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Exercises

1. Suppose R(K) is a Dirichlet algebra and a € intK. Define S on
R*(K,w,) by Sf =zf. Find a(S) and a,(S).

2. Repeat Exercise 1, but this time assume that K is finitely connected.

3. Let w,, wp # ,and Z be as in Lemma 16.3 and show that if f

and g are functions in # N L% (w,), then fg € # and ffgda)ﬁ =
(f fdwy)(f gde,).

§17 Bands of measures. In this section we will develop the elementary
properties of bands of measures. This concept will be the basis for an abstract
F. and M. Riesz Theorem which will be proved in the next section.

17.1 DerFINITION. If X is a compact space, a band of measures is a norm
closed linear subspace % of M(X) such thatif u € % and v is a measure
on X that is absolutely continuous with respect to u, then v € % .

Perhaps a word to the cautious is worth uttering here. Let’s agree (as all
sane mathematicians do) that to say that two complex-valued measure v and
U satisfy v « u means that |v| < |u|. That is, |v|(A) =0 for every Borel
set £ with |u|(A)=0.

17.2 EXAMPLES. (a) M(X) and (0) are bands. Call these the trivial
bands.

(b) If u is a positive measure on X , then Ll(,u) can be identified with a
closed subspace of M(X) by means of the Radon-Nikodym Theorem. That
is, Ll(u) ={v e M(X): v < u}. With this identification, Ll(u) is a band.

(c) The collection of purely atomic measures on X is a band.

(d) The collection of completely nonatomic measures is a band.

The proof of the first result is an easy exercise.

17.3 PrROPOSITION. If B is a band of measures on X and u € B, then
the following statements hold.
(a) If A is any Borel set, u|Ae % .
(b5 If w=(u; — u,) +i(uy — py) is the Jordan decomposition of ., then
uje,@for 1<j<4.
(¢) |ueZz.

The next theorem is a generalization of the Lebesgue Decomposition The-
orem. Indeed, the proof is the same.

17.4 THEOREM. If Z is a band of measures on X and v € M(X), then
v=v,+v,, where v,€ Z and v Ly for every u in & . The measures v,
and v, are unique.

Proor. If vy for every u in &, then we are done. So assume the
contrary. Thus there is a Borel set F such that |v|(F) > 0 and v|F <
u for some u in % . Note that this implies that v|F € & . Let ¢ =
sup{|v|(F): F is a Borel subset of X and v|F € Z}; by our assumption,
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¢ > 0. It follows that there is an increasing sequence {F,} of Borel sets such
that v|F, € & and |v|(F,) — c. If F =F UF,---, then the fact that &
is norm closed implies v|F € &Z and |v|(F)=c.

Let v, = v|F and v, = v —v, = v|(X\F). Clearly v, € &Z. If E
is any Borel set disjoint from F and v|E <« u for some u in &%, then
v|E € # and |v|(FUE) =c+|v|(E). By the definition of ¢, it must be
that |v|(E) = 0. Therefore v 1% .

The proof of uniqueness is left to the reader. 0O

Call the above decomposition of v the Lebesgue decomposition of v with
respect to % .

For convenience, let’s agree that for a nonempty subset . of M (X), the
notation ul.%’ means that ulo for every ¢ in ..

17.5 ProPOSITION. If & is a nonempty subset of measures on X and
F'={veMX):vLSF}, then ' is a band of measures.

In fact this proof is an immediate consequence of the definitions. If %
is a band of measures, then the band %’ is called the complementary band
to % . Note that & N%F' = (0). This terminology is justified by the next
proposition.

17.6 PROPOSITION. Let % be a band of measures on X .

(a) (B) =2.
(b) M(X) = B &, B', where ®, denotes the Banach space ['-direct
sum. (That is, |v & ul| = |lv]| + [lull.)

PROOF. (a) From the definition we have that & C (%') . If v € (&',
then the preceding theorem implies that v = u + #, where 4 € % and
neB . But (B') isaband,so u and n € (Z')". But then n € Z'N(F')
and hence #=0. Thus v =pu e %.

(b) This is a straightforward reformulation of Theorem 17.4. O

Note that the intersection of any nonempty collection of bands in M (X)
is again a band. Thus for any nonempty subset . of M(X), define the
band generated by S to be the intersection of all bands that contain .%. So
the band generated by . is the smallest band containing % .

17.7 PropoSITION. If % is a nonempty subset of M(X) and & = {u €
M(X): uLS'}, then & is the band generated by % .

PrOOF. Let ./ be any band containing .% . It is easy to see that &/’ C .
andso & = (¥ c(w') =«. 0O

17.8 LEMMA. Let {v,} be asequencein M(X) suchthat y v, converges
in norm to a measure v. If n € M(X) and n < v, then n =73y, n, where
the measures {n,} are pairwise singular and n, < v, for every n>1.

PrRoOOF. Let n =7, + 0, be the Lebesgue decomposition of # with respect
to v, . Sothere is a Borel partition {E,, F|} of X suchthat n, =n|E,, o, =
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nF,, and |v,|(F}) = 0. Let o, = n, + g, be the Lebesgue decomposition
of g, with respect to v,. This produces a Borel partition {E,, F,} of the
set F, such that n, = n|E,, 0, = n|F,, and |v,|(F,) = 0. Continue and
we obtain a sequence {E,} of pairwise disjoint Borel sets and a decreasing
sequence {F,} of Borel sets having the following properties:
1) n, =nlE, <v,;

(i) E,U---UE UF, =X,

(iii) (E,U---UE,)NF, =;

i) |v,I(F,) =0

If o, = n|F,, then {0,} converges in norm to a measure ¢ in M(X). In
fact, o = n|F, where F =, F,. But |v,|(F) =0 for every n > 1. Thus
|v|(F)=0 and so |n|(F)=0;thatis, c =0 andso n=)_,7,. O

17.9 ProrosITION. If &7 is a nonempty subset of M(X) and % is the
band generated by &7, the following statements are equivalent for a measure
v in M(X).

(a) veZ.

(b) v=73_,v,, where this series is norm convergent, v, 1lv, for n#m,

and for each n thereis a u, in ¥ with v, < i, .
(c) v =73_,v,, where this series is norm convergent and for each n there
isa u, in &7 with v, L, .

Proor. Clearly (b) implies (c) and the preceding lemma gives that (c)
implies (b). Let %/ be the set of measures described in (b) (or (c)). It will
be shown that %7 is a band. Once this is established, the equivalence of (a)
and (b) will follow. Indeed, .% is clearly a subset of %/ and so &' C.%".
On the other hand, if n € % and v =¥, v, with v, < u, for some 4,
in &, then nlu, for every n and hence nlv, for every n. Thus nlv
andso n€.%’. Thatis, &' =% andso & = (&) = (&) =« .

To show that &/ is a band we first establish that % 1is a closed subspace
of M(X). The fact that ./ is a linear space follows easily by using (c). Now
suppose that {vk} C& and v¥ > v. Let v = Do zxf where 1/,/1c < //; and
'“5 €.%.Then v=vo' +Zk(1/k+1 —l/k) =, 1/; +2 Zn(ufH —1/:). From
here the proof that v belongs to %/ becomes a test of expository skills; this
test is left to the reader.

If v € & and »# < v, then Lemma 17.8 shows that # satisfies the
necessary conditions to belong to %/ . Therefore ./ is a band and the proof
is complete. O

Before proceeding, we must have another measure theoretic interlude.
This lemma will also be used later in this book in a different context.

17.10 LEMMA (Chaumat [1974]). Let (X, Q, 1) be a finite measure space
and let C be a closed bounded convex subset of L”(u), 1<p<oo. IfheC
and ¢ > 0, then there is a function f in C such that |glu < |f|u for every
g in Cand |f-hl,<e.
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Proor. It suffices to assume that C C ball L¥ (). At first we will ignore
the requirement that f be close to 4 and wait until the end to take care of
that.

CLamm 1. If f and f, € C and & > 0, then there is an o« with 0 <
o < & such that |f|u and |f,|u are absolutely continuous with respect to
|f; +afylu. To see this let fu = kf,;+ hu be the Lebesgue decomposition
of fiu with respectto fyu. So f,h=0 ae. [u]. If E ={x:k(x)=—a},
then u(E,) > 0 for at most a countable number of «. Pick an o with
O<a<eand u(E)=0. Thus f,+af, = (a+k)f,+h ae. [u]. It follows
that |f||u and |f,|u are absolutely continuous with respect to |f; + a.f,|u.

Cramm 2. If f, f, ..., € C, thenthereisan f in C with |f,|u < |f|u
for every n > 0. For any function g put S(g) = {x: g(x) # 0}. The rea-
son for the introduction of this set is the observation that |g |y < |g,|u
if and only if u(S5(g,)\S(g,;)) = 0. Let g, = f,. There are positive
numbers ¢, and A4, such that if U = {x:[g,(x)] > ¢, and [f|(x)| <
A}, then u(S(gy)\U,) < 1/2. By Claim 1 there is an «, with 0 <
o, < min{l/2, ¢,/44,} such that if g = g, + o, f] = f, + «,f;, then
|folu and |fj|u < |g|x. Note that this last condition is equivalent to
u(IS(f,) US(fNS(g)) = 0.

Continue; by induction we can choose positive constants ¢,, 4, , and «,
and functions g, in Ll(u) such that:

(i) &, <é&,/2, a, <min{27", ¢, /44, };
(i) if U —{x |g,(x)| > ¢, and

n+1

|fur1(X) < 4,,,} and gn+1 g, +o, /., then

w(S(&N\Uyp) <27 and
1([S(8,) US(fy )INS(8,,1)) =0.
Define ¢ = f,+ >, @,f, =limg,. (Because a, < 27", this limit exists
in LF(u).) It is left as an exercise to show that S(g) 2 U,s,MNk>, U, and
for m < n, u(S(&)\Misps1 Up) < 27 ". From these relations it follows
that u(S(g,,)\S(g) ) = 0 and hence If,ln < 1glu. Put oy = 15 if f =
(2w, -l Yoo, f = ( an)—lg, then f € C and Claim 2 is established.
Now let y = sup{u(S(f)): f € C} and choose {f,} contained in C
such that u( (f,)) = 7. Let f € C that f satisfies Claim 2 for this
sequence. If g € C, then Claim 1 implies there is a g, in C such that
MIS(f)uS(g)I\S(g;)) =0 and g, is a convex combination of f and g.
Hence S(g)) = S(f) S(g). Also, u(S(f)) =v =2 u(S(g,)) = u(S(f)) +
H(S(gN\S(f)) = u(S(f)). So u(S(g)\S(f)) =0 and hence |g|u < |f|u.
Now to adjust f so that it is close to /. In fact, Claim 1 implies that
there is an @, 0 < a < ¢/2, such that |f|lu and |hlp < |h + af|u.
Put f, = (1 +a) ' (h+af). So f, € C and hence [|f|u] = [|f,|u] so
that |g|u < |f|x forall g in C. Also, || = /|, = o1 +a)7Yf - hl, <
2a<e. O
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Also see Theorem 5 in Helson [1983] for a result related to the preceding
lemma.

17.11 ProPoSITION. If & is a closed convex set of measures and B is
the band generated by ., then v € B if and only if there is a n in % such
that v < 1.

Proor. It suffices to show that if v € &, then v <« 5 for some # in &.
By Proposition 17.9, v =3 v, where v, < u, forsome u, € % for each
n. Let w=73 |u, andput C = {f € Ll(u): fue and || ful| < 1}.
It is easy to deduce from the hypothesis that C is a closed bounded convex
subset of Ll(u). Moreover, u, = f,u € C for every n > 1. Thus Lemma
17.10 implies that thereisan f in C suchthat u4, < fu =7 in & . Clearly
v<n. O

17.12 PROPOSITION. If M isa weak™ closed convex set of probability mea-
sureson X and if vLM, then there is a Borel set E such that E carries v
and |u|(E) =0 for every u in M.

The proof of this proposition requires a result from general functional
analysis. For a proof see Gamelin [1969] page 40.

17.13 THE MINIMAX THEOREM. Let 7 be a vector space over R and let
& be a real topological vector space. If C is a convex subset of 7, M isa
compact convex subset of &, and F: C x M — R is a function such that:

(a) inf{F(c,m):ceC and me M} > —oc0;
(b) for every m in M, ¢ — F(c, m) is a convex function;
(c) forevery ¢ in C, m — F(c, m) is a continuous concave function;

then
supinf F(c, m) = infsup F(c, m).
m ¢ ¢ m

PrOOF OF PrROPOSITION 17.12. Let C = {u € Cp(X): 0 < u < 1} and
let M be as in the statement of the proposition. Define F: C x M — R by
F(uym)= [udm+ [(1-u)d|v|. Itis routine to check that F is convex lin-
ear in each variable and F > 0. Thus the Minimax Theorem applies. Since
vim forevery m in M, inf, F(u, m) = 0. Hence inf, sup, F(u, m)=0.
This says that there is a sequence {u,} C Cg(X) with 0 <u, <1 such that

rzg%{/undmﬁ-/(l —un)d|ul} <n”

Let E = {x:u,(x) — 1}. If m € M, then n=° > [.u,dm+
Je(1 —u,)d|lv| - m(E). Hence m(E) = 0 for every m in M. But
Yo (L =u,)dlv| < Znn‘z and so u, — 1 ae. [|v|]]. Thus v =v|E. O

This concludes this introduction to the theory of bands. Now let’s prove
a result about subnormal operators that is a direct consequence of Lemma
17.10 and is of use in the theory of subnormal operators. Recall [ACFA]
page 288, that if N is a normal operator on %, a vector f in % 18

2
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a separating vector for N if the only operator 4 in W(N) that satisfies
Af=01is A=0.1If N= [zdE,then f isa separating vector if and only
if (E(-)f, f) is a scalar-valued spectral measure for N.

17.14 ProPOSITION. If S is a subnormal operator on # with minimal
normal extension N actingon % ,h e Z , and ¢ > 0, then there is a vector
f in # that is separating for N and satisfies ||f — h| < e.

PrROOF. As in the proof of (17.10), we initially ignore the requirement
that f be found close to #. Let N = [ zdE be the spectral decomposition
of N and let e be a separating vector for N in % with |le|| = 1. Put
u(A) = (E(A)e, e) and for each f in Z let u.(A) = (E(A)f,e). So
C = {u;: f € ballZ} is a bounded convex subset of ballLl(u) . Moreover,

f—usisa contractive linear map of /# into Ll(u) and is thus weakly
continuous. Therefore C is weakly compact and thus norm closed. By
Lemma 17.10, there is an f in ballZ such that he < |/1f| for every g
in # . We claim that f is a separating vector for N. In fact, suppose
A is a Borel set such that E(A)f = 0; we want to show that E(A) = 0.
If Ay €A, then [u[(A;) =0 and so u,(A)) = 0 for every vector g in
# . Hence |p,|(A) =0 forevery g in # . If n and k are non-negative
integers, then 0 = [, z"‘z‘kdug = (N"N*g, e) = (N"N**g, E(A)e). But
V{N"N*g: g€ # and n, k >0} =% . Thus it must be that E(A)e =0.
Since e is a separating vector for N, E(A)=0.

To get a separating vector for N that is close to the given vector 4, we
proceed as in the proof of Claim 1 of the proof of (17.10). Since u, < By
there is a Borel function ¢ such that u, = ¢u 7+ Now select o with 0 <
a < ¢ such that the function ¢ +a # 0 a.e. [1]; put fi =h+af. Now
Ky =(¢p+a)u, and |4 f, | and |u,| are mutually absolutely continuous. Thus
/, is a separating vector for N and ||f, - /4[| <a<e. O

Actually, a fact is contained in the last paragraph of the preceding proof
that is worth recording because it will be used later in this book.

17.15 CoroLLARY. If f is a separating vector for N and h is any vector,
then for all but a countable number of scalars o, h+o.f is a separating vector
for N .

Exercises

1. Show that there is a band % and a measure v in %’ such that no Borel
set E exists with the property that v = v|E and |y|(E) = 0 for every
U in % .

2. Let & be a band and define P: M(X) - M(X) by Pv = v, as in
Theorem 17.4. Show that P is a linear idempotent with ||P| = 1,
ranP =%, and kerP =% .

3. Show that the map © in Theorem II.12.6 is injective.
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€18 Annihilating measures. In this section we will study measures that
annihilate a function algebra. In particular, we will prove an abstract ver-
sion of the F. and M. Riesz Theorem, for which the central concept is the
following.

18.1 DerFINITION. If A4 is a function algebra on X and % is a band of
measures on X , then B is a reducing band (for A) if for every p in A
with Lebesgue decomposition u = u, + p;, i, in % and u, in B', it
follows that u, and u; both belong to A+,

18.2 THE ABSTRACT F. AND M. RiEsz THEOREM. If A is a function alge-
bra and p € M, then the band generated by the representing measures for p
is a reducing band.

We won’t try to trace the history of the abstract F. and M. Riesz Theorem,
but it is a result that passed through several evolutionary stages before reach-
ing the above form. The above formulation is due to Koenig and Seever
[1969], which was strongly influenced by Glicksberg [1967]. For more on
reducing bands, the reader can see Cole and Gamelin [1982 and 1985] and
Gamelin [1973].

The classical F. and M. Riesz Theorem can be deduced from this abstract
version, once an additional result about T-invariant algebras is proved. This
will be done after (18.5) below.

PrROOF OF THEOREM18.2. Let p € #, and let & be the band generated
by M ) Let ue A" and let 1= p, + 1, be the Lebesgue decomposition of
u with respect to % . By (17.11), v € & if and only if there is an # in Mp
such that v < n. Thus Proposition 17.12 implies there is a Borel subset E
of X such that [v|(E) =0 forall v in % and E carries u . Without loss
of generality it may be assumed that E = |J, E, , where each E, is compact
and E, CE, .

By Lemma 11.6 we get that for every n > 1 there is a function f, in
A such that Ref, > ny, and 0 < p(f,) < J,, where the numbers J,
will be specified later. (Ac'{ually, the function fn obtained in Lemma 11.6
must be replaced by f —iImp(f,).) Let g, = e . So g, €4, gl <1,
lg,|<e ™™ on E ,and |[1-p(g,)| < 1/n2 if the &, are chosen appropriately.
Since }_, |1-p(g,)| < oo, Lemma 15.10 implies g, — 1 a.e. [u,]. However,
lg,| < e”" on E, and so g, — 0 a.e. [u,]. Therefore, g, u — u, weak*
in M(X). Soif fed, [fdu, =1lim [fg,du =0, since ulA and
fg,€A. Thus u,e 4. O

Before giving some corollaries of this theorem and further information
about annihilating measures, let’s take a little time to rephrase some of our
previous results in terms of bands.

Let Q be a nontrivial Gleason part for the algebra A4 and let p € -
From Corollary 3.5 we have that the band generated by M P is the same as
the band generated by the representing measures for any other element of Q-
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Define the band generated by Q to be the band of measures on X generated
by M, for any p in Q. Denote this band by @Q.

Let {Q;} be the nontrivial Gleason parts for 4. (In general, there may
be an uncountable number of these parts, but not, of course, for T-invariant
algebras.) According to Theorem 15.9, 33 - ﬁl for Q, # Q We

therefore arrive at the following result whose proof is stralghtforward

18.3 ProposiTiON. If {Q;} are the nontrivial Gleason parts of the function
algebra A on X and %Q is the band of measures generated by Q,, then

MX)=S oD%,

where & is the band ﬂiﬁé consisting of the measures that are singular to
7

every representing measure for every homomorphism belonging to a nontrivial
Gleason part, and the direct sum is an ' direct sum. Thus every measure v
in M(X) can be written as v = v, + 3, v;, where v, € &, v, € &, for

each i, and |[v|| = |lvoll + 22; vl

Call the band % that appears in the preceding proposition the singular
band for A. Note that % at least contains the point masses g, for each
peak point a for A. The presence of this singular band is something of
a nuisance, but, as we shall see, for T-invariant algebras and measures in
the annihilator of A, it can be ignored. But first an explicit combination of
Proposition 18.3 and the abstract F. and M. Riesz Theorem.

ll’

18.4 COROLLARY. If u € A", then u = Ko + Do, M, where for all i,
uLBy and u, € AN By, ull = ol + Il and uLu; for i# .

Now focus your attention on T-invariant algebras.

18.5 WILKIN’S THEOREM. If A is a T-invariant algebra on K, then there
is no nonzero annihilating measure that belongs to the singular band for A .

PROOF. Suppose v € A* and v1 M, for every nonpeak point ¢ in K ; it
must be shown that v = 0. But since R(K) C 4, U, the Cauchy transform
of v, vanishes off K. If a € K such that ©(a) < oo and ©(a) # 0, then
a is not a peak point and there isa 4 in M, such that u < v (8.10). So it
must be that 7 =0 a.e. [Area] and hence v =0. O

We can now derive the classical F. and M. Riesz Theorem as a consequence
of the results of this section. Let 4 be the disk algebra, the uniform closure
of the polynomials in C(dD). So .# , =clD. If p is evaluation at 0 and

M p = the representing measures for p that are supported on 8]]]), then

= {m} . Thus the band generated by M, is precisely L'my=L".If u
is a measure on 0D that annihilates A, then Theorem 18.2 1mp11es that if
K=, +p, 1s the Lebesgue decomposmon of u with respect to m, then 4,
and U € A% . On the other hand, Wilkin’s Theorem implies that p, =0.
Thus = Uy, and is thus absolutely continuous.
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18.6 CorOLLARY. If A is a T-invariant algebra on K and Q is the set
of nonpeak points for A, then @Q, the band generated by the representing
measures for points in Q, is the same as the band generated by the set of
annihilating measures of A.

PrOOF. Let & be the band generated by the annihilating measures of A4,
By Wilkins’s Theorem, % C %Q. On the other hand, if a € Q, then there
is a representing measure u for a such that u #J,. Thus u—dJ,14 and
both u and J, are absolutely continuous with respect to u —dJ,. Hence &
contains all representing measures for nonpeak points and so @Q C%. O

In light of Wilkin’s Theorem, Proposition 18.3 can be combined with The-
orem 15.16 to produce a good structure theorem for the annihilator of a
T-invariant algebra.

18.7 THEOREM. Let A be a T-invariant algebra on K with nontrivial
Gleason parts Q,, Q,, ... and carriers E|, E,, ... . If v is an annihilating
measure of A, then v =3 VIE ,V|E, € A", and for each n > 1 and for
every choice of a, from Q,, thereisa u, in M, suchthat vV|E, < u, (and
thus v|E, € % ). Also the Cauchy transform of v|E, is the function Xo
and v, LR(K, Q ).

ProoF. The carriers E, exist from Theorem 15.16 and for each choice of
a, in Q, , every representing measure for a, is carried by E, . Therefore,
by Proposition 17.11, every measure in 93 1s carried by E, . Let v, bethe
projection of v into "@Qn . Proposition 18 3 and Wilkin’s Theorem imply

that v =3 v, and v, € A* . Since the sets {E,} are pairwise disjoint, it
must be that v, = v|E, . This establishes the first part of the theorem.
To see that 0, = X0 U, observe that if w is a point with oo > D(w) =

S, 1z = wl™ dly,|(z), then p(w) = ¥, 7,(w). But v, € &, and s
Corollary 8.10 implies that {w: 7,(w) < oo and 7,(w) # O} - Q Hence
v,(w) =0 ae. [Area] off @, . Thus 0, = Xan?. Flnally, since 7, =0 a.e.
off 0,, v, LR(K, Q,) by Proposition 3.14. O

The following corollary is a shorthand formulation of the preceding theo-
rem though, like all shorthand versions, it contains less information.

18.8 COROLLARY. If A is a T-invariant algebra on K with nontrivial
Gleason parts Q,, Q,, ..., then

i L
A = EB[A N, 1.
1
The next result generalizes the classical F. and M. Riesz Theorem.
18.9 CoroLLARY. If R(K) is a Dirichlet algebra and v is an annihilat-

ing measure of R(K), then v|0K is absolutely continuous with respect 10
harmonic measure for K .
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ProoF. Adopt the notation of Theorem 18.7 for the T-invariant algebra
R(K). So v, < u, for some representing measure u, of a4, in Q,. It
follows that 2, , the sweep of 4, , is also a representing measure for a,
that is concentrated on 0K . Since R(K) is a Dirichlet algebra, 4, = w,,
harmonic measure for K at a,. But 2, = u,[0K + (u/intK)” so that
1,|0K < @, . Hence v, |0K < w, forevery n>1. O

18.10 CoroLLARY. If R(K) is a Dirichlet algebra and E is a compact
subset of 0K , then E is a peak interpolating set for R(K) if and only if E
has zero harmonic measure.

Proofr. Combine the preceding corollary with Theorem 11.3. O

§19 Mergelyan’s Theorem. In this section some of the techniques that
have been developed will be applied to determine sufficient conditions for
R(K) and A(K) to coincide. Necessary and sufficient conditions for this can
be found but this would take us too far from our goal of studying subnormal
operators. The interested reader can find this material in Gamelin [1969]
page 217.

We begin with one of the oldest theorems of this type.

19.1 MERGELYAN’s THEOREM. If K is polynomially convex, then P(K) =
R(K) = A(K)

Proor. Of course the first equality, P(K) = R(K), is a direct consequence
of Runge’s Theorem and we were already aware of this. Since P(K) C
A(K), it remains to show that A(K) C P(K). Actually we will prove that
AK)|0K C P(K)|0K which will also complete the proof of the theorem.
Let v € M(OK) such that v LP(K); it must be shown that v 1L A(K).

Let Q,, Q,, ... be the nontrivial Gleason parts and let £, E,, ... be
the corresponding carriers. Put v, = v|E, . By Theorem 18.7, v, LP(K).
By Corollary 18.8, v, < w, , harmonic measure for a point a, in Q, . It
must be shown that v, L A(K) foreach n>1.

Fix n > 1, also fix f in A(K) and let C = 2|f||]. Hence
Re(f+C) >0 on K and so g = log(f + C) € A(K). Since P(K) is
a Dirichlet algebra, there is a sequence of polynomials {p,} such that for
every k > 1, [|[Rep, —Re gl|,x < 27% By the Maximum Principle we have
that ||[Rep, — Regl, < 27% for all k. Also the polynomials p, can be
chosen so that p,(a,) = g(a,). Now (p, — g)2 is harmonic on int K and
vanishes at a,, so 0= [(p, — g)2 dw, . Since the real part of this integral
must vanish, we have that

/(Impk - Img)2 dw, = /(Repk —Re g)2 dw,
—k\2

<(2 7).
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Hence - -~
2 2
/lek-gl dwn=Z/lpk—g| dw, < co.
k=1 k=1

Therefore p,(z) — g(z) a.e. [w,] and hence a.e. [v,]. Thus ¢’ — f4
C ae. [v,]. But |¢| = eRePe < ¢®Re&tl) By the Lebesgue Dominated
Convergence Theorem, [ fdv, = [(f+ C)dv, = lim, [e*dv, = 0 since
e’ € P(K) foreach k>1. O

Mergelyan’s Theorem can be used, in conjunction with Bishop’s Localiza-
tion Theorem, to show that R(K) = A(K) whenever K is finitely connected.
The same proof technique can be used to obtain an even better result.

19.2 THEOREM. If K is a compact subset of C with the property that there
isa & >0 such that each component of C\K has diameter at least J, then
R(K) = A(K).

Proor. Fix f in A(K). Let a € K and put U = B(a; §/3); by Bishop’s
Theorem (3.10), if it can be shown that f|(KNclU) € R(K NclU), then
f € R(K). Butclearly f|(KNclU) e A(KnNclU), so if we can show that
K nclU is polynomially convex, then the result will follow by Mergelyan’s
Theorem. This is precisely what will be shown.

In fact, suppose to the contrary that C\(K NnclU) has a bounded compo-
nent W . Now C\(KnNclU) = (C\K)U(C\clU) and the fact that C\clU is
connected and unbounded implies that W N(C\clU) =< . Hence W C clU
and so diam W < 24/3. We also have that W C C\K and so there is a
component W, of C\K that contains . But C\K C C\(KNclU) and so
W =W, . Since W has diameter < J, this is a contradiction. O

19.3 CoroLLARY. If K is finitely connected, R(K) = A(K).

§20 The double dual of a 7-invariant algebra. In this section we will char-
acterize the second dual space of a T-invariant algebra. If A4 is a function
algebra on X , then general Banach space theory tells us that 4™ = M (X) /AL
and A™ = 4™ = the weak* closure of A in M(X)**. For T-invariant al-
gebras we can improve this and relate 4™ to the structure of the algebra.
Clearly this will involve the annihilator of the algebra and Theorem 18.7 will
be of value. We begin by determining the dual of a band of measures.

20.1 DErFINITION. If X is a compact metric space and .# is a band of
measures on X , define L™(%) to be the collection of all F = {F#} in
the Cartesian product [[{L°(u): u € %} such that if x4 and v € & and
U < v, then F# =F, ae. [4].

It is easy to see that L°(%) is a linear subspace of [J{L™(u): u€ #}-
Also if f is a bounded Borel function on X and F, = f forall u in &,
then this defines an element of L°°(%). It will be shown that L*(Z) is
the Banach space dual of .% , but first we must attend to a few amenities like
defining the norm on L™ (%).
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20.2 LemMA. If F is a band of measures on X and F € L (%), then
sup{[|F,llo: 1 € B} < o0.

PrOOF. If this supremum is infinite, then there is a sequence {u,} in %
such that I|Fu o — oo. We may assume that [u,| < 1 forall n > 1

andso u =5 2 |unl € #. Since u, < u, F, =F ae [4,] for all
n>1. Thus ||[F|_ = |F, |, forall n>1 contradlctlng the fact that
F e L®(u). O

The proof of the next proposition is left to the reader.

20.3 ProPOSITION. If % is a band of measures on X and ||F| =
sup{||F,[l,: 4 € &} for F in L>(F), then L™(F) is an abelian C*-

algebra.

20.4 ExaMmpLEs. (a) If u is a positive measure on X and % = Ll(y),
then for each f in L™(x) and v in Ll(u) define f, to be the element
of L®(v) naturally associated with f. That is, the inclusion map Ll(z/) —
Ll(u) is an isometry (but possibly not surjective) and f, is the image of
/ under the dual of this map. In a certain sense f, is a restriction of f.
It follows that f — {f,} defines an isometric isomorphism of L*(x) onto
L*(R).

(b) If % 1is the band of all purely atomic measures on X, then L™(%)
“=" [*(X).

20.5 THEOREM. If Z is a band of measures on X and for F in L™ (F),
®,: B — C is defined by

= / F, du,

then the map F — ®, defines an isometric isomorphism of L™(%) onto
B

ProoOF. The fact that each @, is linear is left to the reader. Also |® . (u)| <
JIF,|d|u] < |IF|l|lull. Hence ®, € Z" and p: L™ (&) — FB" defined by
p(F) = &, is a linear contraction. It remains to show that p is isometric
and surjective. As often happens in these situations, both these properties
will be demonstrated simultaneously.

Fix ® in Z". If ue% and g € Ll(y),then gue%. Thus g —
®(gu) is a well-defined linear functional on Ll(u). Moreover, |®(gu)| <
I®llgull = | @Il lIgll, ; hence there is an F, in L™(u) with ||F,[|, < |®]

such that ®(gu) = [ gF,du forall g in L ().

Now suppose u, v € %’ and 4 < v. Hence u = gv for some g in
Ll(u). Thus for every 4 in L'(u), hg € L'(v) and hu = hgv. This
gives that th dpu = ®(hp) = ®(hgr) = [ hg F,dv for all h in L'(u).
It follows that F,=F, ae [u]. Therefore F = {F,} € L™(%). Also
IF0, <@ and SO |§F|| < ||®||. This completes the proof. O
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20.6 CorROLLARY. The Banach space dual of M(X) is isometrically iso-
morphic to L™ (M (X)) .

Now that we know that L°°(%) is the dual of the Banach space %,
L (%) has a weak* topology.

20.7 PROPOSITION. A4 net {F,} in L*(%) converges to F in the weak*
topology if and only if (Fi)u - F, weak* in L™ (u) for every u in & .

The proof of this proposition is left as an exercise for the reader. Notice
that this says that the weak* topology on L°°(%) is the relative product
topology it has as a subset of [[{L™(u): u € #}, where each coordinate has
its natural weak* topology.

If & CL¥(%F), define 7, = {F,: F € }.

20.8 PROPOSITION. If ¥ C L™(%) and F € L™(F), then F belongs
to the weak* closure of & if and only if for every u in &%, F, belongs to
the weak* closure of 7, in L™(u).

PrOOF. It is easy to check that if F € wk™-cl., then for every u in
Z Fﬂ e wk™ - 015”#. So let’s concentrate on the converse; so assume
that F € L™(%) and F, € wk” —cl, forevery u in & . Let I = the
collection of all pairs (¢, M), where ¢ > 0 and M is a finite subset of % .
Define an order on I as follows: (¢, M) < (6, N) if 6 <e¢,and M CN.
Clearly with this definition of order, I becomes a directed set.

If o =(e,{u,....m,}) €1,then u = |u|+ - +|u, € F and
Hyseoes by, € Ll(u). By hypothesis there is a G is % such that
| [(G, - F,)du;| <& for 1 <j<m. (Let’s remark that [(G, - F,)du; =
f(Gﬂj—Fuj)duj .) Denote any such element G of & by F, . Thus {F :a€

I} is anet in . It is claimed that F, — F weak* in L™(%).

By Proposition 20.7 it must be shown that (F,), — F, weak* in L™ (u)
for every u in % . That is, it must be shown that for y in % and g in
L'(w), J(F,),gdu— [ F,gdu. Sofix uin %, g in L'(u),and &> 0.
Let oy = (g, {1, gu}) in 1. If o >, then a = (J, M), where 6 < ¢ and
{u, gu} € M. By definition of F,, we have | [((F,), — F,)gdul <dJ <¢,
precisely what we had to show. O

Note that % is a module over L™(%). That is, if F € L*(%) and
i € %, then define ufF = (Fu € % . It is easy to check that the de-
sired distributive laws are satisfied and also ||[uF| < ||ul|l |F]||. (Write uF
rather than Fu to avoid the possible confusion of this product with the usual
notation of F, for the uth coordinate of the element F of L>(%).)

The algebra L™ (%) has several idempotents. For example, if E is a
Borel set and F, = x, forevery u in &, then F € L™(%) and F’=F.
If F is any idempotent of L°°(%), not just one of the preceding type, then
it can be verified by the reader that Z F is a norm closed subband of % .
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The converse is also true. (Recall that the set of idempotents in any abelian
ring forms a lattice.)

20.9 ProPOSITION. If % is a band of measures on X, then the map
F — BF defines a lattice isomorphism between the lattice of idempotents
of L(#) and the lattice of subbands of & .

ProoF. Only a sketch of the proof is given here. The reader can fill in the
details. Suppose &/ is a subband of % and for u in & let u = pu, + u,
be the Lebesgue decomposition of u with respect to the band &/ . Define
F, by letting it be 1 a.e. [1,] and 0 ae. [g,]. Then F € L(u), F’=F,
and F =5/ . 0O

20.10 DerFINITION. If A4 is a function algebra on X and u € M(X), let
A% (u) be the weak* closure of 4 in L™(u) = L™ (|u|). If & is a band of
measures on X , then there is a natural inclusion of A inside L™(%). Let
A (A be the weak* closure of 4 in L™(F).

20.11 ProposITION. The double dual of the function algebra A on X is
naturally isometrically isomorphic to A (M(X)).

REMARK. The word “naturally” in the preceding proposition means that

the diagram
A —— LT(M(X))

L

A**

is commutative, where the horizontal and vertical arrows are the natural
embeddings of A4 .

The proof of this proposition is just a specific instance of a Banach space
phenomenon. Namely, if 2 is a Banach space and % is a closed subspace
of 2 ,then  CZ CZ™ and ¥ “is” the closure of % in the weak*
topology of &* .

For the remainder of this book we will identify 4™ with 4 (M (X)).

20.12 ProOPOSITION. If A4 is a function algebraon X and F € L (M (X)),
the following statements are equivalent.
(a) FeA™(M(X)).
(b) If ve A", then [F,dv=0.
(c) A"FC A+,

Proor. The equivalence of (a) and (b) is the consequence of general Ba-
nach space theory and is left to the reader.

(a) implies (c). Let v € A" ; we want to show that vF € A . Since F €
A®(M(X)), thereisanet {f} in 4 suchthat f, — F weak*in L®(M(X)).



