1. Example of strange sequences of Hilbetr space operators

Obviously, the multiplication in any normed algebra is jointly continuous and the algebra $\mathcal{B}(H)$ of bounded linear operators is no exception. But there are two other operator topologies:

- the strong operator topology (denoted SOT) defined by the family of seminorms $\left\{p_{x}\right.$: $x \in H\}$, where $p_{x}(T):=\|T(x)\|$,
- the weak operator topology (denoted WOT) defined by the family of seminorms $\left\{p_{x, y}\right.$: $x, y \in H\}$, where $p_{x, y}(T):=|\langle T(x), y\rangle|$.
Neither of them is metrizable (but their restrictions to bounded sets of operators are). We shall consider only the corresponding convergences of sequences. Clearly, for $T_{n}, T \in \mathcal{B}(H)$
- the uniform convergence, meaning $\lim \left\|T_{n}-T\right\|=0$ implies
- the strong convergence: $T_{n} \rightarrow T$ (SOT), meaning $\left\|T_{n} x-T x\right\| \rightarrow 0 \forall_{x}$, which implies
- the weak convergence: $T_{n} \rightarrow T$ (WOT), meaning $\left\langle T_{n} x, y\right\rangle \rightarrow\langle T x, y\rangle \forall_{x, y \in H}$.
and none of the implications is reversible. It turns out, that the multiplication is discontinuous -but is sequentially continuous!

Example 1. Let $\left\{e_{n}, n \in \mathbb{N}\right\}$ be the canonical 0-1 basis for ℓ^{2} and put

$$
H_{k}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}, \quad R_{k}=H_{k}^{\perp}=\left\{f \in \ell^{2}: \forall_{j \leqslant k} f \perp e_{j}\right\} .
$$

Here we construct a sequence $T_{n} \in \mathcal{B}\left(\ell^{2}\right)$ convergent pointwise to I (the identity operator)on the the linear span of the basis $\left(=\bigcup_{k=1}^{\infty} H_{k}\right)$ and such that $T_{n}^{2}=0$.

Define $T_{n}\left(e_{j}\right)=e_{j}+\frac{1}{n} e_{j+n}$ for $1 \leqslant j \leqslant n$ and $T_{n}\left(e_{j}+\frac{1}{n} e_{j+n}\right)=0$ for $j>n, j \leqslant 2 n$. Then T_{n} extends to a linear operator $T_{n}: H_{2 n} \rightarrow H_{2 n}$. Indeed, note that the systems: $\left(e_{1}, \ldots, e_{n}\right)$ and $\left(e_{j}+\frac{1}{n} e_{j+n}\right)_{1 \leqslant j \leqslant n}$ are jointly linearly independent. If we define T_{n} to be zero on $R_{2 n}$, then this is a direct sum of a finite- dimensional (hence continuous) -and zero -operators. Clearly, $T_{n}^{2}=0$. Moreover, $\left\|\left(T_{n}-I\right) x\right\|$ is zero for $x \in H_{n}$. To get the strong convergence to I (which actually fails here) one would need the following.

Lemma If a uniformly bounded sequence of operators $T_{n} \in \mathcal{B}(H)$ satisfies $T_{n} y \rightarrow T y$ for any y from a linearly dense set Y, then $T_{n} \rightarrow T$ (SOT).

Indeed, The assumed convergence can be extended to the linear span of S, since finite linear combinations can be "interchanged" with the limit operation, due to the linearity of the T_{n} 's. Let us fix an arbitrary $\epsilon>0$. Hence we may assume "w.l.o.g." that

$$
\forall_{y \in Y} \exists_{N(y)} \forall_{n \geqslant N(y)}\left\|T_{n} y-T y\right\|<\frac{\epsilon}{3},
$$

where Y is dense in H. Given a fixed $x \in H$ we find $y \in Y$ sufficiently close to x to estimate:

$$
\left\|T_{n} x-T x\right\| \leqslant\left\|T_{n} x-T_{n} y\right\|+\left\|T_{n} y-T y\right\|+\|T y-T x\|<\epsilon
$$

provided that $\|x-y\| \leqslant \frac{\epsilon}{3 M}$, where $M=\max \left(\|T\|, \sup _{n}\left\|T_{n}\right\|\right)$ and $n \geqslant N(y)$.
Note that the same method is used to show the Riemann-Lebesgue Lemma -using as Y the space $L^{2}[-\pi, \pi]$ dense in $L^{1}[-\pi, \pi]$.

Exercises: (0) Check the SOT continuity of multiplication on bounded sets of operators(1) Conclude, that $\left\|T_{n}\right\|$ are unbounded! (2) By starting from a generic SOT-neigbourhood Uof I :

$$
U\left(I, f_{1}, \ldots, f_{k} ; \epsilon\right):=\left\{S:\left\|(S-I) f_{j}\right\|<\epsilon \forall_{j \leqslant k}\right\}
$$

note that one can assume "w.l.o.g." that the f_{j} are orthonormal. Slightly modifying our example, get the discontinuity. (Hint:) work on (2) first, its conclusion is needed for solving (1).

The operation of taking the adjoints is also strongly -discontinuous! (but it is (WOT)-continuous).

Example 2. This time one uses the unilateral shift S acting on the above basis $\left(e_{n}\right)_{n \geqslant 1}$ by the formula: $S e_{n}=e_{n+1}$. If $P_{k}=$ the orthoprojection onto the defined above subspace R_{2}, so that e.g. $P_{1} e_{1}=0$ and $\forall_{j \geqslant 2} P_{1} e_{j}=e_{j}$, then $T_{k}:=\left(S^{*}\right)^{k}=P_{k}\left(S^{*}\right)^{k}$ is zero on H_{k} and satisfies $T_{k}\left(e_{n}+k\right)=e_{n}$ (mapping isometrically R_{k} onto ℓ^{2}). From the above lemma, or otherwise, we easily obtain the strong convergence of T_{n} to 0 . But $T_{n}^{*}=S^{n}$ sends e_{1} to the orthonormal sequence (e_{n+1}) -without any convergent subsequence (it fails the Cauchy condition as $\left\|e_{n}-e_{m}\right\|=\sqrt{2}$ for any $n \neq m$.) Hence we see that $T_{n} \rightarrow 0(\mathrm{SOT}) \nRightarrow T_{n}^{*}$ is (SOT)-convergent.

If $T_{n}=T_{n}^{*}$ and $T_{n} \geqslant T_{n+1} \geqslant \cdots \geqslant 0$, then we call it a monotone decreasing operator sequence. Such sequences are strongly convergent and muliplying term -by term two such sequences, we have $S_{n} T_{n} \rightarrow S T$ (SOT), if $S_{n} \rightarrow S$ and $T_{n} \rightarrow T$ strongly and monotonically. (Hint: $\left.\left\|S_{n} x-S x\right\|^{2} \leqslant\left\|S_{n}-S\right\| \|\left(S_{n}-S\right) x, x\right\rangle$.)

