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We mostly focus on the ordinal
setting, but approvals will come!
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We want more
experiments!

Benefits of Experiments
• More complex settings
• More precise results

• Exact running time vs 
asymptotic running time

• Observe actual phenomena instead
of merely predicting their possibility
• Condorcet winners often exist
• No-show paradox is/is-not a 

problem
• Voting rules do/do-not give

very different results

Problems with Experiments
• They don’t generalize
• May be misleading
• Some insights are impossible to get

experimentally
• You never really know…

Da
ta
!

Real-Life Data

Synthetic Data

Preflib

Pabulib

Others…

Impartial Culture

Urn, Mallows

Euclidean, and more

N. Mattei, T. Walsh, PrefLib: A Library For Preferences, ADT 2013



We want more
experiments!

Real-Life Data

Synthetic Data

Preflib

Pabulib

Others…

Impartial Culture

Urn, Mallows

Euclidean, and more

Real data is real

Fixed, hard to control number
of candidates/voters

Collected under
specific circumstances

Often incomplete

But it’s real!

Easy to control!

Arbitrary size

Perfect 
information

Unrealistic…

Hard to choose a model

All models are
wrong but some
are wronger
than others ;) 

N. Mattei, T. Walsh, PrefLib: A Library For Preferences, ADT 2013
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Statistical Cultures

Polya-Eggenberger Urn Model:
Form an urn of all possible m! 
votes. To generate a vote:
1) Choose a vote from the urn and 

add it to your election
2) Return the vote to the urn, 

together with α·m! copies.

Impartial Culture (IC): Every
preference order comes with the 
same proba-bility (a.k.a. uniform 
distribution) 

A > B > C

B > A > C

A > C > B

B > C > A C > B > A

C >A > B

S. Berg. Paradox of voting under an urn model: The effect of homogeneity. Public Choice, 1985.
J. McCabe-Dansted, A. Slinko. Exploratory analysis of similarities between social choice rules. Group Decision and Negotiation, 2006.
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Statistical Cultures
Mallows Model: Choose a center
vote u. The probability of generating
vote v is:

1
𝑍Ф

!"#$(&,()

(There are some algorithms that
generate votes from this
distribution… effectively.)

Polya-Eggenberger Urn Model:
Form an urn of all possible m! 
votes. To generate a vote:
1) Choose a vote from the urn and 

add it to your election
2) Return the vote to the urn, 

together with α·m! copies.

Impartial Culture (IC): Every
preference order comes with the 
same proba-bility (a.k.a. uniform 
distribution) 

So… what do these models actually do?



Microscope View of Statistical 
Cultures

15 minutes
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Swap Distance

>             > >             >

Number of swaps of adjacent candidates needed
to transform one preference order into the other

Election microscope:
1. Generate an election from a statistical

culture
2. Compute swap distances between all pairs of 

votes
3. Represent each vote as a dot in 2D space, so

that Euclidean distances are similar to the 
swap distances à map!
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We have some objects: 

a, b, c, d ,e
We (somehow) know the 
distances between each pair

Can we arrange them in 2D space?

(1) (2)

(4)(3)
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(1)
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The Map Idea: Sometimes You Fail
Not much you can do without errors…Consider objects:

z1, z2, z3, ... , z100

For each i, j Î [100], we have:
d(zi,zj) = 1

How to arrange these in the 
2D space?

z1 z2

z3

z4

z5

z6

z7
z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19 z20

But we still do it



The Map Idea: Computing The Embedding

simple geometric dataset
(embedding algorithms only have Euclidean
distances of points as inputs)

K. Sapała, Algorithms for Embedding Metrics in Euclidean Spaces, MSc thesis AGH 2022 (specialized implementation of Kamada-Kawai algorithm)



The Map Idea: Computing The Embedding

simple geometric dataset
(embedding algorithms only have Euclidean
distances of points as inputs)

Examples of embeddings

(a) ISOMAP
(b) Kamada-Kawai (KK) with 

positions of corner points
fixed

(c) KK wihtout fixing
(d) KK with Newton-Rhapson + 

fixing
(e) KK with Newton-Rhapson

without fixing
(f) MDS
(g) Simulated annealing with 

fixing
(h) Simulated annealing

without fixing
(i) Fruchterman-Reingold

K. Sapała, Algorithms for Embedding Metrics in Euclidean Spaces, MSc thesis AGH 2022 (specialized implementation of Kamada-Kawai algorithm)
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Microscope

Election microscope:
1. Generate an election from a statistical

culture
2. Compute swap distances between all

pairs of votes
3. Represent each vote as a dot in 2D space, 

so that Euclidean distances are similar to 
the swap distances (MDS)

Mallows Model: Choose a center vote u. The 
probability of generating vote v is:

1
𝑍Ф

#$%&((,*)

(There are some algorithms that generate
votes from this distribution… effectively.)

Polya-Eggenberger Urn Model: Form an urn 
of all possible m! votes. To generate a vote:
1) Choose a vote from the urn and add it to 

your election
2) Return the vote to the urn, together

with α·m! copies.

Impartial Culture (IC): Every preference order 
comes with the same proba-bility (a.k.a. 
uniform distribution) 

8 candidates, 96 voters 8 candidates, 1000 voters

P. Faliszewski, A. Kaczmarczyk, K. Sornat, S. Szufa, T. Wąs, Diversity, Agreement and Polarization in Elections, IJCAI 2023



Election microscope:
1. Generate an election from a statistical

culture
2. Compute swap distances between all

pairs of votes
3. Represent each vote as a dot in 2D space, 

so that Euclidean distances are similar to 
the swap distances (MDS)

Mallows Model: Choose a center vote u. The 
probability of generating vote v is:

1
𝑍Ф

#$%&((,*)

(There are some algorithms that generate
votes from this distribution… effectively.)

Polya-Eggenberger Urn Model: Form an urn 
of all possible m! votes. To generate a vote:
1) Choose a vote from the urn and add it to 

your election
2) Return the vote to the urn, together

with α·m! copies.

Impartial Culture (IC): Every preference order 
comes with the same proba-bility (a.k.a. 
uniform distribution) 

8 candidates, 96 voters 8 candidates, 1000 voters



Election microscope:
1. Generate an election from a statistical

culture
2. Compute swap distances between all

pairs of votes
3. Represent each vote as a dot in 2D space, 

so that Euclidean distances are similar to 
the swap distances (MDS)

Mallows Model: Choose a center vote u. The 
probability of generating vote v is:

1
𝑍Ф

#$%&((,*)

(There are some algorithms that generate
votes from this distribution… effectively.)

Polya-Eggenberger Urn Model: Form an urn 
of all possible m! votes. To generate a vote:
1) Choose a vote from the urn and add it to 

your election
2) Return the vote to the urn, together

with α·m! copies.

Impartial Culture (IC): Every preference order 
comes with the same proba-bility (a.k.a. 
uniform distribution) 

Urn-Mallows Model: First generate an
election according to the urn model and 
then replace each vote v with one 
generated using Mallows model, with v as 
the center vote.

Comparison to real-life elections:
Sushi contains preferences about sushi 
types. Grenoble and Irish are political
elections



Restricted Domains

10 minutes



v3:        >       >       >       >

v2:        >       >       >       >

v4:        >       >       >       >

v5:        >       >       >       >

v1:        >       >       >       >single-peakedness v1
v2 v5

v3

v4

Restricted Domains

|

Single-Peaked (SP): Fix a societal
axis, e.g., the following ordering
of the candidates. Every single-
peaked vote for this axis satisfies
the property that „for each t, the 
top t candidates form an interval
on the axis).
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A profile is group-separable if each subset A, 
|A| ≥ 2, of candidates can be partitioned
into A’ and A’’ so that each voter prefers all
members of one to all members of the other

A = {     ,     ,    }
A’                 A’’

Group-Separable Preferences

K. Inada, A Note on the Simple Majority Decision Rule, Econometrica ,1964.
K. Inada, The Simple Majority Decision Rule, Econometrica, 1969
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robot

has wheelshas legs

has antenna
can wave
a hand

Group-Separable Preferences

A. Karpov, On the Number of Group-Separable Preference Profiles, Group Decision and 
Negotiation, 2019



Caterpillar Trees Balanced Trees

Group-Separable Preferences



Euclidean Preferences
Euclidean Model: Choose points for the 
voters and candidates from Euclidean
space Rt. Voter v prefers candidate x to 
y if x’s point is closer to v than y’s. 
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Microscope of Structured Domains
Euclidean Model: Choose points for the 
voters and candidates from Euclidean
space Rt. Voter v prefers candidate x to 
y if x’s point is closer to v than y’s. 

Single-Peaked: There is societal axis
(order of the of the candidates). Every
single-peaked vote for this axis satisfies
the property that „for each t, the top t 
candidates form an interval on the axis”.

SPOC: Like SP, but the axis is cyclic

Single-Crossing: It is possible to order 
the voters so that as we go along this
order, the relative ranking of two
candidates changes at most once

Group-Separable: Trees, trees everywhere!

8 candidates, 96 voters

8 candidates, 1000 voters



P. Faliszewski, A. Kaczmarczyk, K. Sornat, S. Szufa, T. Wąs, Diversity, Agreement and Polarization in Elections, IJCAI 2023



What’s Used?

10 minutes

Guide to Numerical Experiments on Elections in Computational Social Choice, Boehmer, 
Faliszewski, Janeczko, Kaczmarczyk, Lisowski, Pierczyński, Rey, Stolicki, Szufa, Wąs, arXiv 2024



Collecting the Data

Papers
• AAAI, AAMAS, IJCAI
• 2010—2023
• Downloaded all the papers

using the XML file from 
DBLP (September 2023)

Screening Process
• Automated script looking for election-

and experiment-related keywords
• election, vote, ballot
• experiment, empirical, 
simulation

• Manual check of the shortlist
• E.g., IJCAI-23:

• 846 papers
• Script shortlisted 41
• Manual check retained 7



Basic Statistics

• Papers: 163
• 130 ordinal
• 35 approval
• Puzzle?

• Experiments: 257
• 211 ordinal
• 46 approval

• Authors: 273 (+/-)

P. Faliszewski --> 26 paper(s) (18 ordinal, 8 approval)
P. Skowron --> 14 paper(s) (8 ordinal, 6 approval)
N. Talmon --> 14 paper(s) (11 ordinal, 3 approval)
M. Lackner --> 12 paper(s) (3 ordinal, 9 approval)
S. Szufa --> 11 paper(s) (8 ordinal, 3 approval)
A. Procaccia --> 8 paper(s) (ordinal)
A. Slinko --> 8 paper(s) (7 ordinal, 1 approval)
N. Boehmer --> 7 paper(s) (ordinal)
N. Mattei --> 7 paper(s) (5 ordinal, 2 approval)
N. Shah --> 7 paper(s) (6 ordinal, 1 approval)
L. Xia --> 7 paper(s) (ordinal)
C. Boutilier --> 6 paper(s) (ordinal)
U. Endriss --> 6 paper(s) (4 ordinal, 2 approval)
J. Lang --> 6 paper(s) (3 ordinal, 3 approval)
O. Lev --> 6 paper(s) (ordinal)
D. Peters --> 6 paper(s) (4 ordinal, 2 approval)
T. Walsh --> 6 paper(s) (ordinal)
R. Bredereck --> 5 paper(s) (4 ordinal, 1 approval)
M. Brill --> 5 paper(s) (2 ordinal, 3 approval)
E. Elkind --> 5 paper(s) (3 ordinal, 2 approval)
R. Meir --> 5 paper(s) (3 ordinal, 3 approval)
R. Niedermeier --> 5 paper(s) (4 ordinal, 1 approval)
J. Rosenschein --> 5 paper(s) (ordinal)
F. Rossi --> 5 paper(s) (ordinal)
H. Aziz --> 4 paper(s) (ordinal)
F. Brandt --> 4 paper(s) (ordinal)
I. Caragiannis --> 4 paper(s) (ordinal)
S. Kraus --> 4 paper(s) (ordinal)
Y. Lewenberg --> 4 paper(s) (ordinal)
S. Nath --> 4 paper(s) (ordinal)
K. Sornat --> 4 paper(s) (2 ordinal, 2 approval)
A. Wilczynski --> 4 paper(s) (ordinal)



Experiments on Elections in COMSOC

Papers in recent AI conferences Papers in recent AI conferences that
include experiments on elections*



Experiments on Elections in COMSOC

Papers in recent AI conferences that
include experiments on elections*

Ordinal preferences versus approval (as 
covered in the papers)



What Elections to Study?

Reasonable
numbers of 
candidates
and voters?

Structure of 
the preference
orders?

Small committees
(e.g., hiring), friends
voting on frivolous
stuff, „usual life” Institutions (IFAAMAS 

board elections, choosing electors at universities, etc.)

Large-scale politics

Participatory
budgeting

Ground-truth search
(sporting events, 
meta-search engines, 
recommendation
systems, etc.)

Piotr 
Faliszewski
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Small committees
(e.g., hiring), friends
voting on frivolous
stuff, „usual life” Institutions (IFAAMAS 

board elections, choosing electors at universities, etc.)

Large-
scale
politics

Participatory
budgeting

Multiwinner 
Lab

Ground-truth
search (sporting
events, meta-
search engines, 
recommendation
systems, etc.)



What Elections to Study?

Reasonable
numbers of 
candidates and 
voters? Structure of the preference

orders?



Ordinal

Approval



Co-Occurence of 
Cultures

Matrix entries – How frequently two
given cultures happen together

Diagonal – How frequently a given
culture is used alone
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Map of 
ElectionsDistances
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Elections

Embedding
AlgorithmsPositionwise

Swap
Distance

AN
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Force-
Directed

Verification

Experiments in 
Computational
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Introduction
to voting
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Cultures

Impartial
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Single-
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Group-
Separable

Euclidean

Use Cases
(Elections)

Further
Applications



Map of Elections

30 minutes



v1:          >          >

v2:          >          >

v3:          >          >

v4:          >          >
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v6:          >          >

all possible preference orders

uniformity

v1:          >          >

v2:          >          >

v3:          >          >

v4:          >          >

v5:          >          >

v6:          >          >

Identical preference orders

identity

UN ID

How different?

Count the number of swaps that make the 
elections isomorphic (i.e., identical up to 
renaming the candidates and reordering
the voters)



>             >

>             >

>             >

Isomorphic Swap Distance

>             >

>             >

>             >

1. Match the candidates
2. Match the voters
3. Count the swaps

P. Faliszewski, P. Skowron, A. Slinko, S. Szufa, N. Talmon: How Similar Are Two Elections? AAAI 2019
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Identical preference orders

identity

UN ID

¼ n(m2-m)

Thm. In an election with m candidates and n = t*m! votes, 
every two elections are at distance at most ¼ n(m2-m).

Count the number of swaps that make the 
elections isomorphic (i.e., identical up to 
renaming the candidates and reordering
the voters)

N. Boehmer, P. Faliszewski, R. Niedermeier, S. Szufa, T. Wąs, Understanding Distance Measures Among Elections, IJCAI 2022
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Somehow difficult to compute exactly
(is there a mathematician in the room?)

Thm. An election is at
(normalized) distance 1 
from ID if and only if for 
all pairs of candidates a
and b, half of the voters
prefer a to b, and half of 
the voters prefer b to a.
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Computing Isomorphic Swap distance is:
• NP-hard
• Hard to approximate

• O(m)-approx. and no better
• FPT-computable, but impractical
• Infeasible using ILP
• Just plain tough!
• Bruteforce works up to 10x50 elections, if you have

hundreds of cores and plenty of time…

P. Faliszewski, P. Skowron, A. Slinko, S. Szufa, N. Talmon: How Similar Are Two Elections? AAAI 2019



How to Go Around Isomorphic Swap Distance?

S. Szufa, P. Faliszewski, P. Skowron, A. Slinko, N. Talmon, Drawing a map of elections in the space of statistical cultures, AAMAS 2020

>             >
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>             >

>             >

>             >

>             >

1. Match the candidates
2. Match the voters
3. Count the swaps



S. Szufa, P. Faliszewski, P. Skowron, A. Slinko, N. Talmon, Drawing a map of elections in the space of statistical cultures, AAMAS 2020

>             >

>             >

>             >

>             >

>             >

>             >

1. Match the candidates
2. Match the voters
3. Count the swaps

1. 2 1 0 

2. 1       1       1

3. 0 1 2

1. 1 1 1

2. 2 1       0

3. 0 1 2

1. Compute Position Matrix

2. Match the candidates
3.  Compute the distance

How to Go Around Isomorphic Swap Distance?



Distance Between Vectors

N. Boehmer, P. Faliszewski, R. Niedermeier, S. Szufa, T. Wąs, Understanding Distance Measures Among Elections, IJCAI 2022
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Earth Mover’s Distance (EMD)
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Earth mover distances
S. Szufa, P. Faliszewski, P. Skowron, A. Slinko, N. Talmon, Drawing a Map of Elections in the Space of Statistical Cultures, AAMAS 2022
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Let’s put statistical cultures on 
top of this!

N. Boehmer, R. Bredereck, P. Faliszewski, R. Niedermeier, S. Szufa: Putting a Compass on the Map of Elections, IJCAI 2021



N. Boehmer, R. Bredereck, P. Faliszewski, R. Niedermeier, S. Szufa: Putting a Compass on the Map of Elections, IJCAI 2021







Which embedding is best?



Which embedding is best?
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Create your own map of elections!

Introduction to Mapel Software Package 1/2

15 minutes
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Visualizing Experiment Results

20 minutes

Use Cases

Map of Elections, S. Szufa, PhD Thesis

Drawing a Map of Elections in the Space of Statistical Cultures, Szufa et al., AAMAS-20



Winner Score
Visualizing Experiment Results
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Copeland Rule
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4 : 1
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The candidate with the highest score wins
Condorcet winner 

A candidate that wins all pairwise comparisons
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Dodgson Rule
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Score of a candidate is the minimal number of swaps 
needed to make him or her a Condorcet winner 

The candidate with the lowest score wins
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1 swap

The candidate with the lowest score wins

Score of a candidate is the minimal number of swaps 
needed to make him or her a Condorcet winner 
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Winning Committee Score
Visualizing Experiment Results
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18 = 4+4+3+3+4 

17 = 2+3+4+4+4

Committee with the highest score wins
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Running Time
Visualizing Experiment Results
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Approximation Ratio
Visualizing Experiment Results



Sequential CC Approx. Ratio Removal CC Approx. Ratio

In each step, add the candidate 
who increases the committee's score the most

In each step, remove the candidate 
who decreases the committee's score the least



greedy_approx_hb_score_normalized_dissat_vs_removal_approx_hb_score_nor
malized_dissat
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Sequential CC vs Removal CC



Sequential CC Approx. Ratio

Ranging CC Approx. Ratio Removal CC Approx. Ratio

Banzhaf CC Approx. Ratio



Putting Real-World Elections on the Map

10 minutes

Putting a Compass on the Map of Elections, Boehmer et al., IJCAI-21

Collecting, Classifying, Analyzing, and Using Real-World Ranking Data, Boehmer and Schaar, AAMAS-23

PrefLib: A Library for Preferences http://www.preflib.org, Mattei and Walsh, ADT-13

http://www.preflib.org/


Preflib Data
637 elections from 35 datasets:

• Humans expressing opinions concerning
candidates for a position (political, association)

• Humans expressing preferences over objects
(survey, user ratings)

• Humans ranking items in a test (human tests)

Decisive features:
• Typcially below 10 candidates or below 10 voters.
• Often highly incomplete votes, voters typically rank 

only small subset of candidates.

Usable for map:
Irish, Skate, ERS, Glasgow, T-Shirt, Sushi, Aspen, and Cities



Map of Preflib Elections
• Most elections fall in bottom left

• Exception: Sport elections (figure skating)
• Political elections particularly close to each other



A Second Datasource
Collecting, Classifying, Analyzing, and Using Real-World Ranking Data, AAMAS 2023.

Time-Based Elections

• Multi-race competitions (Formula 1 
season/Tour de France)

• Top-x rankings at different times
(Spotify, boxing, tennis top 100, 
american football)

…

Criterion-Based Elections

• Indicator-based rankings (cities, countries, 
universities)

• Top-x rankings from different sources
(Spotify, american football)

…



Map of Real-World Elections

Close to Identity elections (mostly time-based)
Elections from "the middle"
"Outliers" closer to Uniformity

→ very consistent behavior of data sources from one category

•
■

▲



Different Types of Real-World Elections

"political" elections

surveys
sport competitions

ground-truth estimates
indicator-based



Using the Map to Generate Realistic Data: 
(Normalized) Mallows Model

15 minutes

Properties of the Mallows Model Depending on the Number of 
Alternatives: A Warning for an Experimentalist, Boehmer et al., ICMl-23

Putting a Compass on the Map of Elections, Boehmer et al., IJCAI-21



Mallows Model: Choose a center
vote u. The probability of generating
vote v is:

1
𝑍Ф

!"#$(&,()

(There are some algorithms that
generate votes from this
distribution… effectively.)

Polya-Eggenberger Urn Model:
Form an urn of all possible m! 
votes. To generate a vote:
1) Choose a vote from the urn and 

add it to your election
2) Return the vote to the urn, 

together with α·m! copies.

|

Impartial Culture (IC): Every
preference order comes with the 
same proba-bility (a.k.a. uniform 
distribution) 

>  
    

    
>  

    
   >

>          >         >

>          >         >>     
     

>     
    >

Ф𝟑+ …

>       
   >       

  > >          >         >

>          >         >

>          >         >

>  
    

    
>  

    
   >

Ф𝟐

>          >         >

>          >         > >     
     

>     
    >

Ф

>          >         >

1

Mallows Model

Input
Central vote v* + dispersion
paramter ϕ

Sampling 
Probability of sampling vote v 
proportional to:

ϕswap(v,v*)



Mallows Model with Uniformly Sampled ϕ

100 voters and 50 candidates100 voters and 10 candidates



Mallows Model with Uniformly Sampled ϕ

100 voters and 50 candidates

Warning
For each fixed dispersion parameter
ϕ, the relative distance to ID goes
to zero.



Problems with Mallows Model

A fixed dispersion parameter produces "structurally
similar" elections for different candidate numbers.

A uniformly at random chosen dispersion
parameter "uniformly covers" the space between
identity and uniformity.

Fixed dispersion parameter for different
candidate numbers in one experiment.

Don’t know what dispersion to use? Just 
choose uniformly at random, it’s the natural
agnostic choice.

Possibility for methodological errors!

Common Implicit Assumptions Evidence



What Can We Do?

Sampled votes become more and 
more similar to central one

Mallows Model Normalized Mallows Model

Keep expected swap distance from
central order fixed



Normalized Mallows Model

Input
Central vote v* with m candidates + "new" paramter norm-ϕ

Conversion
Choose a value ϕ of the dispersion parameter s.t. expected
swap distance between central and sampled vote:

norm-ϕ· ¼ m(m-1)

Sampling
Probability of sampling vote v proportional to:

ϕswap(v,v*)

Advantage
• Uniform parameter values lead to uniform 

coverage of election space
• "Consistent" behavior for varying number

of candidates
• Easy-to-interpret parameter values

Idea
• Keep expected swap distance from central

order fixed



Real-World Evidence

American football power rankingsSpotify charts Tour de France

Behaves as normalized Mallows model



Mallows Model: Warnings

• Be careful when varying the number of candidates: Trends could be
artifact of Mallows model.
• Statements about certain ranges of dispersion parameter unlikely to

generalize for other candidate numbers.
• Be careful how to select values of dispersion parameter in 

experiments to ensure meaningful coverage.
• Problems get intensified for generalizations such as Mallows mixtures.



Understanding Real-World Elections via 
Preference Learning

10 minutes

Expected Frequency Matrices of Elections: Computation, Geometry, and 
Preference Learning, Boehmer et al., NeurIPS-22

Application-Oriented Collective Decision Making, Boehmer, PhD thesis



Frequency Matrix
> >

> >

> >

1 2 0 1

2 1 1 1

3 0 2 1

1 2/3 0 1/3

2 1/3 1/3 1/3

3 0 2/3 1/3

Position Matrix

Frequency Matrix

Frequency Matrix of Vote Distribution (aka. probability distribution over votes)

Entry (i,j): Probability that j is ranked in position i in a sampled vote.



Learning Real-World Data

Approach
For different distribution parameters:
• Compute distance between frequency matrix of distribution and election
Return distribution parameters resulting in smallest distance

Idea
Given parameterized vote distribution and (real-world) election
Compute parameters most likely to produce election

Motivation
• Quantify nature of examined elections
• Identify parameter values leading to realistic data



Learning Single Mallows Models

Normalized dispersion parameter norm-ϕ
of closest Mallows model

Avg. 0.49

Normalized EMD-positionwise distance to
closest Mallows matrix

Avg. 0.192



Learning Mixtures of Mallows Model

Idea
Heterogeneous electorate with multiple central votes

Procedure
Given two central votes v1* and v2* (over same candidate set), two dispersion
parameters norm-ϕ>norm-ψ, and probability p
• With probability p, sample from Mallows model with norm-ϕ and v1*
• With probability 1-p, sample from Mallows model with norm-ψ and v2*

Frequency matrix
Weighted sum of matrices of individual models



Learning Mixtures of Mallows Model

Distance to frequency matrix of closest Mallows mixture
Avg. 0.12 (-0.07)

p*M(norm-ϕ,v1*)+
(1-p)*M(norm-ψ,v2*)
with norm-ϕ>norm-ψ

Distance "gain" by using mixture instead of
single Mallows model



Learning Mixtures of Mallows Model

Normalized dispersion parameter norm-ϕ
of closest mixture

Avg. 0.353

p*M(norm-ϕ,v1*)+
(1-p)*M(norm-ψ,v2*)
with norm-ϕ>norm-ψ

Normalized dispersion parameter norm-ψ
of closest mixture

Avg. 0.128

Sampling probability of closest mixture
Avg. 0.6



How to Sample Realistic Data Using the
Mallows model?

Observations

• Mallows elections capture relevant part of map of elections well

• Mixtures of Mallows models even more powerful/general

Procedure
• Normalized Mallows model with uniformly at random chosen norm-ϕ between 0 and 0.92

• Mixtures of Mallows models: p∈[0.35,0.8], norm-ϕ∈[0.05,0.6], norm-ψ∈[0,0.25], and swap
distance between v1* and v2* ∈[0.35,0.6]
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Approval Elections

25 minutes

Further Applications

How to Sample Approval Elections? Szufa et al., IJCAI-22
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Approvalwise distance
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Sorted vector: [4, 3, 3, 2, 1]
2         5        1       3       2 
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Can be computed in polynomial time

Pseudodistance



Hamming distance
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L Unfortunately it is NP-hard L
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{        ,         ,        ,        ,        }

p-Impartial Culture
To generate a vote, for each candidate we flip an assymetric coin, 

and with probability p we put that candidate in our ballot

p=0.18

p=0.61

p=0.99

p-Identity
To generate first vote, we approved ⌊𝑝 ⋅ 𝑚⌋ candidates selected uniformly at random.

All other votes are its copies.



CHAOS ORDER

Many approvals

Few approvals

p-Impartial Culture
p-Identity

number of candidates
 number of voters
 

50
100

Setup



CHAOS ORDER

Many approvals

Few approvals

Full

ID 0.5IC 0.5

Empty

0.5 0.5

0.5 0.5

0.5

1



Correlation

number of candidates
 number of voters
 

10
50

Setup

PCC = 0.99



p-Identity with ɸ-Resampling

{        ,        ,        }

Step 0: copy initial ballot
Step 1: for each candidate, resample that candidate with probability ɸ

Initial ballot (from p-ID)

To generate a vote:

not reverse

1-ɸ ɸ

p              1-p

1-ɸ ɸ

p              1-p

1-ɸ ɸ

p              1-p

1-ɸ ɸ

p              1-p

1-ɸ ɸ

p              1-p

(resample = toss an assymetric coin; approve with probability p)



p-Identity with ɸ-Resampling



fix p=0.2

p-Identity with ɸ-Resampling



fix p=0.2

fix ɸ=0.25

p-Identity with ɸ-Resampling



fix p=0.2

fix ɸ=0.25

p-Identity with ɸ-Resampling



Disjoint p-Identity with ɸ-Resampling

{        ,         }

Step 0: copy one of the initial votes
Step 1: for each candidate, resample that candidate with probability ɸ

First initial ballot

{        ,         }Second initial ballot

To generate a vote:



Disjoint p-Identity with ɸ-Resampling

{        ,         }

Step 0: copy one of the initial votes
Step 1: for each candidate, resample that candidate with probability ɸ

First initial ballot

{        ,         }Second initial ballot

To generate a vote:



(p, ɸ) Noise Model

{        ,        ,        }

De

Initial ballot (from p-IC)

The probability of a given vote is proportional to its Hamming distance from the initial ballot



Initial ballot (from p-IC)

The probability of a given vote is proportional to its Hamming distance from the initial ballot

(p, ɸ) Noise Model

{        ,        ,        }



Other Cultures

(p, 𝜶) Urn Model Real life data Euclidean



p-Identity with ɸ-Resampling
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Create your own map of elections!

Introduction to Mapel Software Package 2/2

10 minutes
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Maps for Matchings under Preferences 

15 minutes

A Map of Diverse Synthetic Stable Roommates Instances, Boehmer et al., AAMAS-23
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Status Quo

• Numerous works on theoretical aspects of stable matching problems
with real-world impact.
• Some works contain empirical investigations but far away from

standard with most of them only using uniformly at random sampled
preferences.



Step 1: Distance Measure

Positionwise Distance

 General popularity/quality of agents in the instance.

Position matrix completely ignores mutual opinions, i.e., what agents 
think of each other (agents are "voters" and "candidates")

Central Question
How to measure the similarity of two Stable Roommates instances?

(Assumption: Both instances have same number of agents)



Mutual Attraction Matrix: Aggregate Representation
Intuition For stable matchings, it is important which agents an agent
likes, but also whether they like them as well.

Mutual Attraction Vector i-th entry is the position in which agent a
occurs in the preferences of the agent that agent a ranks in position i.

Mutual Attraction Matrix One row for each agent/vector.

a : b ≻ c ≻ d
b : a ≻ c ≻ d
c : a ≻ b ≻ d
d : a ≻ b ≻ c

⇝



Step 2: Generating Instances

460 instances generated from 10 statistical cultures (4 known) from:
• Impartial Culture Agents draw preferences uniformly at random from set of all possible 

preferences.
• Mallows There is a central order v*. Probability of sampling preference order v is

proportional to ϕswap(v,v*).
• Attributes Different objective evaluation criteria but agents assign different importance to

them.
• Euclidean Agents are points on line / in square and rank other agents by increasing distance.
• Reverse-Euclidean Like Euclidean but some fraction of agents rank by decreasing distance.
• Fame-Euclidean Like Euclidean but some agents are generally more attractive.



Step 3: Drawing the Map

Computed using variant of forced-directed Kamada-Kawai algorithm



Step 4: Understanding the Map

Extreme Matrices
1. Identity (ID) All agents have the same 

preferences (master list).
2. Mutual Agreement (MA) Agents rank 

each other in same position.
3. Mutual Disagreement (MD) Evaluations 

are diametric: a ranks b in position i-b 
ranks a in position n-i+1.

4. Chaos (CH) "Chaotic" matrix.



Step 4: Understanding the Map II
Meaning of Axes

Mutuality value
total difference between mutual 

evaluations of agent pairs

Rank distortion
for each agent we sum up the absolute 
difference between all pairs of entries

in MA vector



Step 5: Using the Map

Average number of blocking
pairs for perfect matching

Minimum summed rank of a 
stable matching

Running time of ILP for summed
rank minimal matching



Conclusion

Take-aways
• General approach for maps applicable beyond voting including

"tricks":
• Aggregate representation
• Force-directed algorithms
• Give meaning to axes and regions on the map (plus compass points)

• Instances from one statistical culture placed close to each other and 
exhibit similar performance in experiments.

→ Usage of multi-source data crucial.
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