Notes to "Operator Theory" tutorials 23.XI'21

Orthogonal projections, strong operator convergence. Let μ be some measure on a sigma- algebra \mathcal{B} of subsets of some space T. If we write $\mu(A)$-this will also mean the measurability of A. Assume either that μ is σ-finite or that if $\mu(A)>0$ implies that $0<\mu(B)<\infty$ for some $B \subset A$. Let us recall that the multiplication by $\varphi \in L^{\infty}(\mu)$ operator M_{φ} is defined on $L^{2}(\mu)$-spaces by the formula

$$
\left(M_{\varphi} f\right)(t):=\varphi(t) f(t), \quad f \in L^{2}(\mu) .
$$

Clearly, such M_{φ} are bounded, linear and normal operators:

$$
\left\|M_{\varphi}\right\|=\|\varphi\|_{\infty}, \quad M_{\bar{\varphi}}=\left(M_{\varphi}\right)^{*}, \quad M_{\psi} M_{\varphi}=M_{\psi \cdot \varphi}=M_{\varphi} M_{\psi}, \quad M_{1}=I
$$

In other words, the mapping which assigns to $\varphi \in L^{\infty}(\mu)$ the operator M_{φ} is an isometric homomorphism between this Banach algebra and $\mathcal{B}\left(L^{2}(\mu)\right.$ preserving the involutions and unit elements. Here we identify functions that are equal almost everywhere $[\mu]$ and 1 denotes the (class of) constant function equal 1 a.e. $[\mu]$.
(1) For which functions φ is M_{φ} a projection?
(2) For which functions φ is M_{φ} a self-adjoint operator?
(3) For a pair of orthogonal projections $P_{j}:=M_{M_{j}}$ onto closed subspaces M_{j} of a given Hilbert space H show that $P_{1} P_{2}$ is a projection onto some subspace M iff the P_{j} commute. What is the relation between M_{1}, M_{2} and M ?
(4) If $P_{1}+P_{2}$ is a projection of the form P_{L} then we must have $L=M_{1} \oplus M_{2}$,i.e.

$$
M_{1} \perp M_{2} \quad \text { and } \quad M_{1}+M_{2}=L
$$

(5) $M_{1} \subset M_{2} \Leftrightarrow P_{1} \leq P_{2}$ and in such case for $M_{2} \ominus M_{1}:=M_{2} \cap\left(M_{1}^{\perp}\right)$ we have

$$
P_{2}-P_{1}=P_{M_{2} \ominus M_{1}} .
$$

(6) If M is the linear span of $\bigcup_{n \in \mathbb{N}} M_{n}$, where $\forall_{n} M_{n} \subset M_{n+1}$, show that $P_{n}:=$ $P_{M_{n}}$ strongly converge to P_{M}. (Hint: we may use here the fact that the intersection of the orthocomplements: $\bigcap_{n \in \mathbb{N}}\left(M_{n}^{\perp}\right)$ equals $\left.M^{\perp}\right)$.
(7) Show that from the strong convergences $S_{n} \rightarrow S$ and $T_{n} \rightarrow T$ we can deduce the strong convergence of the products: $S_{n} T_{n} \rightarrow S T$.
(8) One can show that for nets (=generalised sequences) of operators S_{α} converging strongly to 0 we may have S_{α}^{2} not converging (SOT) to 0 . Here the key observation is that 0 is in the weak -topology -closure of $\left\{\sqrt{n} e_{n}\right\}$ for any orthonormal sequence $\left(e_{n}\right)$. In fact, let $U=\left\{x \in H:\left\langle x, y_{j}\right\rangle<\epsilon, j=\right.$ $1, \ldots, k\}$ be a basic weak neighbourhood of 0 in H. Here $\epsilon>0$ and $y_{1}, \ldots, y_{k} \in H$ are fixed. Since $\left(\sum_{j=1}^{k}\left|\left\langle e_{n}, y_{j}\right\rangle\right|\right)^{2}$ are summable over $n \in \mathbb{N}$, we cannot have $\sum_{j=1}^{k}\left|\left\langle e_{n}, y_{j}\right\rangle\right| \geq \frac{\epsilon}{\sqrt{n}}$ for all n (this raised to power 2 would give the divergent harmonic series $\sum_{n} \frac{\epsilon^{2}}{n}$. Hence for some m we must have $\sum_{j=1}^{k}\left|\left\langle e_{m}, y_{j}\right\rangle\right|<\frac{\epsilon}{\sqrt{m}}$, implying that $\forall_{j=1, \ldots, k}$ $\left|\left\langle e_{m}, y_{j}\right\rangle\right| \leq \frac{\epsilon}{\sqrt{m}}$, so that $\sqrt{m} e_{m} \in U$ for our m.

Now taking $\sqrt{n_{\alpha}} e_{n_{\alpha}}$ - a net weakly convergent to zero, let

$$
S_{\alpha}:=\sqrt{n_{\alpha}} e_{n_{\alpha}} \otimes e_{n_{\alpha}} .
$$

For any fixed vector $y \in H$ this weak convergence implies $\sqrt{n_{\alpha}}\left\langle y, e_{n_{\alpha}}\right\rangle \rightarrow 0$, hence $\left\|S_{\alpha} y\right\| \rightarrow 0$, showing the strong convergence to 0 of S_{α}.

But $S_{\alpha}^{2}=n_{\alpha} e_{n_{\alpha}} \otimes e_{n_{\alpha}}$ and for $f:=\sum_{n=1}^{\infty} \frac{1}{n} e_{n}$ we have $S_{\alpha}^{2} f=e_{n_{\alpha}}$-a net of vectors having norms 1 , not convergent in norm to 0 .
(9) $V \in \mathcal{B}(H)$ is a partial isometry ${ }^{1}$ iff $V^{*} V$ is a projection. Then so is $V V^{*}$.

[^0]
[^0]: ${ }^{1}$ This means that V restricted to orthogonal complement of $\mathcal{N}(V)$ is an isometry

