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1 [P Spaces for 0 <p <1
1.1 Complete Quasi-Normed Space
Lemma 1. Ifp € (0,1) and a,b > 0, then
(a+0b)" <a? +b*
with equality if and only if either a or b is zero.

Proof. Define a function f(t) := (1+¢)? —1—t? for t > 0. Then f'(t) = p(1+t)P~L —ptP~1 < 0 for all t € (0, 0).
Since f(0) = 0, it follows that f(¢) < 0 on (0,00. If a,b # 0, then substituting ¢ = ¢,

(1+%)p—1—(2)p<0<:> <a:b)p—1—(Z)p<0<:>(a+b)17—(ap+bp)<o

The equality criterion is obvious from the fact that f is strictly decreasing on (0, 00). O
Recall that a pair (X, |-||), consiting of a (real or complex) vector space X and a function ||-| : X — R=°
satisfying |[[Az|| = |A| ||z||, is a quasinormed space, if there exists K > 1 such that

le+yll < K(llzfl + llyll) ~ Ve,ye X
Proposition 2. For 0 < p < oo, (L*(X, p), |||l ») is a complete quasinormed space.
Proof. We can define a distance function on L?(X, u) by

d(f.g) = |f — gl = /X 1f — gl d

The only metric axiom which isn’t obvious is the triangle inequality. Applying the preceding lemma, for all
fr9,h € LP(X, ),

d(f,g>+d<g,h>=/X<|f—g\f’+|g—h\f’>duz/X<|f—g|+\g—hwduz/X|f—h|pdu=d<f,h>

Since || fn — fmllp = 0,n,m = 00 <= d(fn, fm) — 0,n,m — oo by the continuity of the maps « +— 2P and

o}

T w%, to show that d is a complete metric, it suffices to show that given a sequence (f,,)2 ,,

| fn— fmlts = 0,nym — 0o = 3f € L7, ||fn, — fII5, = 0,n — 00

Let (fn)52; be such a sequence. Then we can construct a subsequence (fy, )ken such that || f, — fo,,, Hp <k

Define Lr =2t
o0
f = fnl + Z (fnk+1 - fnk)
k=1
Since
N P N N 1
Z(fnkJrlifnk) SZHf"lH»l7f”k||’£pgz27kS1VN€N
k=1 Lr k=1 k=1




it follows from the monotone convergence theorem, | fn, [+ 1o ; |fmc+1 — fas | € LP(X, 11). Hence, by the Lebesgue
dominated convergence theorem, f € LP(X, u).

N
fl +Z (fnk+1 - f’fbk) = an+1 = k:li)nolofnk = f
k=1

Hence, (f,,)52; is Cauchy with a convergent subsequence and therefore || f, — f||}, — 0, as n — oo. O

1.2 Inequalities

Proposition 3. (Reverse Hélder’s) Let ¢ € (0,1). Forr < 0 and g > 0 p — a.e., define ||g||;. := ||g’1||;‘lrl.
Then for f >0 and g > 0 p — a.e., we have that

Ifallp > N fllza llgll Lo
1 1 _
where 7 + 7= 1.

Proof. 1f fg ¢ L*(X,p) (ie. ||fgll; =oc0)org™t ¢ LY (X, 1), then the inequality is trivial. So assume otherwise.
Since ¢ € (0,1) and 1 = % + %, we have that ¢’ < 0 and

By Hélder’s inequality applied to fg and g~ € L|q/|,

1Al e = [|£997 e < WFallpa la™ W it = W lza lgllzer = £l za ll97" ] Lt < IfgllLe

Proposition 4. (Reverse Minkowski’s) Let f1, -+, fn € LP(X, u), where 0 < p <1 Then

N N
S fill < (D141
j=1 j=1

Proof. By induction it suffices to consider the case N = 2. If ||| f1| + | f2|||,» = oo, then the stated inequality is
trivially true, so assume otherwise. Furthermore, if either f; or fy are zero yu — .a.e, then the inequality is also
trivial, so assume otherwise. By the reverse Holder’s inequality,

Lr

AL 1l = [ AL+ 1l de = [ AR+ dot [ 18R]+ 0P do
> 1 full e [[CA+ 12DP7H] 2y + Ielle ([ + [2DP 7] 2y
—1
= (IA1llge + 120l o) ILf2] + [f21 0
Dividing both sides by || f1 + fa||%," yields the stated inequality. O
The preceding proposition shows that (L”(X, i), ||-||;») is not a normed space when 0 < p < oo.

Lemma 5. Suppose 1 < 0 < co. Then for ay,--- ,ay € RZ°,

0

Proof. Since 6 > 1, the function f(x) = 2% is convex. Hence,

2
N N N N
3 2.=1Na; 1 3 -y
a; :f<]]ifj SN f(NG/J):Ng 1 Gg
j=1 j=1 j=1



Proposition 6. For 0 <p <1,

N N
=P
Sl SN il
=1 || j=1
Furthermore, N 52 s the best possible constant.
Proof. If || f;|| ., = oo for some j, then the inequality trivially holds, so assume otherwise. Since % > 1, by the

preceding lemma,

N

N N P % N % 1 % 1— N
Sh| = fSna) < (X L) svir S ([nra) -8 s,
j=1 X |j=1 j=1vX j=1 WX j=1

Ly

To see that N 7" is the best possible constant, let E be a measurable set such that u (F) = a < 0o, and set
Ej:=Fand fj:=1g for 1 <j < N. Then

N N % 1 1—-p 1 1-p N 1 N
Shl = (X uE)] = Wa)yr =N (Nav) = NS () = Z Fils
j=1 j=1 =1

Lr

1.3 Day’s theorem
Lemma 7. Let (X, A, u) be a measure space with the property that given any f € LP(X,u) for p € (0,1), the
functional
A%R,Ei—)/ |fI” du
E
assumes all values between 0 and || f|5,. Then LP(X,u), with 0 < p < 1, contains no convexr open sets, other
than O and LP (X, ).

Proof. Let 2 be a nonempty convex open neighborhood of the origin in LP(X) and f € LP(X) be arbitrary.

p
Since § is open, there exists a ball Bs about the origin contained in Q. Choose n € ZZ! such that Hﬂ%}f <4

(i.e. nf € Bps). Note that we can choose such a n precisely because p € (0,1). Using the intermediate value
hypothesis for the measure space, there exists a measurable set F7 such that

[osran= [ a0

Repeating the argument for f; = f1ge and apply induction, we obtain a partition {E1,--- , E,} of X into disjoint
measurable subsets such that ij lfIP = % Vj=1,---,n. Define hj :=nflg,. Then by our choice of n,

/Ih P dp = / n? |fI dp = — Pdp <6
Hence, hj € Bs CQ2Vj =1,---,n. By convexity,
n
Since f € LP(X, u) was arbitrary, we obtain that Q = LP(X, u). O

Corollary 8. With (X, A, 1) as above, the natural topology for LP(X, u), with 0 < p < 1, is not locally convez.

The following result, originally proven by M.M. Day, shows that the Hahn-Banach theorem fails for L? (X, p),
when 0 < p < 1. Specifically, the Hahn-Banach theorem may fail when we only assume the underlying space is
quasi-normed.



Theorem 9. (M.M. Day) Letp € (0,1) and let T : LP(X, ) — Y be a continuous linear mapping of LP(X, ) into
a locally conver Ty space Y (i.e. singletons are closed). Then T is the zero map. In particular, LP(X, p)* = {0}.

Proof. Let T be such a map, and let B be a convex local base for Y at the origin. Let W € B. Then T—1(W)
is a nonempty open convex subset of LP(X, ), hence by the preceding lemma, T-1(W) = LP(X,u). Hence,
T(LP(X,pu)) C W for all W € B. I claim that (,;,cg W = {0}. Assume the contrary, and let = # 0 be in the
intersection. Since singletons are closed in Y, Y"\ {2} is an open neighborhood of 0. Hence, (\y,czs W C (Y \ {z}),
which is a contradiction. We conclude that T'(LP(X, u)) = {0} <= T = 0. O

1.4 Non-Normability

One might ask if LP(X,u),0 < p < 1, is normable for an arbitrary measure space (X, A, ). The following
example shows that it is not, even for a nice measure space.

Proposition 10. Let (f,)52; be a sequence in LP ([0,1],L£,\), where L is the Lebesgue o-algebra and X is
the Lebesgue measure on [0,1]. Then there does not exist a norm ||-|| on LP([0,1]) such that for any sequence
(fr)nen C LP([0,1]), fn, = 0 in L? = || fn]| = 0,7 — occ.

Proof. Suppose such a norm ||| exists. I claim that there exists a positive constant C' < oo such that || f]| <
C\fll» Vf € LP([0,1]). Indeed, the map LP([0,1]) — R, f — || f|| is evidently continuous. Hence, there exists

§ > 0 such that ||f||;, < d= | f| <1. Then ¥f € L?([0,1]), 1%L € Bs, where 0 < |a| < 1. Hence,
ad f

P
’ (Raly

Letting o — 1, we see that the inequality holds for C = 4. Choose C' = inf {K : ||f|| < K || f||., Vf € LP([0,1])}
(Note that we do not exclude the possibility that C = 0). By the intermediate value theorem, there exists

¢ € (0,1) such that
c 1 1
1
[isran= [isran=; [ i
0 c 2 0

Set g = fXxjo,q and h = fx(c1- Then f =g+ hand g, = ||h], = 2% || fll ;.o- By the triangle inequality,

1
<1 < —
SN ETa

C
I < llgll+ 1Rl < C(lgllo + 17l Le) = e [ralr

Since p € (0,1), =~ < C = C =0=||f| =0 Vf € LP(X, n), which contradicts that ||-|| is a norm. O
2P

Remark 11. In fact, the non-normability of L?(]0,1]), when 0 < p < 1, follows from M.M. Day’s thoerem. If

L?([0, 1]) were normable, then the Hahn-Banach theorem would hold, contradicting that L”([0, 1])* = {0}. So we

have the more general assertion that given any measure space (X, A, 1) which satisfies the hypotheses of Day’s

theorem, LP(X, p) is non-normable.



