

Lemmas:

- (1) For $x \in A$ if $\|\mathbf{1} - x\| < 1$, then the C.Neumann series $\sum_{n=0}^{\infty} (\mathbf{1} - x)^n$ converges to x^{-1} , so $x \in G_A$.
- (2) The set G_A of invertible elements is open.
- (3) Spectra $\sigma(a)$ are compact, $r(a) := \sup\{|\lambda| : \lambda \in \sigma(a)\} \leq \|a\|$ for all $a \in A$. For $|\lambda| > \|a\|$
 $(\lambda \mathbf{1} - a)^{-1} = \frac{1}{\lambda}(\mathbf{1} - \frac{1}{\lambda}a)^{-1} = \sum_{n=0}^{\infty} \frac{1}{\lambda^{n+1}}a^n \quad (*)$
- (5) Homomorphisms $\omega \in \text{Sp}(A)$ are continuous, $\omega(a) \in \sigma(a)$, $|\omega(a)| \leq \|a\|$ for $a \in A$. Even $\|\omega\| = 1$.
- (6) The resolvent mapping $\mathbb{C} \setminus \sigma(a) \ni \lambda \mapsto R_\lambda := (\lambda \mathbf{1} - a)^{-1} \in A$ satisfies the Hilbert equation

$$R_\lambda - R_\mu = (\mu - \lambda)R_\lambda R_\mu, \quad \text{if } \lambda, \mu \in \mathbb{C} \setminus \sigma(a)$$

and are analytic, which means $\forall \psi \in A^*$ the mappings $\lambda \mapsto f(\lambda) := \psi(R_\lambda) \in \mathbb{C}$ are analytic on $\mathbb{C} \setminus \sigma(a)$.
(7) Spectra of elements of A are non-empty.

(10) The Spectral radius formula implies that normal elements in C^* -algebras satisfy $\|x\| = r(x)$.

Theorem 1 (Gelfand- Mazur) *If $A \setminus \{0\} = G_A$ (i.e. if A is a field), then $A = \{\lambda \mathbf{1} : \lambda \in \mathbb{C}\}$.*

Corollary 1.1 (Gelfand) *For commutative Banach algebras the assignment: $\text{Sp}(A) \ni \omega \mapsto \ker(\omega)$ is a bijection onto the set of all maximal ideals of A . Moreover $\sigma(a) = \{\omega(a) : \omega \in \text{Sp}(A)\}$.*

Theorem 2 (Gelfand- Naimark) *For commutative C^* -algebras Γ is an isometric, bijective isomorphism between A and $C(\text{Sp}(A))$, preserving multiplication and involution. (here we may quote the earlier result that for self-adjoint elements $x = x^* \Rightarrow \omega(x) \in \mathbb{R}$ for $\omega \in \text{Sp}(A)$.)*

Theorem 3. *If $a \in A$ is a normal element in a unital C^* - algebra then $C^*(a, 1)$ (C^* - unital subalgebra generated by a) is isometrically *-isomorphic to $C(\sigma(a))$. We also have unital isomorphism of C^* -algebras $\Phi : C(\sigma(a)) \ni f \mapsto f(a) \in C^*(a, 1) \subset A$ that extends polynomial functional calculus in a , i.e. $\Phi(id) = a$, $\Phi(1) = \mathbf{1}$. Moreover*

$$\sigma(f(a)) = f(\sigma(a)), \|f\| = \|f(a)\| \text{ and } \widehat{f(a)} = f \circ \hat{a} \text{ for } f \in C(\sigma(a)).$$

Here $id(\lambda) = \lambda$, $1(\lambda) = 1$ and $\|f\| := \sup\{|f(\lambda)| : \lambda \in \sigma(a)\}$.

Lemma 4. *If $a \in A \subset \mathcal{B}(H)$, $a = a^*$ and $\|a\| = 1$, then the following are equivalent:*

- (i) a is positive, i.e. $\sigma(a) \subset [0, +\infty)$,
- (ii) $\|a - \mathbf{1}\| \leq 1$,
- (iii) $a = x^*x$ for some $x \in A$

Definition A linear functional $\varphi : A \rightarrow \mathbb{C}$ on a C^* -algebra A is **positive**, in symbols, $\varphi \geq 0$, if its values on positive elements are non-negative: $\forall_{x \in A} \varphi(x^*x) \geq 0$. **States** of A are positive functionals having value 1 at 1. **Pure states** are extreme points in the set of all states on A .

Definition of spectral measure in a Hilbert space H acting on a sigma field \mathfrak{M} of subsets of Ω and the related measures $\mu_{x,y}$. Definition of **spectral integral** of f w.r. to E .

Proposition 7. *The mapping $\Phi : L^\infty(\mathfrak{M}) \ni f \mapsto \int f dE \in \mathcal{B}(H)$ is a *-homomorphism between C^* -algebras. In particular, $\|\int f dE\| \leq \|f\|_\Omega := \sup\{|f(\omega)| : \omega \in \Omega\}$.*

Theorem 9. (ONLY BRIEF OUTLINE OF ITS PROOF). *Let $\Omega = \text{Sp}(A)$ be the spectrum of a commutative, unital C^* -subalgebra A of $\mathcal{B}(H)$.*

- (i) *Then there exists a unique Borel spectral measure E on Ω such that $T = \int_{\Omega} \hat{T} dE$ for any $T \in A$, where $\hat{T} = \Gamma(T) \in C(\Omega)$ is the Gelfand transform of T .*
- (ii) *The C^* -algebra homomorphism $\Phi : L^\infty(\mathfrak{M}) \ni f \mapsto \int f dE$ acting onto a closed C^* -subalgebra B of $\mathcal{B}(H)$ extends the mapping $\Gamma^{-1} : C(\Omega) \rightarrow A$.*
- (iii) *If $U \neq \emptyset$, $U \subset \Omega$ is w^* - open, then $E(U) \neq 0$.*
- (iv) *An operator $S \in \mathcal{B}(H)$ commutes with $A \Leftrightarrow$ it commutes with all $E(\Delta)$, $\Delta \in \mathfrak{M}$.*

Theorem 10. =spectral theorem for normal operators.

Corollary 11. *If T is a normal operator than T is self-adjoint iff $\sigma(T) \subset \mathbb{R}$ and T is unitary iff $\sigma(T)$ is a subset of the unit circle $\partial D = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$. If for $f \in C(\sigma(T))$ we define $\Delta_0 := f^{-1}(\{0\})$, then for $x \in H$ we have $\|f(T)x\|^2 = \langle (f(T))^*f(T)x | x \rangle = \int |f|^2 d\mu_x$ and*

$$f(T)x = 0 \Leftrightarrow x \in \mathcal{R}(E(\Delta_0)) := E(\Delta_0)(H).$$

Proposition 12 If E is the spectral measure for a normal operator $N = \int zE(dz)$, then N is compact iff for any $\delta > 0$ the projection $P_\delta := E(\{z \in \mathbb{C} : |z| > \delta\})$ has finite rank.

¹This procedure applies when a student wants to raise his proposed mark (based on his long-term performance during tutorials in this semester)