5 maja 2024

Inequalities of Hölder and Minkowski. Proof of the completeness of $L^p(X, \mathcal{B}, \mu)$.

(We have an important corollary of that proof: $convergent(in \|\cdot\|_p)$ sequences contain subsequences convergent almost everywhere $[\mu]$).

A condition equivalent to separability of $L^p(\mu)$ for $p < \infty$.

Regularity of Borel σ -finite measures on metric spaces, density of continuous functions.

Inner products, Hilbert spaces:

Sesquilinear forms, hermitian forms, Polarisation Formula, Parallelogram Law, Schwarz's Inequality for non-negative forms. Norm defined by an inner product.

Orthogonal projections onto closed, convex sets in Hilbert spaces H. Properties of orthoprojections. Equivalent conditions on a linear map $P: H \to H$ such that $P \circ P = P$ in order to be an ortho-projection. Orthogonal decomposition w.r. to a subspace. Example of projections in $L^2(\mu)$: -multiplication operators by characteristic functions ("indicator functions") of a measurable set.

Riesz-Fréchet Theorem representing bounded linear functionals on H in terms of the inner product.

Definition of the adjoint T^* of a linear operator (-for a bounded one and for a possibly unbounded, but densely-defined operator). Definition of symmetric and self-adjoint operators. Closed operators (T^* is always closed for any densely defined operator T).

Orthogonal and orthonormal sequences in Hilbert spaces. Complete orthonormal sequences (= Hilbertian bases).

Fourier coefficients w.r.to an orthonormal sequence. Bessel Inequality. Convergence of orthogonal series, conditions equivalent to completeness of an orthonormal sequence $(e_n)_{n \in \mathbb{N}}$:

 $[\forall_{x \in H} x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n] \Leftrightarrow [\text{Parseval Equality holds } \forall_{x \in H}] \Leftrightarrow [\text{span}\{e_n : n \in \mathbb{N}\} = H].$

Application of orthoprojections: Gramm-Schmidt orthogonalisation process. Gramm determinant of a set of n vectors. The existence of Hilbertian bases in all Hilbert spaces.

In May classes I will start with showing that all separable Hilbert spaces are (isometrically) isomorphic (+ Riesz-Fischer Theorem). This will end the basic information on spaces. Next we will study bounded linear operators in more detail. Beginning with basic consequences of Baire Category Theorem: *Banach-Stinhaus and Uniform Boundedness theorems*, 3 fundamental Banach's theorems (*Open Mapping, Inverse Mapping and Closed Graph theorems*). Then we restrict our attention to bounded operators on Hilbert spaces, especially we shall focus on spectral theory of normal and self-adjoint operators. Our course will end with *Spectral Theorem for self-adjoint operators*.

The list of topics for oral exam will contain no more than 23 items (its Polish version is in the file zakraf2023.pdf on my web-page) We may discuss- which parts of it will concern you, the Erasmus students. Feel invited for my official consultations (Tuesdays, 16:35-17:25 B7 B-7 room 2.10, but if these hours/or day are not suitable for you, we may arrange some other dates of meetings). It is important not to postpone them for the "last minute".

⁽applications of Separation Theorem to approximation:) For 3 types of hulls: convex, absolutely convex and "span" - criteria, when a point belongs to closures of the corresponding hull of a set (in terms of functionals).

A proof of the Riesz Representation Theorem for a bounded linear functional on C[a, b] based on its norm-preserving extension to the space of bounded functions. (The representation is in terms of Stieltjes integral. proof was only briefly outlined) Definition and properties of L^p -spaces: