Notes to "Operator Theory" tutorials 9.XI'21

Remaining from the previous tutorials:

- Orthonormal sequences are linearly independent
- The diagonal operator defined by a scalar sequence $\left\{\alpha_{n}\right\}$ in an orhonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{N}}$, denoted $\operatorname{diag}\left(\alpha_{n}\right)$ is defined as the only bounded linear operator T such that $T e_{n}=\alpha_{n} e_{n}$ for any $n \in \mathbb{N}$. Show that this operator has the norm equal to $\left\|\left\{\alpha_{n}\right\}\right\|:=\sup _{n}\left|\alpha_{n}\right|$ and find when it is compact (resp. when it is a HilbertSchmidt operator). Are diagonal operators noormal?
Recall that $N \in \mathcal{B}(H)$ is a normal operator if $N^{*} N=N N^{*}$, which is in turn equivalent to $\left\|T^{*} x\right\|=\|T x\|, x \in H$. Also this implies the normality of $N-\lambda I$ (for all $\lambda \in \mathbb{C}$).
(1) Let $M \subset H$ be a closed subspace and denote by $P=P_{M}$ the orthoprojection onto M. As we know, $P^{2}=P=P^{*}$ and $\|P x\|=\|x\| \Leftrightarrow x \in M$. We say, that M is invariant for $T \in \mathcal{B}(H)$ if $T x \in M$ for all $x \in H$. If M is invariant both for T and for T^{*}, M is called a reducing subspace for T. Show that M is invariant $\Leftrightarrow T P=P T P$, while M reduces $\mathrm{T} \Leftrightarrow T P=P T$
(2) Let M be an invariant subspace for a normal operator $T \in \mathcal{B}(H)$. Show that M is reducing for T iff the restriction $\left.T\right|_{M}$ is a normal operator on M. (Use the metric condition for normality)
(3) Show that M is a reducing subspace for $T \Leftrightarrow$ both M and M^{\perp} are invariant for T.
(4) Are the eigenspaces $\mathcal{M}(T-\lambda I)$ always invariant (resp. reducing) for T ? What is the answer for normal operators?
(5) The numerical range $W(T):=\{\langle T x, x\rangle:\|x\|=1\}$ is a set of complex numbers of modulus $\leq\|T\|$. Show that if $T=T^{*}$ then $W(T) \subset \mathbb{R}$ (in the sense that the imaginary part of $\langle T x, x\rangle$ must be zero).
(6) If $\lambda \in \sigma_{a}(T)$, so that $\exists_{\left\|x_{n}\right\|=1}\left\|T x_{n}-\lambda x_{n}\right\| \rightarrow 0$, then $\lambda \in \overline{W(T)}$. Conclude that the spectrum of self-adjoint T must be real.
(7) If $S=S^{*} \geq 0$, which means that $W(S) \subset[0,+\infty)$, show that the sesquilinear form $q_{S}(x, y):=\langle S x, y\rangle$ obeys the Schwarz inequality: $\left|q_{S}(x, y)\right|^{2} \leq q_{S}(x, x) q_{S}(y, y)$. (Copy the proof from the case when $S=I$, using non-positivity of certain discriminant Δ.)
(8) Assume from now on that $T=T^{*} \in \mathcal{B}(H)$. If $M=\sup W(T)$, applying the above inequality for $S x:=M x-T x$ estimate $\sup \left\{q_{S}(x, y):\|y\|=1\right\}=\|S x\|$ by some constant times $\sqrt{q_{S}(x, x)}$. Then taking as x the values from $\left(x_{n}\right)$ show, that $M \in \sigma_{a}(T)$ (The same holds for $m:=\inf W(T)$).
(9) By considering $T e_{n}=\frac{1}{n} e_{n}$ on the canonical orthonormal basis in $H=\ell^{2}$ show, that $W(T)$ need not be closed (despite of the separate continuity of the inner product and of Q_{T} in the weak topology of H and weak compactness of the closed ball in H)
(10) Let $y_{x}:=\|T x\|^{-1} T x$ when $T x \neq 0$. Then $\|T\|=\sup _{\|x\|=1}\left\langle T x, y_{x}\right\rangle$ and the inner products appearing here are ≥ 0, real-valued. Hence (bearing in mind that $\left\langle T x, y_{x}\right\rangle \in \mathbb{R}_{+}$) from the "real part polarisation formula" we have
$\left\langle T x, y_{x}\right\rangle=\frac{1}{4}\left(q_{T}\left(x+y_{x}, x+y_{x}\right)-q_{T}\left(x-y_{x}, x-y_{x}\right)\right) \leq \frac{1}{4} w(T)\left(\left\|x+y_{x}\right\|^{2}+\left\|x-y_{x}\right\|^{2}\right)$.
Here $w(T):=\max (|m|,|M|)$ is called the numerical radius of $T=T^{*}$. Deduce, that for selfadjoint $T \in \mathcal{B}(H)$ we have

$$
\|T\|=w(T)=\sup \{|\lambda|: \lambda \in \sigma(T)\}
$$

The last quantity, denoted $r(T)$ is called the spectral radius of T.
(11) If A is any bounded linear operator on H. Then there are two selfadjoint operators: T and T_{1} such that $A=T+i T_{1}$ Moreover $W(T)$ (respectively $W\left(T_{1}\right)$)consists of the real (resp. imaginary) parts of the points from W(A). Here $T:=\frac{1}{2}\left(A+A^{*}\right)$ is called the "real part of A " Deduce that $\|A\| \leq 2 w(A)$.

Note that there is no constant C such that $\|A\| \leq C r(A)$, since for the Volterra integral operator $r(V)=0$. Here $(V f)(t):=\int_{0}^{t} f(s) d s$ and $V \neq 0$.

