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 1967] CLASSROOM NOTES 309

 (ii) L(x1) Lx.

 A word about notation: L(x.) is of course L at (xn) = (xo, xi, ). L(xn+1)
 isLat(xl,x2, * * - ).L(1) isLat (1,1, * * * ).

 THEOREM. (a) Banach limits exist. (a) The maximal value of Banach limits on
 a sequence (xn) is

 def ( n-
 (1) M(xn) = lim tsup n-1 E xi+j.

 n--+ CO i i=O

 ('y) The minimal value of Banach limits on a sequence (x.) is
 n-1 \

 (2) lim inf n-I E xi+j)
 n-- oo i i==O

 (6) A necessary and sufficient condition in order that all Banach limits on a se-

 quence (xn) agree and equal s is that
 n-I

 lim n 1 E xj+j -=s
 n- 0o i=O

 uniformly in j. Hence on convergent sequences Banach limits agree with limits.

 Proof. First we prove that the limit as n-* oo in the expression (1) for M
 exists. (Another proof of this is in [5] incorporated in the proof that M equals
 the expression used for p in the original argument of Banach, [1], p. 34.) Set

 1 n-1
 cn = SUp -L Xi+7.

 i f i=o

 We are to show that lim cn exists. While (cn) is not monotone, for each k, m
 one has Ckm < Cm. Thus

 (r + km) cr+km ? rc, + kmckm < rc, + kmcm.

 Dividing by r+km and letting k-> oo with r, m fixed, we obtain

 lim sup Cr+km < Cm.

 Since this holds for r- 1, 2, * , m, lim sup cn ?Cm for each m, and hence
 lim sup cn < lim inf cm vwhich implies that lim cn exists.

 THE HAHN-BANACH THEOREM ([1], p. 27). Let B be a linear space and C a
 subspace of B. Let p be a sublinear functional on B: p(x+y) ? p(x)+p(y) and if
 a > 0, p (ax) = ap (x). Then if f is a linear functional on C with

 (3) f(x) < p(x)

 for xEC, f can be extended to B so that (3) holds for xES B. If yEB-C, then the
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 310 CLASSROOM NOTES [March

 process of extension may begin by ascribing to f (y) any value in the closed interval
 with left endpoint

 (4) sup [-P(-x - Y) -f (x)]
 xeC

 and right endpoint

 (5) inf [p(x + y) -f(x)]
 xeC

 We let B be the space of bounded sequences x = (x.) and we let C be the sub-
 space of convergent sequences. The Hahn-Banach theorem is now applied with
 p = M and f = lim on C. It is easy to see that if lim xn = s then the Cesaro means
 of x. converge to s, i.e. limn n-' (xo+ * - * +x.-) =s and also M(xn) =s.

 Proof of (a). We show that linear functionals f =L obtained on B by the
 extension procedure satisfy (i), (ii) and (iii). For (iii) this is obvious, since each
 L coincides with lim on C. (i) follows from

 L(xn) = -L(-xn) > - p(-xn) = -M(-xn) > 0

 if xn>O for all n.
 Finally, (ii) follows from the "telescoping" property of M

 M(Xn+- X) = lim[sup n-(x -j+n x)] i < lim 2n-1 sup j Xj | 0,
 n j n j

 |M(Xn- Xn+1) I = 0

 and the relations L (xn+l - xn) M(xn+l - xn) = 0 and

 L(xn+ - xn) = - L(xn - Xn+1) ? - M(xn - Xn+1) 0.

 REMARK. If instead of M, lim sup xn were used as p, then the generalized
 limits thus obtained would not satisfy (ii) because lim sup does not have the
 "telescoping" property. However, lim sup of Cesaro averages could be used for
 p, this construction yielding some, but not all, Banach limits.

 Proof of (fi). We first show that given a sequence (yn), there is a Banach limit
 Lo such that M(yn) =Lo(yn). We may assume (yn) EB - C. We construct Lo by
 beginning the extension procedure with (yn), defining Lo(yn) by (5):

 Lo(yn) = inf [M(xn + yn) - lim Xn]
 (Xn) G C

 which, equals M(y.), because the convergence of (xn) implies M(xn +Yn)
 =lim xn+M(yn). We now show that conversely, for each sequence (yn) and
 each Banach limit L, L(yn) <M(yn). Note that SUpjZj-Zn_-0, n=O, 1,
 implies by (i) and (iii) that always supj zj 3L(zn) If for a fixed m we let

 m-1

 Zn = m1E Yi+n2
 i-o
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 1967] CLASSROOM NOTES 311

 we have L (y,n) = L (zn) ? supj zj. On letting mi-> oo, we obtain L (y.) <M(Yn)
 which completes the proof of (,B).

 Proof of (-y). Apply (3) to the sequence (-xn).
 Proof of (6). (6) is an immediate corollary of (,B) together with ('y).
 Banach limits, their maximal values, and sequences (called "almost con-

 vergent") on which all Banach limits agree have found applications in Ergodic
 Theory (cf. [5] where also further references are given). In the opposite direc-
 tion, an interesting application of Ergodic Theory to Banach limits is due to
 Jerison [3 ].

 In conclusion, we wish to acknowledge our debt to the paper [4] of Lorentz, and to a conversa-
 tion with Professor Alfred Renyi. The author's work is in part supported by NSF Grant GP-1458.
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 A FURTHER EXTENSION OF OLIVIER'S THEOREM

 HYMAN GABAI, University of Illinois, UICSM

 1. The extension. In [1], te"panek derived an extension of Olivier's theorem
 [2]. In this paper we shall use Stepanek's method of proof to derive the following

 extension of Stepanek's theorem.

 THEOREM. Let En- an be a convergent series of real numbers, n=, I1/an a
 divergent series of positive numbers, and (03n) a sequence such that (a?n+1-a?+0n)
 is (4 bounded monotone sequence and one of the following conditions holds:

 (a) anan _ (On + fln)aa-i[n > 2] or (b) actan _ (an + 3n_j)an,i[n >- 2].

 Then lim anan=0.

 Proof. If the inequality (a) or the inequality (b) is multiplied by -1 it is

 immediately evident that we need only prove the theorem for the case (a) or
 for the case (b). We shall prove the theorem under the hypothesis that (a) holds.

 Following Stepanek, we define ri = si = 0, and for each integer n > 2 we define:

 n-1

 rn-= nan and Sn = - E (ai+i - ai + 0)aj.
 i=l1

 For each n > 1 we define hn =rn+Sn

 Since En- an converges and (?an+1-an?+i3n) is bounded and monotone,
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