & 1 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 3 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
2 & 0 & 0 & 2 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

Earth Mover's Distance (EMD)

Positionwise Distance

Earth mover distances

Positionwise Distance

Positionwise Distance

$$
\begin{aligned}
& \text { (0) }=(0,1,0,1,1) \\
& =(0,2,0,0,1) \\
& \begin{array}{l}
\text { (1, } 0,1,1,0) \\
\text { 竍 }=(1,0,1,0,1)
\end{array} \\
& \begin{array}{l}
=(1,0,2,0,0) \\
2=(0,2,0,0,1) \\
=(0,1,0,1,1)
\end{array} \\
& \text { 偪 }=(2,0,1,0,0) \\
& \text { distance }=1+0+0+5+4=10
\end{aligned}
$$

two reverse orders antagonism
 AN

$$
v_{1}: R>C><Q_{0}
$$

two groups of candidates, each voter prefers members of one group to the other
stratification

$$
\begin{aligned}
& \left.v_{1}: R \ggg(2)>\right)^{\circ}
\end{aligned}
$$

(a) FR

(b) MDS

(c) KK

Which embedding is best?

$$
\operatorname{MR}(X, Y)=\frac{\max \left(\bar{d}_{\mathrm{Euc}}(X, Y), \bar{d}_{\mathcal{M}}(X, Y)\right)}{\min \left(\bar{d}_{\mathrm{Euc}}(X, Y), \bar{d}_{\mathcal{M}}(X, Y)\right)},
$$

	average total distortion values		
dataset	FR	MDS	KK
4×100	1.3213 ± 0.0157	1.3099 ± 0.0076	1.2612 ± 0.0158
10×100	1.3119 ± 0.0194	1.3531 ± 0.0108	1.2625 ± 0.0125
20×100	1.2979 ± 0.0195	1.3545 ± 0.0126	1.2406 ± 0.0060
100×100	1.3006 ± 0.0256	1.3225 ± 0.0194	1.2119 ± 0.0123

	average total distortion values		
Model	FR	MDS	KK
Impartial Culture	1.145	1.087	1.07
Single-Peaked (Conitzer)	1.313	1.305	1.244
Single-Peaked (Walsh)	1.114	1.067	1.071
SPOC	1.223	1.094	1.081
Single-Crossing	1.256	1.298	1.225
Interval	1.321	1.3	1.233
Square	1.267	1.274	1.203
Cube	1.216	1.217	1.146
5-Cube	1.155	1.177	1.114
10-Cube	1.2	1.162	1.094
20-Cube	1.252	1.162	1.097
Circle	1.222	1.105	1.101
Sphere	1.187	1.09	1.077
4-Sphere	1.174	1.084	1.072
Group-Separable (Balanced)	1.302	1.298	1.204
Group-Separable (Caterpillar)	1.215	1.218	1.14
Urn	1.338	1.298	1.285
Mallows	1.195	1.121	1.094
All	1.241	1.198	1.159

$\begin{array}{lllllllll}1.0 & 1.16 & 1.32 & 1.48 & 1.64 & 1.8\end{array}$

(b) MDS

(c) KK

Mapel

Approval Elections

Map of Rules

Data!

Swap Distance

Map of

 Elections
Introduction

 to voting
15 minutes

Create your own map of elections!

Introduction to Mapel Software Package 1/2

Approval Elections Map of Rules

Introduction
to voting
Preference Learning

Experiments in

 Computational Social ChoiceReal-Life Data

Use Cases
 (Elections)

Elections

Visualizing Experiment Results

Winner Score

Visualizing Experiment Results

Highest Plurality Score

Highest Borda Score

Copeland Rule

$$
\begin{aligned}
& E=\pi=N>N
\end{aligned}
$$

$$
\begin{aligned}
& m=1>m=A>C \\
& \pi \mathrm{~m}=\boldsymbol{N}=\boldsymbol{m}
\end{aligned}
$$

Copeland Rule

$$
\begin{aligned}
& \text { at>> } \mathrm{m}
\end{aligned}
$$

Copeland Rule

$$
\begin{aligned}
& A>N=N=m
\end{aligned}
$$

$$
\begin{aligned}
& m=1>m=d=C \\
& \pi \mathrm{~m}=\boldsymbol{N}=\boldsymbol{m}
\end{aligned}
$$

3:2

Copeland Rule

acent

Condorcet winner

A candidate that wins all pairwise comparisons

3:2

4:1

Highest Copeland Score

Dodgson Rule

Score of a candidate is the minimal number of swaps needed to make him or her a Condorcet winner

The candidate with the lowest score wins

Dodgson Rule

Score of a candidate is the minimal number of swaps needed to make him or her a Condorcet winner

The candidate with the lowest score wins

Winning Committee Score

Visualizing Experiment Results

Chamberlin-Courant (CC) Rule

$$
\begin{aligned}
& \begin{array}{lllll}
4 & 3 & 2 & 1 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& m=1>m=d=C \\
& \pi \mathrm{~m}=\boldsymbol{N}=\boldsymbol{d}
\end{aligned}
$$

Chamberlin-Courant (CC) Rule

$$
\begin{aligned}
& 4 \quad 3 \quad 2 \quad 1 \quad 0
\end{aligned}
$$

$$
\begin{aligned}
& n \pi^{r}>N>N^{*}>C>m^{*}
\end{aligned}
$$

Chamberlin-Courant (CC) Rule

$$
\begin{aligned}
& 431210 \\
& \text { I }>\infty>\min ^{N}>\boldsymbol{N}>\boldsymbol{m}
\end{aligned}
$$

$$
\begin{aligned}
& S>C>\pi>1>m \\
& m>1>m>N>C \\
& n+1)>C>C+m+
\end{aligned}
$$

Chamberlin—Courant (CC) Rule

$$
\begin{aligned}
& \begin{array}{lllll}
4 & 3 & 2 & 1 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (t) C } n=1=m
\end{aligned}
$$

Highest CC Score

Running Time

Visualizing Experiment Results

CC - Running Time (in seconds)

Dodgson - Running Time (in seconds)

Approximation Ratio

Visualizing Experiment Results

In each step, add the candidate who increases the committee's score the most

Sequential CC Approx. Ratio

In each step, remove the candidate who decreases the committee's score the least

Removal CC Approx. Ratio

Sequential CC vs Removal CC

Ranging CC Approx. Ratio

Removal CC Approx. Ratio

Putting Real-World Elections on the Map

Preflib Data

PrefLib ID	Name	Type	\#Elections	Avg. m	Avg. n	Avg. Inc
1	Irish	political	3	11.67	46003.67	0.39
2	Debian	survey	8	6.25	419	0.08
3	NASA	survey	1	32	10	0.1
4	Netflix	user ratings	200	3.5	818.79	0.0
5	Burlington	political	2	6	9384	0.27
6	Skate	survey	48	23.31	8.67	0.0
7	ERS	association	87	8.74	409.31	0.25
8	Glasgow	political	21	9.9	8970.29	0.5
9	AGH	survey	2	8	149.5	0.0
10	Ski	sport	2	260.5	4	0.23
11	Web	meta-search	77	1874.74	4.04	0.36
12	T-Shirt	survey	1	11	30	0.0
14	Sushi	survey	1	10	5000	0.0
15	Clean Web	meta-search	79	78.15	4.04	0.0
16	Aspen	political	2	8	2502	0.26
17	Berkley	political	1	4	4173	0.13
18	Minneapolis	political	4	218	34370.5	0.76
19	Oakland	political	7	7	52449.29	0.39

Decisive features:

- Typcially below 10 candidates or below 10 voters.
- Often highly incomplete votes, voters typically rank only small subset of candidates.

Usable for map:
Irish, Skate, ERS, Glasgow, T-Shirt, Sushi, Aspen, and Cities

637 elections from 35 datasets:

- Humans expressing opinions concerning candidates for a position (political, association)
- Humans expressing preferences over objects (survey, user ratings)
- Humans ranking items in a test (human tests)

Pierce	political	4	5	188627	0.29
San Francisco (sf)	political	14	10.43	61635.79	0.51
San Leandro (sl)	political	3	5.33	23666	0.27
Takoma Park	political	1	4	204	0.13
Mechanical Turk dots	human tests	4	4	795.75	0.0
Mechanical Turk puzzle	human tests	4	4	795	0.0
French Presidental	political	6	16	430.83	0.68
Proto French	political	1	15	398	0.7
APA	association	12	5	16991.33	0.16
UK Labor Leadership	political	1	5	266	0.21
Vermont	political	15	3.93	1160.73	0.42
Education Survey	survey	7	13.57	21.86	0.39
San Sebastian Poster	survey	2	17	61.5	0.59
Cities	survey	2	42	392	0.73
Breakfast Items	survey	6	15	42	0.0
Austrian Parliamentary	political	9	12.22	4792773.11	0.84

Map of Preflib Elections

- Most elections fall in bottom left

A Second Datasource

Collecting, Classifying, Analyzing, and Using Real-World Ranking Data, AAMAS 2023.

Time-Based Elections

- Multi-race competitions (Formula 1 season/Tour de France)
- Top-x rankings at different times (Spotify, boxing, tennis top 100, american football)

Criterion-Based Elections

- Indicator-based rankings (cities, countries, universities)
- Top-x rankings from different sources (Spotify, american football)

Map of Real-World Elections

- city ranking country ranking football week spotify day university ranking

Different Types of Real-World Elections

Using the Map to Generate Realistic Data:
 (Normalized) Mallows Model

Mallows Model

Input
Central vote $v^{*}+$ dispersion parameter φ

Sampling

Probability of sampling vote v proportional to:
$\varphi^{\text {swap }\left(\mathrm{v}, \mathrm{v}^{*}\right)}$

Mallows Model with Uniformly Sampled φ

100 voters and 10 candidates

100 voters and 50 candidates

Mallows Model with Uniformly Sampled φ

Problems with Mallows Model

Common Implicit Assumptions

Evidence

A fixed dispersion parameter produces "structurally similar" elections for different candidate numbers.

A uniformly at random chosen dispersion parameter "uniformly covers" the space between identity and uniformity.

Fixed dispersion parameter for different candidate numbers in one experiment.

Don't know what dispersion to use? Just choose uniformly at random, it's the natural agnostic choice.

What Can We Do?

Mallows Model

Sampled votes become more and more similar to central one

$$
\begin{aligned}
& -0.4=0.6=0.8 \\
& -0.9=0.95-1
\end{aligned}
$$

Normalized Mallows Model

Keep expected swap distance from central order fixed

Normalized Mallows Model

Idea

- Keep expected swap distance from central order fixed

Advantage

- Uniform parameter values lead to uniform coverage of election space
- "Consistent" behavior for varying number of candidates
- Easy-to-interpret parameter values

Input

Central vote v^{*} with m candidates + "new" paramter norm- φ

Conversion

Choose a value φ of the dispersion parameter s.t. expected swap distance between central and sampled vote:

$$
\text { norm- } \varphi \cdot 1 / 4 m(m-1)
$$

Sampling

Probability of sampling vote v proportional to:

Real-World Evidence

Behaves as normalized Mallows model

Spotify charts

American football power rankings

Tour de France

Mallows Model: Warnings

- Be careful when varying the number of candidates: Trends could be artifact of Mallows model.
- Statements about certain ranges of dispersion parameter unlikely to generalize for other candidate numbers.
- Be careful how to select values of dispersion parameter in experiments to ensure meaningful coverage.
- Problems get intensified for generalizations such as Mallows mixtures.

Understanding Real-World Elections via Preference Learning

\section*{Frequency Matrix

 Position Matrix
 | | \square | 6 | r^{3} |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 0 | 1 |
| 2 | 1 | 1 | 1 |
| 3 | 0 | 2 | 1 |
| | \square | (6) | n |
| 1 | 2/3 | 0 | 1/3 |
| 2 | 1/3 | 1/3 | 1/3 |
| | 0 | 2/3 | 1/3 |

Frequency Matrix of Vote Distribution (aka. probability distribution over votes)
Entry (i, j): Probability that j is ranked in position i in a sampled vote.

Learning Real-World Data

Idea

Given parameterized vote distribution and (real-world) election Compute parameters most likely to produce election

Motivation

- Quantify nature of examined elections
- Identify parameter values leading to realistic data

Approach

For different distribution parameters:

- Compute distance between frequency matrix of distribution and election

Return distribution parameters resulting in smallest distance

Learning Single Mallows Models

Normalized dispersion parameter norm- φ of closest Mallows model

Normalized EMD-positionwise distance to closest Mallows matrix

Learning Mixtures of Mallows Model

Idea

Heterogeneous electorate with multiple central votes

Procedure

Given two central votes $\mathrm{v}_{1}{ }^{*}$ and $\mathrm{v}_{2}{ }^{*}$ (over same candidate set), two dispersion parameters norm- $\varphi>$ norm- ψ, and probability p

- With probability p, sample from Mallows model with norm- φ and v_{1} *
- With probability 1-p, sample from Mallows model with norm- ψ and $v_{2}{ }^{*}$

Frequency matrix

Weighted sum of matrices of individual models

Learning Mixtures of Mallows Model

Distance to frequency matrix of closest Mallows mixture Avg. 0.12 (-0.07)

Distance "gain" by using mixture instead of single Mallows model

$\mathrm{p}^{*} \mathrm{M}\left(\right.$ norm $\left.-\varphi, \mathrm{v}_{1}{ }^{*}\right)+$

(1-p)*M(norm- $\left.\psi, v_{2}{ }^{*}\right)$

Learning Mixtures of Mallows Model

Normalized dispersion parameter norm- φ of closest mixture

Avg. 0.353

Normalized dispersion parameter norm- ψ of closest mixture Avg. 0.128

Sampling probability of closest mixture Avg. 0.6

How to Sample Realistic Data Using the Mallows model?

Observations

- Mallows elections capture relevant part of map of elections well
- Mixtures of Mallows models even more powerful/general

Procedure

- Normalized Mallows model with uniformly at random chosen norm- φ between 0 and 0.92
- Mixtures of Mallows models: $p \in[0.35,0.8]$, norm- $\varphi \in[0.05,0.6]$, norm- $\psi \in[0,0.25]$, and swap distance between $\mathrm{v}_{1}{ }^{*}$ and $\mathrm{v}_{2}{ }^{*} \in[0.35,0.6]$

Mapel

Matchings

Further Applications

Approval Elections

Map of Rules

Introduction to voting

Preference
Learning

Swap Distance

Experiments in

 Computational Social Choice
Elections
 Map of

 Directed

Mallows
 Use Cases (Elections)

Winners

Reai-Life
Data

Approximations

Election

Results

[^0]
Approval Elections

Further Applications

Instance of Approval Election

$$
\begin{aligned}
& v_{2} \text { : }\left\{\text { min, } \mathcal{G}, \mathbb{N}^{0}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& v_{5}:\{\text { 低 }\}
\end{aligned}
$$

Voters:

Approvalwise distance

Approvalwise distance

$$
\begin{aligned}
& v_{1} \text { : \{而it, (6) \} }
\end{aligned}
$$

$$
\begin{aligned}
& v_{5} \text { : \{ \{ \} }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccccc}
& \text { Silal } \\
\text { Score: } 3 & 4 & 1 & 2 & 3
\end{array} \\
& \text { Sorted vector: } \quad[4,3,3,2,1] \\
& \ell_{1}([4,3,3,2,1],[5,3,2,2,11)=
\end{aligned}
$$

Approvalwise distance

$$
\begin{aligned}
& v_{1}:\{\text { 而ill }
\end{aligned}
$$

$$
\begin{aligned}
& v_{3}:\left\{\left\langle\|, 0, \omega_{0}\right\}\right.
\end{aligned}
$$

Can be computed in polynomial time

$$
\ell_{1}([4,3,3,2,2,1],[5,3,2,2,1])=2
$$

Hamming distance

Hamming distance

$$
\begin{aligned}
& v_{1} \text { : \{有ith , (k) \} }
\end{aligned}
$$

$$
\begin{aligned}
& v_{5}:\{ \}
\end{aligned}
$$

Hamming distance

$$
\begin{aligned}
& v_{1} \text { : \{而it, }\}
\end{aligned}
$$

$$
\begin{aligned}
& v_{5}:\{ \}
\end{aligned}
$$

Hamming distance

Hamming distance

$$
1+3+1+0+1=6
$$

Hamming distance

(2) Unfortunately it is NP-hard :
a

p-Impartial Culture

To generate a vote, for each candidate we flip an assymetric coin, and with probability p we put that candidate in our ballot

p-Identity

To generate first vote, we approved $[p \cdot m\rfloor$ candidates selected uniformly at random.
All other votes are its copies.

Many approvals

Many approvals

Few approvals

Correlation

Setup

number of candidates

p-Identity with ϕ-Resampling

Initial ballot (from p-ID)

To generate a vote:
Step 0: copy initial ballot
Step 1: for each candidate, resample that candidate with probability ϕ not reverse
(resample = toss an assymetric coin; approve with probability p)

p-Identity with ϕ-Resampling

p-Identity with ϕ-Resampling

p-Identity with ϕ-Resampling

p-Identity with ϕ-Resampling

Disjoint p-Identity with ϕ-Resampling

First initial ballot

Second initial ballot

To generate a vote:
Step 0: copy one of the initial votes
Step 1: for each candidate, resample that candidate with probability ϕ

Disjoint p-Identity with ϕ-Resampling

(p, ϕ) Noise Model

The probability of a given vote is proportional to its Hamming distance from the initial ballot

(p, ϕ) Noise Model

Other Cultures

(p, α) Urn Model

Euclidean

Real life data

PAV runtime

coh. level

Mapel

Approval Elections

Map of Rules

Data!

Swap Distance

Map of

 Elections
Introduction

 to voting
Create your own map of elections!

Introduction to Mapel Software Package 2/2

Mapel

Matchings

Further Applications

Approval Elections

Map of Rules

Introduction to voting

Preference
Learning

Swap Distance

Experiments in

 Computational Social Choice
Elections
 Map of

 Directed

Mallows
 Use Cases (Elections)

Winners

Reai-Life
Data

Approximations

Election

Results

[^1]Maps for Matchings under Preferences

Stable Roommates

Input: Agents with strict preferences over each other.

Stable Roommates

Input: Agents with strict preferences over each other.

Stable Roommates

Input: Agents with strict preferences over each other.

An agent pair blocks matching M if both agents prefer each other to current partner.

Stable Roommates

Input: Agents with strict preferences over each other.

An agent pair blocks matching M if both agents prefer each other to current partner.

Goal: Find a stable matching, i.e., a matching without a blocking pair.

Stable Roommates

Input: Agents with strict preferences over each other.

An agent pair blocks matching M if both agents prefer each other to current partner.

Goal: Find a stable matching, i.e., a matching without a blocking pair.

Stable Roommates

Input: Agents with strict preferences over each other.

An agent pair blocks matching M if both agents prefer each other to current partner.

Goal: Find a stable matching, i.e., a matching without a blocking pair.

Stable Roommates

Input: Agents with strict preferences over each other.

An agent pair blocks matching M if both agents prefer each other to current partner.

Goal: Find a stable matching, i.e., a matching without a blocking pair.

Status Quo

- Numerous works on theoretical aspects of stable matching problems with real-world impact.
- Some works contain empirical investigations but far away from standard with most of them only using uniformly at random sampled preferences.

Step 1: Distance Measure

Central Question

How to measure the similarity of two Stable Roommates instances?
(Assumption: Both instances have same number of agents)

Positionwise Distance

4General popularity/quality of agents in the instance.

Position matrix completely ignores mutual opinions, i.e., what agents think of each other (agents are "voters" and "candidates")

Mutual Attraction Matrix: Aggregate Representation

Intuition For stable matchings, it is important which agents an agent likes, but also whether they like them as well.

Mutual Attraction Vector i-th entry is the position in which agent a occurs in the preferences of the agent that agent a ranks in position i.

Mutual Attraction Matrix One row for each agent/vector.

$$
\begin{aligned}
& a: b>c>d \\
& b: a>c>d \\
& c: a>b>d \\
& d: a>b>c
\end{aligned}
$$

a
b
c
$d$$\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 2 & 3 \\ 3 & 3 & 3\end{array}\right]$

Step 2: Generating Instances

460 instances generated from 10 statistical cultures (4 known) from:

- Impartial Culture Agents draw preferences uniformly at random from set of all possible preferences.
- Mallows There is a central order v^{*}. Probability of sampling preference order vis proportional to $\varphi^{\text {swap }\left(v, v^{*}\right)}$.
- Attributes Different objective evaluation criteria but agents assign different importance to them.
- Euclidean Agents are points on line / in square and rank other agents by increasing distance.
- Reverse-Euclidean Like Euclidean but some fraction of agents rank by decreasing distance.
- Fame-Euclidean Like Euclidean but some agents are generally more attractive.

Step 3: Drawing the Map

Step 4: Understanding the Map

Extreme Matrices

1. Identity (ID) All agents have the same preferences (master list).
2. Mutual Agreement (MA) Agents rank each other in same position.
3. Mutual Disagreement (MD) Evaluations are diametric: a ranks b in position $i-b$ ranks a in position n-i+1.
4. Chaos (CH) "Chaotic" matrix.

Step 4: Understanding the Map II

Meaning of Axes

$\begin{array}{lllllll}78 & 114 & 151 & 188 & 225 & 262\end{array} \times 10^{6}$

Rank distortion

for each agent we sum up the absolute difference between all pairs of entries in MA vector

Step 5: Using the Map

$\begin{array}{llllll} & & & \\ 34 & 40 & 46 & 52 & 58 & 64\end{array}$

Average number of blocking pairs for perfect matching

Minimum summed rank of a stable matching

Running time of ILP for summed rank minimal matching

Conclusion

Take-aways

- General approach for maps applicable beyond voting including "tricks":
- Aggregate representation
- Force-directed algorithms
- Give meaning to axes and regions on the map (plus compass points)
- Instances from one statistical culture placed close to each other and exhibit similar performance in experiments.
\rightarrow Usage of multi-source data crucial.

More

Experiments!

Please...

[^0]: Verification

[^1]: Verification

