Orthogonal projections, strong operator convergence. Let μ be some measure on a sigma- algebra \mathcal{B} of subsets of some space T. If we write $\mu(A)$ -this will also mean the measurability of A. Assume either that μ is σ -finite or that if $\mu(A) > 0$ implies that $0 < \mu(B) < \infty$ for some $B \subset A$. Let us recall that the multiplication by $\varphi \in L^{\infty}(\mu)$ operator M_{φ} is defined on $L^{2}(\mu)$ -spaces by the formula

$$(M_{\varphi}f)(t) := \varphi(t)f(t), \qquad f \in L^2(\mu)$$

Clearly, such M_{φ} are bounded, linear and normal operators:

$$||M_{\varphi}|| = ||\varphi||_{\infty}, \ M_{\bar{\varphi}} = (M_{\varphi})^*, \ M_{\psi}M_{\varphi} = M_{\psi\cdot\varphi} = M_{\varphi}M_{\psi}, \ M_1 = I.$$

In other words, the mapping which assigns to $\varphi \in L^{\infty}(\mu)$ the operator M_{φ} is an isometric homomorphism between this Banach algebra and $\mathcal{B}(L^2(\mu))$ preserving the involutions and unit elements. Here we identify functions that are equal almost everywhere $[\mu]$ and 1 denotes the (class of) constant function equal 1 a.e. $[\mu]$.

- (1) For which functions φ is M_{φ} a projection?
- (2) For which functions φ is M_{φ} a self-adjoint operator?
- (3) For a pair of orthogonal projections $P_j := M_{M_j}$ onto closed subspaces M_j of a given Hilbert space H show that P_1P_2 is a projection onto some subspace M iff the P_j commute. What is the relation between M_1, M_2 and M?
- (4) If $P_1 + P_2$ is a projection of the form P_L then we must have $L = M_1 \oplus M_2$, i.e.

$$M_1 \perp M_2$$
 and $M_1 + M_2 = L$.

(5) $M_1 \subset M_2 \Leftrightarrow P_1 \leq P_2$ and in such case for $M_2 \ominus M_1 := M_2 \cap (M_1^{\perp})$ we have

$$P_2 - P_1 = P_{M_2 \ominus M_1}.$$

- (6) If M is the linear span of $\bigcup_{n \in \mathbb{N}} M_n$, where $\forall_n M_n \subset M_{n+1}$, show that $P_n :=$ P_{M_n} strongly converge to P_M . (Hint: we may use here the fact that the intersection of the orthocomplements: $\bigcap_{n \in \mathbb{N}} (M_n^{\perp})$ equals M^{\perp}).
- (7) Show that from the strong convergences $S_n \to S$ and $T_n \to T$ we can deduce the strong convergence of the products: $S_n T_n \to ST$.
- (8) One can show that for nets (=generalised sequences) of operators S_{α} converging strongly to 0 we may have S^2_{α} not converging (SOT) to 0. Here the key observation is that 0 is in the weak -topology -closure of $\{\sqrt{n}e_n\}$ for any orthonormal sequence (e_n) . In fact, let $U = \{x \in H : \langle x, y_j \rangle < \epsilon, j =$ $\{1,\ldots,k\}$ be a basic weak neighbourhood of 0 in H. Here $\epsilon>0$ and $y_1,\ldots,y_k\in H$ are fixed. Since $(\sum_{j=1}^k|\langle e_n,y_j
 angle|)^2$ are summable over $n \in \mathbb{N},$ we cannot have $\sum_{j=1}^k |\langle e_n, y_j \rangle| \geq \frac{\epsilon}{\sqrt{n}}$ for all n (this raised to power 2 would give the divergent harmonic series $\sum_n rac{\epsilon^2}{n}.$ Hence for some m we must have $\sum_{j=1}^k |\langle e_m, y_j \rangle| < \frac{\epsilon}{\sqrt{m}}$, implying that $\forall_{j=1,\dots,k}$ $|\langle e_m, y_j
 angle| \leq rac{\epsilon}{\sqrt{m}}$, so that $\sqrt{m} e_m \in U$ for our m.

Now taking $\sqrt{n_{\alpha}}e_{n_{\alpha}}$ - a net weakly convergent to zero, let

$$S_{\alpha} := \sqrt{n_{\alpha}} e_{n_{\alpha}} \otimes e_{n_{\alpha}}.$$

For any fixed vector $y \in H$ this weak convergence implies $\sqrt{n_{\alpha}} \langle y, e_{n_{\alpha}} \rangle \to 0$,

hence $||S_{\alpha}y|| \to 0$, showing the strong convergence to 0 of S_{α} . But $S_{\alpha}^2 = n_{\alpha}e_{n_{\alpha}} \otimes e_{n_{\alpha}}$ and for $f := \sum_{n=1}^{\infty} \frac{1}{n}e_n$ we have $S_{\alpha}^2 f = e_{n_{\alpha}}$ -a net of vectors having norms 1, not convergent in norm to 0.

(9) $V \in \mathcal{B}(H)$ is a partial isometry¹ iff V^*V is a projection. Then so is VV^* .

¹This means that V restricted to orthogonal complement of $\mathcal{N}(V)$ is an isometry