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JERZY  LOŚ, ZBIGNIEW SEMADENI

CCCXXVII

GERARD BUSKES

The Hahn–Banach Theorem surveyed

W A R S Z A W A 1993



Gerard Buskes
Department of Mathematics
The University of Mississippi
University, MS 38677
U.S.A.

Published by the Institute of Mathematics, Polish Academy of Sciences

Typeset in TEX at the Institute

Printed and bound by

P R I N T E D I N P O L A N D

c© Copyright by Instytut Matematyczny PAN, Warszawa 1993

ISSN 0012-3862



C O N T E N T S

1. Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. The history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Helly’s Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Banach’s proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5. The shortest proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6. Luxemburg’s proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7. Nachbin’s proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8. Mazur’s geometric Hahn–Banach Theorem . . . . . . . . . . . . . . . . . . 12
9. The complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

10. Ingleton’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
11. Constructive analysis and unique extensions . . . . . . . . . . . . . . . . . . 16
12. The Axiom of Choice and the Ultrafilter Theorem . . . . . . . . . . . . . . . 18
13. The Mazur–Orlicz Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 21
14. Simultaneous Hahn–Banach extensions . . . . . . . . . . . . . . . . . . . . 23
15. Injective Banach spaces and injective Banach lattices . . . . . . . . . . . . . . 24
16. The interpolation property . . . . . . . . . . . . . . . . . . . . . . . . . 26
17. Invariant extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
18. Locally convex spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
19. Non-commutative Hahn–Banach Theorems . . . . . . . . . . . . . . . . . . 30
20. The strength of the Hahn–Banach Theorem . . . . . . . . . . . . . . . . . . 31
21. Other categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

21.1. Groups and semigroups . . . . . . . . . . . . . . . . . . . . . . . . 32
21.2. Vector lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
21.3. Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
21.4. Distributive lattices and Boolean algebras . . . . . . . . . . . . . . . . 34
21.5. Module versions of the Hahn–Banach Theorem . . . . . . . . . . . . . . 35

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1991 Mathematics Subject Classification: Primary 46A22, 46-02; Secondary 04A25, 46M10,
46P05, 47B55.
Received 9.1.1993; revised version 15.3.1993.



Dedicated to the 100th birthday
of Stefan Banach

1. Prerequisites

Confusing as it is, there are two theorems that are called the Hahn–Banach
Theorem. In order to clear the air right away, we use this section to distinguish
them and to introduce the necessary definitions. In this paper, E will be a vector
space over the reals, unless otherwise specified.

Definition 1. A map p : E → R is called sublinear if

p(x+ y) ≤ p(x) + p(y) for all x, y ∈ E

and

p(αx) = αp(x) for all x ∈ E and all α ∈ R+ .

p is called a seminorm if also

p(αx) = |α|p(x) for all α ∈ R .

p is called a norm if in addition

p(x) = 0 ⇔ x = 0 .

Theorem 2 (Hahn–Banach Theorem — First Version). Let p be a norm on
E and let E0 be a vector subspace of E. Let f0 be a continuous linear function
from E0 to R. Then there exists a continuous linear function from E to R that
extends f0 such that

‖f0‖ = ‖f‖ .

Theorem 3 (Hahn–Banach Theorem — Second Version). Let p be a sublinear
function from E to R. Let E0 be a vector subspace of E and let f0 be a linear
function from E0 to R for which

(1) f0(x) ≤ p(x) for all x ∈ E0 .

Then there exists a linear function f from E to R that extends f0 and for which

(2) f(x) ≤ p(x) for all x ∈ E .

Instead of (1), we will sometimes say that f0 is dominated by p on E0. Simi-
larly, in (2), f is said to be dominated by p (on E).
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2. The history

The history of the Hahn–Banach Theorem (or Theorems, if you so like) closely
parallels the history of functional analysis. The road was paved in the late nine-
teenth century and the first precursor of the Hahn–Banach Theorem can be found
in a 1907 paper by Riesz [275]. The development of functional analysis is beauti-
fully described by Monna in [235] and Dieudonné in [85], while more personal, but
equally charming reminiscences can be found in Young’s book [348]. Hochstadt
in [140] analyzes the history of the Hahn–Banach Theorem itself. Hahn [123]
presented a proof of the First Version of the Hahn–Banach Theorem in 1927,
but an essential trick had already been used by Helly [136] in a proof of the so
called Hamburger problem. The Second Version of the Hahn–Banach Theorem
first appears in Banach [31]. In 1932 Banach’s classic [28] came out. In fact, it
had appeared one year earlier in a Polish edition, “Teorja Operacyj”. A kernel of
the idea for the theorem goes back as far as 1923 (see [32]). Banach [30] credits
Helly [136] and Hahn [123] for their roles in the First Version of the Hahn–Banach
Theorem. Hahn [123] does not refer to Helly’s contribution [136]. Hochstadt calls
Helly the father of the Hahn–Banach Theorem. It is more accurate to call Helly
the father of the First Version and contribute the Second Version to Banach alone.
The generalization to sublinear functions shows much more ingenuity and fore-
sight from the father of Banach space theory than can be seen from analyzing the
proofs of these results alone. Bohnenblust and Sobczyk in 1938 (see [46]) coined
the term Hahn–Banach Theorem.

The bibliography of this paper chronicles in many different ways the history of
the Hahn–Banach Theorem. The list of papers is undoubtedly far from complete.
For most of the publications a Mathematical Reviews number is provided. To
describe everything that is in the bibliography is an ambitious project. The
choices that I have made are a result of personal taste, knowledge or lack thereof.
Particularly motivating were the talks by Kalton [160], Neumann [248], Neumann
[250], and van Rooij [332].

We will first present several different proofs of the Hahn–Banach Theorem
(either version). Initially there will be one proof per section and citations only
to the instigators of that particular proof. These early proofs will return later
in disguise of wide generalizations and with loads of additional references. As a
consequence, one does not find the utmost generality in the earlier but rather in
the later sections.

3. Helly’s Part

Of course, Helly never proved the Hahn–Banach Theorem. He did prove The-
orem 4 below for C[a, b] rather than a general normed space and with I = N.
Though the former has nothing to do with the generality of Helly’s argument
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(normed spaces had not been introduced yet in 1912), the latter cannot be sep-
arated from the role of the Axiom of Choice in the development of functional
analysis. Historically, Helly’s Part connects the Hahn–Banach Theorem (First
Version) with the older Hamburger problem.

Theorem 4. Let (E, ‖ ‖) be a normed linear space. Let {τα : α ∈ I} be
a subset of R and let {xα : α ∈ I} be a subset of E. Then the following are
equivalent.

(1) There exists a continuous linear function on E such that f(xα) = τα.
(2) There exists M > 0 such that∣∣∣∑

α∈J
µατα

∣∣∣ ≤M∥∥∥∑
α∈J

µαxα

∥∥∥
for all finite subsets J of I and all µα.

The First Version of the Hahn–Banach Theorem follows by taking I = E0,
xα = α and τα = f0(α) for all α ∈ E0. The condition (2) above is nothing
else than the continuity of f0. Conversely, the theorem itself follows from the
Hahn–Banach Theorem (First Version) and even easier from the Mazur–Orlicz
Theorem that we are to discuss in Section 13. It can be found as Theorem 4 on
page 34 of the 1987 translation of Banach’s book [28]. Banach does give some
credit to Helly in his notes to Chapter IV on page 143 of the same book, as he
had done before in [30]. In those very notes he credits Hahn for the First Version
of the Hahn–Banach Theorem. We note that our Theorem 4 is in Hahn’s paper
[123] as the main step to prove the Hahn–Banach Theorem and he does refer to
Helly (though not to Helly’s 1912 paper) before he proves it.

4. Banach’s proof

The Hahn–Banach Theorem to which the proof of the title of this section
alludes is the Second Version of the theorem with that name. (We will, for
reasons of convenience, no longer always specify which of the two versions we
have in mind.) The introduction of the sublinear function was a marvelous find.
Analyzing the role of the sublinear function became one of the main motives in
subsequent developments and the applicability and flexibility of the theorem were
greatly enhanced by using sublinear functions. The following is Banach’s proof
on page 20 of the English translation of his book [28].

We may assume that E0 does not equal E. Take any x0 in E \E0. Any value
A of any extension of f0 at x0, dominated by p, will satisfy

(3) −p(−x− x0)− f0(x) ≤ A ≤ p(x+ x0)− f0(x) for all x ∈ E0 .
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From the linearity of f0, the sublinearity of p and the domination of f0 by p,
we get

(4) sup
x∈E0

{−p(−x− x0)− f0(x)} ≤ inf
x∈E0
{p(x+ x0)− f0(x)} .

In other words, an A as above is not an impossibility. Choose any such A and
define an extension of f0 to the vector subspace E1 of E generated by E0 ∪ {x0}
by

(5) f(x+ αx0) = f0(x) + αA for all x ∈ E0 and all α ∈ R .

Assuming α 6= 0, put x/α instead of x in (1). Multiply the left inequality by α
when α is negative and the right inequality by α when α is positive. It follows
that

f(x) ≤ p(x) for all x ∈ E1 .

Banach finishes his proof by well-ordering E \ E0 and transfinite induction.
A few comments are in order. The contributions of all four, Riesz, Helly, Hahn

and Banach, to the Hahn–Banach Theorem deal with inequalities of the type (1)
or (2) above. Therefore, the Hahn–Banach Theorem got off the mark with a
heavy emphasis on the order properties of the reals. It is not surprising that
order continued to play a role in later directions. One may speculate, however,
as to how much it hindered research into other avenues. A form of the Hahn–
Banach Theorem for vector spaces over C came surprisingly late (by Sukhomlinov
in [320]) and a version for non-Archimedean valued fields had to wait until 1952
(by Ingleton in [146]). How influential Banach’s proof has been, can be seen from
opening almost any textbook in functional analysis where invariably his proof is
copied almost verbatim. (Almost, because most authors seem to prefer Zorn’s
Lemma rather than transfinite induction. For the novice in functional analysis
transfinite induction by well-ordering may seem more direct.) There now are
many equally elegant proofs available. It would be advisable for textbook writers
to choose a version that suits their coverage of topics best. We continue to present
some of the options.

5. The shortest proof

We first set the stage for a theorem that is inducive to accept the method
behind the shortest proof of the Hahn–Banach Theorem.

Suppose we do not have one but two sublinear functions, p and p∗. Suppose
furthermore that f0 is dominated by p and by p∗, in other words that

(6) f0(x) ≤ p(x) and f0(x) ≤ p∗(x) for all x ∈ E0 .

For any extension f of f0 which is dominated by p and p∗ we have

(7) f0(x) = f(x− y) + f(y) ≤ p(y) + p∗(x− y) for all x ∈ E0 and all y ∈ E .
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We better take (7) as an assumption, that is,

(8) f0(x) ≤ p(y) + p∗(x− y) for all x ∈ E0 and all y ∈ E .

By taking x = 0, it follows that for all y ∈ E

(9) −p∗(−y) ≤ p(y) ,

and by taking y = 0 or y = x we see that (6) follows from (8). Notice that any
linear function f from E to R for which

(10) −p∗(−y) ≤ f(y) ≤ p(y) for all y ∈ E

is dominated by p and by p∗ (and conversely). Thus the existence of an extension
of f0 dominated by p and p∗ is equivalent to the existence of an extension f that
satisfies (10). That brings us to a curious question. If E0 = {0} and f0 is the only
functional on E0, condition (8) is equivalent to condition (9). That is, if we start
off with almost nothing (E0 and f0 are trivial), can we create a linear function f
that satisfies (10)?

It can immediately be checked that the function q defined by

q(x) = −p∗(−x)

has the following properties:

(11) q(x) + q(y) ≤ q(x+ y) for all x, y ∈ E

and

(12) q(αx) = αq(x) for all x ∈ E and all α ∈ R+ .

A function q with properties (11) and (12) is called superlinear . It is time to
formulate a theorem.

Theorem 5 (Sandwich Theorem). Let p be a sublinear and q a superlinear
function on E. If

q(x) ≤ p(x) for all x ∈ E
then there exists a linear function f on E such that

q(x) ≤ f(x) ≤ p(x) for all x ∈ E .

The theorem has a variety of interesting aspects. It does not appear to be
an extension theorem. Indeed, we only have the superlinear and superadditive
function to work with. In Section 13 we will see that the theorem is an easy
corollary of the Mazur–Orlicz Theorem (see [229]) and so is a theorem that deals
with a pair of seminorms p and p∗. Much of the attention in the previous section
was directed to finding a suitable value to be assigned to the next element in E. Is
it possible to sand p to make it more linear instead of building up f0? The answer
is yes: Simply order the set of all sublinear functions that dominate f0 on E0 and
that are dominated by p on E. By Zorn’s Lemma choose a minimal element.
That minimal element itself is a sublinear function to which the Hahn–Banach
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Theorem applies. But then it must be linear and coincide with f0 on E0. Even if
one writes down the details of the last step, the proof is shorter than Banach’s.

6. Luxemburg’s proof

Banach’s proof may well be the most natural. One is trying to extend a linear
function and thus searches for what value to assign to an element which is not in
the subspace yet. The short proof in Section 4 focused on the sublinear function
instead. The idea in Luxemburg’s proof is to allow an extension to take values in
a space bigger than R.

Let D be the set of linear subspaces D of E each containing E0 and such that
E0 ⊂ D has finite codimension. Let for each D in D be given a nonempty set
<(D) contained in

{f ∈ RD : f is linear, dominated by p and extends f} .
Define

A = {(D, f) : D ∈ D and f ∈ <(D)} .
Let ℘ be a filter of subsets of A such that for every finite subset X of E we have
that

UX := {(D, f) ∈ A : X ⊂ D}
is an element of ℘. Define

R1 = {f ∈ RA : f(A) is bounded}
and

R0 = {f ∈ R1 : f = 0 ℘-almost everywhere} .
Now we start working on an extension of f0. Define τ : E → RA by

τ(x)(D, f) =
{
f(x) if x ∈ D ,
0 if x 6∈ D .

For every x ∈ E and all (D, f) ∈ A we have |τ(x)(D, f)| ≤ p(x) ∨ p(−x), that is,
τ maps E into R1. If x ∈ E then τ(x)(D, f) = f(x) for all (D, f) ∈ U{x}. Thus
τ(x + y)(D, f) = (τ(x) + τ(y))(D, f) for all (D, f) ∈ U{x} ∩ U{y} ∩ U{x+y}. A
linear mind then introduces

R℘ = R1/R0 .

We denote the equivalence classes by using ∼. Define

f℘(x) = τ̃(x) .

We list three easy consequences:

(1) f℘ is linear,
(2) f℘(x) = ˜f0(x) for x ∈ E0,
(3) f℘(x) ≤ p̃(x) for all x ∈ E.
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For (3) it should be understood that on R1 we have the pointwise ordering, which
makes it a vector lattice, and R0 is an ideal (see [219]) in R1, which makes R℘ a
vector lattice. Diagrammatically we have

E0 ⊂ E
f ↓ ↓ f℘

R ⊂ R℘
For the inclusion of R in R℘, we remark that any α ∈ R can be associated with
the function i(α), that is, identically equal to α, in R1. The inclusion is shorthand
for the map α → ĩ(α). Note that we assumed that for each D in D we have a
nonempty <(D). However, by using only the initial part of Banach’s proof of the
Hahn–Banach Theorem we know that extensions of the desired type exist and we
could take <(D) to be the set of all extensions. We do not use any well-ordering
or Zorn’s Lemma and that is the advantage of this approach. The disadvantage
is that the “extension” does not take its values in R but in a bigger space. The
proof constructs an extension of R and an “extension” of f0. Its motivation was,
of course, Robinson’s invention of infinitesimals and it can rightfully be called
the nonstandard proof of the Hahn–Banach Theorem. Luxemburg’s proof first
appeared in [216]. Before that, it had been discovered independently by  Loś and
Ryll-Nardzewski in [210]. Luxemburg’s papers [213] and [214] deal with the same
topic. Luxemburg’s elegant paper [214] contains much valuable information and
we will return to it later.

Note that the actual Hahn–Banach Theorem can be recovered from the above
by using the Ultrafilter Theorem. Indeed, one is then enabled to take an ultrafilter
℘ in the above and the map α → ĩ(a) becomes an isomorphism. It is, in fact,
such an ultrafilter that is used by Luxemburg. We will return to this observation
later.

7. Nachbin’s proof

This is going to be a proof of the First Version of the Hahn–Banach Theorem.
Take an a in E\E0. For every z ∈ E0 define

Bz = {α ∈ R : |α− f0(z)| ≤ ‖z − a‖} .
A reinterpretation of Banach’s classical proof yields that Bz ∩ Bz̃ 6= ∅ whenever
z 6= z̃. In R that means that

⋂
Bz 6= ∅. Any element in the latter intersection will

serve as an appropriate value for the value of an extension of f0 at a. Nachbin’s
Theorem shows that such an intersection property is exactly what makes the
Hahn–Banach Theorem work. First some terminology.

Definition 6. A Banach space F is said to have the binary intersection
property if every collection of closed balls in F , each pair of which has nonempty
intersection, has nonempty intersection.
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Definition 7. A normed vector space F is said to be 1-injective if it can
take the role of R in the first version of the Hahn–Banach Theorem, i.e. for
every normed space E and every subspace E0 and every continuous linear map
f0 from E0 to F there exists a linear continuous extension f : E → F such that
‖f‖ = ‖f0‖.

Theorem 8. For a normed vector space F the following are equivalent.

(1) F is 1-injective.
(2) F has the binary intersection property.

Nachbin proved this characterization of 1-injective Banach spaces in [244]. We
will return to Theorem 8 in Section 15.

8. Mazur’s geometric Hahn–Banach Theorem

Like each of the previous sections is one aspect, one way of looking the Hahn–
Banach Theorem in the eyes, so is this one. We interpret the Hahn–Banach
Theorem in a geometric way. It was first proved by Mazur in [227]. We follow
the approach by Day (see [79], pages 23–25). In this section E is a normed space.

Theorem 9. Let C be a convex set in E for which int(C) 6= ∅. Let V be a
linear variety (that is, a subset of the form x+E0 where E0 is a linear subspace
of E ) for which int(C) ∩ V = ∅. Then there exists a closed hyperplane H of E
such that

(1) int(C) ∩H = ∅ and
(2) V ⊂ H.

There are many variations on that theme. The main technique is the making
of gauges or Minkowski functionals, as they are called, from certain convex sets.
More precisely, if C is an absorbing set in E (that is, for every x ∈ E there exists
an α > 0 such that x ∈ αC) then we can define

pC(x) = inf{α > 0 : x ∈ αC} .

Such a pC is a sublinear function and that is the connection with the Hahn–
Banach Theorem. Of course, in the proof of the above theorem one has to trans-
late the set C so that it contains 0 in its interior (an absorbing set contains 0).
Also, the interior points of C in the above are the ones for which the value of
pC is less than one. The rest of the proof easily follows from the Hahn–Banach
Theorem (Second Version). The conclusion can also be stated as follows: There
exists a continuous linear function f : E → R and a number α such that f(x) = α
for all x ∈ V and f(x) < α for all x ∈ int(C) (that is, the interior of C is on one
side of H). We state two corollaries, which are of interest in themselves, in order
to show how the Hahn–Banach Theorem can be recovered.
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Theorem 10 (Support Theorem). If x is not an interior point of a convex
set C for which int(C) 6= ∅ then there is a hyperplane H such that x ∈ H and C
is on one side of H.

Theorem 11 (Eidelheit Separation Theorem). Let C1 and C2 be convex sets
in E. Suppose that

int(C1) 6= ∅ and C2 ∩ int(C1) = ∅ .
Then there exists a continuous linear function from E to R such that

sup f(C2) ≤ inf f(C1) .

Let us now sketch how to prove the Second Version of the Hahn–Banach
Theorem from these results.

Define F = E × R and A = {(x, f0(x)) : x ∈ E0}. Also, define C = {(x, r) :
r ≥ p(x)} and W = C − A. W is a wedge in F , that is, a convex set which
contains with each element all the positive multiples of that element. A wedge
orders a space by defining

x ≤W y if y − x ∈W .

Applying the Support Theorem and the Eidelheit Theorem one can then find a
nontrivial monotone linear function g (that is, x ≤W y implies g(x) ≤ g(y)) on
F . Define the desired extension f of f0 by

f(x) = r if g(x, r) = 0 .

There are other approaches to the geometric Hahn–Banach Theorem. In par-
ticular, we would like to draw attention to [330]. Also, note the geometric ap-
proach to the Hahn–Banach Theorem in [284].

The remaining sections contain more special and more general results. We
will list all relevant references from our bibliography.

9. The complex numbers

The analogs of the Hahn–Banach Theorem for vector spaces over C had to wait
until 1938 (see e.g. [46] by Bohnenblust–Sobczyk). If we consider functionals that
take their values in C, we see that the Second Version, as it stands, no longer
makes sense. The First Version still holds word for word. It is worthwhile to
remember the trick that is used here. Write f0 = f1 + if2 for two real valued
continuous functionals f1 and f2 on E0. Take an extension f̃1 of f1 such that
‖f̃1‖ ≤ ‖f0‖. For the latter, remember that

|f1(x)| = |Re[f0(x)]| ≤ |f0(x)| ≤ ‖f0‖‖x‖
and thus we can apply the Second Version of the Hahn–Banach Theorem, con-
sidering E as a linear space over R. Now define the desired extension of f0 by

f(x) = f̃1(x)− if̃1(x) .
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It is easy to check that f is linear and indeed is an extension of f0. For the
calculation of the norm of f observe the following. For x ∈ E there exist r, ϑ ∈ R
such that f(x) = reiϑ. Then

|f(x)| = |e−iϑf(x)| = |f(e−iϑx)|

= f(e−iϑx) = f̃1(e−iϑx) ≤ ‖f̃1‖‖e−iϑx‖ = ‖f̃1‖‖x‖

and thus ‖f‖ ≤ ‖f̃1‖ ≤ ‖f0‖.
Murray had obtained the above Hahn–Banach Theorem for C a little earlier

for Lp-spaces (see [239]). For the real case the defense of the role of Helly has
come up in the literature. The complex Hahn–Banach Theorem, however, is
continuously credited to Bohnenblust and Sobczyk ([46]), even where Murray’s
proof indeed was completely general. The name Soukhomlinoff is almost always
mentioned as having obtained the result independently and at about the same
time in [320]. In fact, he proved the Hahn–Banach Theorem for vector spaces over
the quaternions in the same paper. It is well known, and wittily documented, that
theorems almost never get associated with their inventors. Why certain results,
that do not carry the burden of being name-theorems, consistently get credited
to some mathematicians in a certain order (in this case, always first Bohnenblust
and Sobczyk, perhaps Murray at the side and, if at all, Soukhomlinoff in the last
place) is a mystery. It should be mentioned that there also is a Complex Second
Version of the Hahn–Banach Theorem:

Theorem 12 (Complex Hahn–Banach Theorem, Second Version). Let E be a
vector space over C. Let p be a seminorm on E (i.e. a sublinear function E → R
for which p(αx) = |α|p(x) for all α ∈ C and all x ∈ E). Let E0 be a vector
subspace of E and let f0 be a linear function E0 → C with

|f0(x)| ≤ p(x) for all x ∈ E0 .

Then there exists a linear functional f from E to C that extends f0 and such
that

|f(x)| ≤ p(x) for all x ∈ E .

Of course, the First Version of the Hahn–Banach Theorem for C follows from
the Second Version above.

10. Ingleton’s Theorem

We mentioned before how order played a premier role in the first eight sections
of this paper. It is easy to downplay the proof in the previous section as a mere
trick and it is hard to remember how we reacted to it when we ourselves saw it
for the first time. If we leave the field of the complex or real numbers altogether
and enter the area of non-Archimedean fields, many functional analysts feel more
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uneasy. Indeed, even though non-Archimedean functional analysis has seen quite
a rise in the number of practitioners, its findings have not yet become common
knowledge. It bears resemblance in that respect, but in a different direction, with
nonstandard analysis. Nonstandard analysis is sometimes tarnished by the lay-
man as “yet another approach to what I already know”. Often, non-Archimedean
functional analysis gets the stamp of pathology. In the context of this paper, both
of those views seem naive. The nonstandard proof clarifies how one can enlarge
the range space and extend the functional f0 without using any transfinite in-
duction. Order is far away from non-Archimedean valued fields. Therefore, there
is hope that a study of the Hahn–Banach Theorem in non-Archimedean setting
clarifies the role of order. And yes it does. We follow the standard reference [331]
by van Rooij in this section and first meet an old acquaintance.

Definition 13. A metric space E is called spherically complete if the collection
of its closed balls has the binary intersection property (see Section 7).

The non-Archimedean Hahn–Banach Theorem (First Version) is the following:

Theorem 14. Let K be a spherically complete non-Archimedean valued field.
Let E be a normed vector space over K. Let E0 be a vector subspace of E and let
f0 be a continuous linear functional from E to K. Then there exists a continuous
linear function f : E → K that extends f0 and for which

‖f‖ = ‖f0‖ .

Notice that we have seen in Section 7 how spherical completeness of the reals
plays an important role in the Hahn–Banach Theorem. Also consider that C is
not spherically complete. Spherical completeness was studied by Krull before the
Hahn–Banach Theorem even got its name (see [188]). One wonders about the
effect that general knowledge about this field of fascinating results would have
within the larger community of functional analysis. As in Nachbin’s characteri-
zation of injective Banach spaces over the reals, more than in the above theorem
is true.

Theorem 15. Let E,F be normed vector spaces over a non-Archimedean
field K. Let E0 be a vector subspace of E and let f0 be a continuous linear map
E0 → E. If either E0 or F is spherically complete then there exists a continuous
linear map f : E → F that extends f0 and for which

‖f‖ = ‖f0‖ .

Definition 16. A normed vector space F over a non-Archimedean valued
field K is said to be injective if it can take the role of K in Theorem 14, i.e. for
every normed space E over K and every subspace E0 of E and every continuous
linear map f0 from E0 to F there exists a continuous linear extension f : E → F
such that ‖f‖ = ‖f0‖.

The previous theorem implies half of Ingleton’s Hahn–Banach Theorem.
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Theorem 17. A normed vector space over a non-Archimedean valued field is
injective if and only if it is spherically complete.

An injective normed vector space has to be complete here as well as in Sec-
tion 7. The similarity with Section 7 is too close for there not to be a common
generalization to both, Nachbin’s Theorem and Ingleton’s Theorem. Indeed, see
[281] by Rodŕıguez-Salinas and Bou.

Not only does non-Archimedean functional analysis clarify the roles of R and
C in classical functional analysis, it also has a life of its own. There is, for instance,
the following theorem.

Theorem 18. In the situation of Theorem 15 there exists a linear isometry
f0 → f0 from the space of all linear continuous maps E0 → F to the space of all
linear continuous maps E → F such that for every f0, f0 is an extension of f0.

That this is very different from the classical situation will be seen when we
talk about simultaneous Hahn–Banach extensions. Much more can be said, but
we refer the interested reader to the following papers and the references therein:
[331] and [332] by van Rooij, [281] by Rodŕıguez-Salinas and Bou, [258] and [259]
by Pérez-Garćıa, [224] by Mart́ınez-Maurica and Pérez-Garćıa and [81] by De
Grande - De Kimpe and Pérez-Garćıa.

11. Constructive analysis and unique extensions

Those who have been reluctant to use the Axiom of Choice or its associates
have come up with a variety of remedies to save the Hahn–Banach Theorem.
One is to only allow a restricted form of the Axiom of Choice, usually the Count-
able Axiom of Choice or the Axiom of Dependent Choices. Generally speaking,
that restricts the game to separable spaces and saves all the classical methods of
proving the Hahn–Banach Theorem. We refer to [111] by Garnir – de Wilde –
Schmetz and [339] by de Wilde. In the style of Bishop type analysis (see [56])
the best theorem around is Theorem 21 below by Ishihara (see [149]). Before we
phrase it, some terminology has to be introduced.

Definition 19. Let E be a normed vector space with norm ‖ ‖. The norm
is said to be Gateaux differentiable at x ∈ E if for all y ∈ E

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists.

Definition 20. The normed space (E, ‖ ‖) is said to be uniformly convex if
for every ε > 0 there exists a δ > 0 such that for all x, y ∈ E with ‖x‖ = ‖y‖ =
1 we have

‖x− y‖ ≥ ε⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ .
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Theorem 21 (Ishihara’s Hahn–Banach Theorem). Let E0 be a vector sub-
space of a uniformly convex Banach space E with a Gateaux differentiable norm.
Let f0 be a normable, nonzero continuous linear function E0 → R. Then there
exists a unique linear normable continuous extension f of f0 from E to R such
that ‖f‖ = ‖f0‖.

The word normable in the above emerges because of the constructivist’s way
of doing functional analysis and we refer once more to [56] for its understanding.
However, if you disregard that word in Ishihara’s Theorem, then you see a theo-
rem that you can also read through your classical glasses. Naturally, the theorem
is still correct with those glasses. In fact, the differences with the First Version
of the Hahn–Banach Theorem are these: There are the extra assumptions of uni-
form convexity and Gateaux differentiability and the strengthened conclusion of a
unique extension. What classical theorems deal with uniqueness of Hahn–Banach
extensions?

Theorem 22 (Phelps in [260]). f0 in E∗0 has a unique norm preserving ex-
tension in E∗ if and only if the annihilator

H⊥ = {f ∈ E∗ : f |E0 = 0}

has the Haar property , i.e. for each f in E∗ there exists a unique g in H⊥ such
that

‖f − g‖ = inf{‖f − h‖ : h ∈ H⊥} .
The latter theorem is the best result for an individual f0. If you wish to

investigate all f0 and all E0 simultaneously, the result is older:

Theorem 23 (Taylor in [325] and Foguel in [100]). There is unicity of exten-
sion for all E0 and all f0 if and only if E∗ is uniformly convex.

The words “uniformly convex” are the link to Ishihara’s Theorem. The
Gateaux differentiability had arisen even earlier, in 1932.

Theorem 24 (Ascoli in [21]). A linear functional f0 on the one-dimensional
subspace generated by x0 can be extended uniquely if the norm on E is Gateaux
differentiable in x0 (or , if f0 ∈ E∗0 assumes its norm at x0 where the norm is
Gateaux differentiable then there exists a unique linear norm preserving extension
in E∗).

By using a famous theorem by James (see e.g. [98]) and combining the above,
one can formulate some results where the conditions are on E and not on E∗.

Theorem 25. If the unit ball in E is weakly compact and if the norm in E
is Gateaux differentiable then every continuous linear functional on every vector
subspace of E can be uniquely extended to a continuous linear functional on E
with the same norm.
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And in particular:

Theorem 26. If E is a reflexive Banach space and the norm on E is Gateaux
differentiable then Hahn–Banach extensions are unique.

Looking at Ishihara’s Theorem the reader will notice that the above results
are only slightly stronger than Ishihara’s viewed-through-classical-glasses.

To look at classical results with the eye of a constructivist is more difficult than
the other way around though. Constructive interpretations of classical notions
may not be available. Does uniqueness in classical mathematics (that is, in ZFC)
ensure existence in constructive mathematics? The following is a test case for that
question. Denote by B(`2) the Hilbert space of all continuous linear operators
`2 → `2. By multiplication we have

`∞ ⊂ B(`2) .

The elements of `∞∗ are complicated but the extreme points of its unit ball are
easily identified with the elements of βN. Using the Hahn–Banach Theorem and
just a little of the Krein–Milman Theorem one extends such extreme points to
extreme points of the unit ball of B(`2)∗. In 1959 (see [155]) Kadison and Singer
investigated the following:

Conjecture 27. Such extensions are unique.

The question is still open and recent studies (see Akeman–Anderson in [3] and
Bourgain–Tzafriri in [53]) favor a positive answer.

We should mention one more constructive extension theorem, even though
it is a special case of Theorem 26: In Hilbert spaces life is easy because of the
Riesz–Fischer Theorem. Other references to uniqueness results are [82] by de
Guzmán, [138] by Hennefield, [177] by Kolumban, [195] by Lima, [267] by Poulsen
and [302] by Shukla.

12. The Axiom of Choice and the Ultrafilter Theorem

How effective is the Hahn–Banach Theorem? The previous section investi-
gated parts of mathematics where the Hahn–Banach Theorem can be applied
with no or little choice. Here, we want to know what is needed to prove the full
Hahn–Banach Theorem.

The Ultrafilter Theorem states that for every Boolean algebra B and for every
filter F in B there is an ultrafilter U that contains F . Like the Hahn–Banach
Theorem, the Ultrafilter Theorem cannot be proved in ZF-set theory. As we
mentioned in Section 6,  Loś and Ryll-Nardzewski were the first to show that
the Ultrafilter Theorem suffices to prove the Hahn–Banach Theorem (see [210]).
Of course, this gets more interesting as soon as one knows that the Ultrafilter
Theorem does not imply the Axiom of Choice. This was proved by Halpern
in [125]. Next we may ask: Is the Hahn–Banach Theorem equivalent to the
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Ultrafilter Theorem? Luxemburg originally conjectured that it might, but Pincus
(see [264] and [265]) showed that the answer is negative. Pincus uses model-theory
and the present paper does not permit us to discuss his idea in detail. There are
other ways, though, in which one gets an inkling of the difference between the
Ultrafilter Theorem and the Hahn–Banach Theorem. We discuss two of such
results. For the first of them we refer to page 179 of [290].

Theorem 28. The following are equivalent.

(1) The Axiom of Choice.
(2) The Krein–Milman Theorem and the Ultrafilter Theorem.

To relate the previous theorem to the Hahn–Banach Theorem, we need a
definition.

Definition 29. A subset A of a topological vector space X is called convex
-compact if whenever ℘ is a collection of closed convex subsets of A with the finite
intersection property then

⋂
℘ 6= ∅.

One gets the statement Convex Krein–Milman Theorem by replacing the word
compact in the Krein–Milman Theorem by convex-compact . For the next theorem
we again refer to page 179 of [290].

Theorem 30. The following are equivalent.

(1) The Axiom of Choice.
(2) The Convex Krein–Milman Theorem and the Hahn–Banach Theorem.

The distinction between the Ultrafilter Theorem and the Hahn–Banach The-
orem is further explored in the next two theorems.

Theorem 31 (Tarski in [324]). The following are equivalent.

(1) If µ0 is a measure on a subalgebra B0 of a Boolean algebra B then there
exists a measure µ on B with µ = µ0 on B0 and µ(B) is contained in the closure
of the range of µ0(B0).

(2) The Ultrafilter Theorem.

Theorem 32 (Luxemburg in [214]). The following are equivalent.

(1) If µ0 is a measure on a subalgebra B0 of a Boolean algebra B then there
exists a measure µ on B with µ = µ0 on B0 and the range µ(B) is contained in
the closure of the convex hull of the range of the convex hull of µ0(B0).

(2) The Hahn–Banach Theorem.

There exist more special Hahn–Banach-like theorems that are equivalent to the
Ultrafilter Theorem. In the context of vector lattices, for instance, the following
setup exists.
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Definition 33. Let E be a vector lattice. A sublinear map p : E → R is
called a ∨-homomorphism if

p(x ∨ y) = p(x) ∨ p(y) for all x, y ∈ E .

Theorem 34. Let E and p be as in the previous definition. Let E0 be a vector
sublattice of E and let f0 from E0 to R be a linear lattice homomorphism such
that

f0(x) ≤ p(x) for all x ∈ E0 .

Then there exists a linear lattice homomorphism f : E → R that extends f0 and
for which

f(x) ≤ p(x) for all x ∈ E .
Theorem 34 was first proved by Schmidt in [293] (also see [65] and [133]) using

Alaoglu’s Theorem and the Krein–Milman Theorem, a combination that implies
the Axiom of Choice. It was then shown by Buskes and van Rooij in [64] to be
equivalent to the Ultrafilter Theorem.

There still are many open problems connected with this section. We mention
three of them. In non-Archimedean functional analysis we discussed Ingleton’s
Hahn–Banach Theorem in Section 10. Can Luxemburg’s approach to the ordi-
nary Hahn–Banach Theorem (see Section 6) be used to prove Ingleton’s Theorem
as well? Van Rooij answers that question positively for the case of spherically
complete locally compact non-Archimedean valued fields in [332]. Since there are
many more non-Archimedean valued fields it is not unreasonable to conjecture
(it is a question in [332]) the following:

Conjecture 35. Ingleton’s Theorem is equivalent to the Axiom of Choice.

On the other hand, there is

Conjecture 36. Ingleton’s Theorem for locally compact fields is equivalent
to the Ultrafilter Theorem.

Related to the above Hahn–Banach Theorem for linear lattice homomorphisms
is Sikorski’s Extension Theorem for Boolean algebras. For the many papers in
that direction see [24] by Bacsich, [40] by Bell, [62] by Buskes, [71] by Cignoli, [215]
by Luxemburg, [236] by Monteiro, [305] and [306] by Sikorski. Bell has shown
that Sikorski’s Extension Theorem is not equivalent to the Ultrafilter Theorem
and Luxemburg on many occasions has asked whether it is equivalent to the
Axiom of Choice. Notice that there is a Hahn–Banach Theorem (Second Version)
of Sikorski’s Extension Theorem in [236]. The relations between various type
Hahn–Banach Theorems in the context of foundations have not been studied
very extensively. Lately, in the theory of topoi, advances have been made, without
using the Axiom of Choice, by Banaschewski in [34] and Mulvey–Pelletier in [238].
Of course, such results might belong more to Section 11 than to the present
section.
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13. The Mazur–Orlicz Theorem

We have had occasion before to mention the Mazur–Orlicz Theorem. It is
difficult to overstate its importance.

Theorem 37 (Mazur–Orlicz). Let E and p be as in the Second Version of the
Hahn–Banach theorem. Let T be a set and let ϕ : T → E and α : T → R be
mappings. Then the following are equivalent.

(1) There exists a linear f : E → R with

(i) f ≤ p and
(ii) α(t) ≤ f(ϕ(t)) for all t ∈ T .

(2) For all k ∈ N and all τ1, . . . , τk ∈ R+ and all t1, . . . , tk ∈ T we have
k∑

n=1

τnα(tn) ≤ p
( k∑
n=1

τnϕ(tn)
)
.

Not only has the theorem been influential, but equally significant is the proof
that Pták provided. We present Pták’s proof.

Assuming (2), define

q(x) = inf
{
p
(
x+

k∑
n=1

τnϕ(tn)
)
−

k∑
n=1

τnα(tn) :

k ∈ N and τ1, . . . , τk ≥ 0 and t1, . . . , tk ∈ T
}
.

Note that the elements in the above expression are bounded below by −p(−x),
which makes it possible to take the infimum. It is a fact that q is subadditive and
positive-homogeneous and that q ≤ p. Also observe that

q(−ϕ(t)) ≤ p(−ϕ(t) + ϕ(t))− α(t) = −α(t) for all t ∈ T .

By the Hahn–Banach Theorem there exists a linear f : E → R such that

f ≤ q .

But then by the inequality above

f(−ϕ(t)) ≤ −α(t)

and therefore
α(t) ≤ f(ϕ(t)) .

That proves the implication (2)⇒(1) above. The implication (1)⇒(2) is easy.

The original proof by Mazur and Orlicz in [228] is complicated. Pták’s proof
appeared in [268]. Notice how the theorem has some resemblance to Helly’s
Theorem 4 above. Before Pták, Sikorski had simplified the Mazur–Orlicz proof
(see [306]) with a geometric argument which is reminiscent of the techniques in
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Section 8. There are a few particular consequences of the Mazur–Orlicz Theorem
that we present to exemplify its versatility.

Theorem 38. Let E and p be as in the Second Version of the Hahn–Banach
Theorem. Let e ∈ E. Then there exists a linear f : E → R with f ≤ p and
f(e) = p(e). Moreover , p is the pointwise supremum of all the linear f that it
dominates.

P r o o f. Take in the Mazur–Orlicz Theorem T = {t}, a singleton set, ϕ(t) = e
and α(t) = p(e). The condition (2) in the Mazur–Orlicz Theorem is easily verified
and we find a linear f : E → R with

f ≤ p and p(e) = α(t) ≤ f(ϕ(t)) = f(e)

and therefore f(e) = p(e). The second part of the theorem follows from the first
part.

Theorem 39. The Hahn–Banach Theorem (Second Version) follows from the
Mazur–Orlicz Theorem.

P r o o f. Take T = E0, ϕ the identity on E0 and α(t) = f0(t) for all t ∈ E0. The
condition (2) in the Mazur–Orlicz Theorem now corresponds to the requirement
that f0 ≤ p in the Hahn–Banach Theorem.

Theorem 40. The Sandwich Theorem (Theorem 5) follows from the Mazur–
Orlicz Theorem.

P r o o f. This time we take T = E, ϕ is the identity on E and α(t) = q(t) for
all t ∈ T . Condition (2) in the Mazur–Orlicz Theorem then corresponds precisely
to the condition q ≤ p in the Sandwich Theorem.

It is an entertaining exercise to show (within ZF-set theory) that the Hahn–
Banach Theorem, the Mazur–Orlicz Theorem, the geometric Hahn–Banach The-
orem and the Sandwich Theorem are pairwise equivalent.

Returning more to the roots of the Hahn–Banach Theorem, there is the fol-
lowing moment theorem.

Theorem 41. Let E, p, T, α and ϕ be as in the Mazur–Orlicz Theorem. Then
the following are equivalent.

(1) There exists a linear f : E → R such that

(i) f ≤ p and
(ii) α(t) = f(ϕ(t)) for all t ∈ T .

(2) For all k ∈ N, for all τ1, . . . , τk ∈ R+ and all t1, . . . , tk ∈ T we have
k∑

n=1

τnα(tn) ≤ p
( k∑
n=1

τnϕ(tn)
)
.

If you look at the previous theorem in normed spaces, Helly’s Theorem 4 of
Section 3 appears. There are many papers devoted to the Mazur–Orlicz Theorem,
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its analogous versions and its applications. We refer to [104] by Fuchssteiner and
Lusky, [105] by Fuchssteiner and König, [166] by Kaufman, [173] by Kindler, [180]
and [181] by König, [183] and [185] by Kranz, [248], [249] and [250] by Neumann,
[296] by Seever, [312] and [314] by Simons.

14. Simultaneous Hahn–Banach extensions

Hilbert spaces were behind the scenes all the time in Section 11. In the present
section they become the forerunners. Dually (but not in the sense of the category
theory in [297]) to injectivity, which we studied a little in Section 7, there is
projectivity.

Definition 42. A Banach space E is called projective if for every Banach
space F and for every subspace E0 of E and every continuous linear map f0 from
E0 to F there exists a norm preserving linear extension E → F .

Theorem 43. For a Banach space E the following are equivalent.

(1) E is projective.
(2) E is a Hilbert space or dim(E) ≤ 2.

This theorem holds for real as well as complex vector spaces. For vector spaces
over R the result is due to Kakutani in [156], for vector spaces over C the result
was proved by Sobczyk (see [317]). We also wish to refer here for results about
projectivity and injectivity to the beautiful survey article by Nachbin (see [246]).

Hilbert spaces also play a major role in Theorem 45, for which we need

Definition 44. LetE and E0 be like in the First Version of the Hahn–Banach
Theorem. A linear map T : E∗0 → E∗ is called a linear extension operator if for
every f0 in E∗0

(1) T (f0) is an extension of f0 and
(2) ‖T (f0)‖ = ‖f0‖.
Theorem 45. For a Banach space E the following are equivalent.

(1) There exists a linear extension operator for every (two-dimensional) sub-
space of E.

(2) E is a Hilbert space.

There now is much more information about so-called simultaneous extensions
like T above. Important papers in this direction are [93] by Fakhoury, [134] by
Heinrich and Mankiewicz and [347] by Yost and Sims. We want to say a little
more about the last two papers. Using ultrapowers (nonstandard analysis for
the working mathematician) Heinrich and Mankiewicz proved the next theorem,
which says that for every subspace E0 of E there exists a larger subspace Ẽ0

which is not much bigger and a linear extension operator Ẽ∗0 → E∗. We need to
explain what it means to be not much bigger first.
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Definition 46. The density character of a Banach space E is the smallest
cardinal number for which there exists a dense subset of E with that cardinality.
We denote the density character of E by dens(E).

Theorem 47. Let E be a Banach space. For every vector subspace E0 of E
there exist a vector subspace E0 ⊂ Ẽ0 of E such that dens(E0) = dens(Ẽ0) and
a linear extension operator Ẽ∗0 → E∗.

Yost and Sims recently (in [347]) proved the same result, in a straightforward
way and without using ultrapowers, returning to earlier techniques as employed
by Lindenstrauss in [200].

15. Injective Banach spaces and injective Banach lattices

We take up here where we left in Section 7. Nachbin characterized injective
spaces in 1950 (also see [245]). Before we continue that discussion we remark that
there are other ways of defining 1-injectivity.

Proposition 48. Let E be a Banach space. Then the following are equivalent.

(1) E is 1-injective.
(2) For every Banach space Ẽ with Ẽ ⊃ E there exists a surjective linear

projection P : Ẽ → E with ‖P‖ ≤ 1.
(3) If f is a linear isometry from E into a Banach space Ẽ then there exists

a linear g : Ẽ → E with ‖g‖ ≤ 1 such that g ◦ f is the identity operator on E.

The very first result about 1-injectivity of Banach spaces came from Phillips
in 1940 (see [262]). He showed that `∞(S) for any set S is injective by apply-
ing the classical Hahn–Banach Theorem coordinatewise. In fact, the following
clarification of Theorem 8 is valid.

Theorem 49. Let E be a Banach space. Then the following are equivalent.

(1) E is 1-injective.
(2) E has the binary intersection property.
(3) E is a Dedekind complete vector lattice with strong order unit.
(4) E is isomorphic to C(X) for an extremally disconnected compact Haus-

dorff space X.

Not all in the above theorem is due to Nachbin. In fact, the characterization
of 1-injectivity in (4) above, under the additional assumption that the unit ball
in E has an extreme point, is due independently to Nachbin and Goodner (see
respectively [244] and [117]). That the condition about an extreme point was
unnecessary was shown by Kelley in 1952 (see [172]). To put this result in the
perspective of its time we refer to [4] and [5] (by Akilov) and [319] (by Sobczyk).
The condition (3) above once again emphasizes the connection with order. In
fact, a reader may suspect that order will play an even more pronounced role
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in the Second Version of the Hahn–Banach Theorem when the range space is
varied. We will satisfy that suspicion when we discuss the relation between the
Hahn–Banach Theorem and the least upper bound property in the next section.

A few comments about injective Banach spaces over C. Hasumi in [130] proved
the equivalence of (1) and (4) above in that category. Since the main idea in
the results of Nachbin is based on a study of the binary intersection property,
positively absent in C, the techniques in Hasumi’s argument are understandably
very different. He uses a selection (see [232]) argument. There are other places
in the Hahn–Banach literature where selection theorems play a role (see e.g.
Pe lczyński in [257]). It is fascinating to watch when, so to speak, the Tietze
Extension Theorem teams up with the Hahn–Banach Extension Theorem. With
regard to Hasumi’s result, [74] by Cohen and [165] by Kaufman should not be
overlooked. As to injective Banach spaces in general, the reader should consult
[297] with references first. Furthermore, there are [129] by Hasumi and Seever,
[266] by Pothoven, [285] and [286] by Rosenthal and the appendix by Pe lczyński
and Bessaga in the English translation of Banach’s book [28]. The connection to
projective topological spaces is Gleason’s [114].

In the various forms of the definition of 1-injective spaces above, the condition
that certain operators have norms less than or equal to 1 can be found. If one
replaces that condition with less than or equal to λ (and in Definition 7 one puts
‖f‖ ≤ λ‖f0‖) the result is a set of equivalent definitions for so-called λ-injective
spaces. If a space is λ-injective for some λ, we say that the space is injective. Day
in his book [79] on page 125 remarks that there is no characterization correspond-
ing to Nachbin’s Theorem above for λ-injective spaces. Unfortunately, there is
little change today. The problem is still open.

Problem 49A. Characterize the λ-injective Banach spaces for λ 6= 1.

Injectivity is a notion of category theory. As such there are objects and map-
pings. Our previous discussion was in the category of Banach spaces and contin-
uous linear maps. Knowing of the intimate relation between the Hahn–Banach
Theorem and partial order, the category of Banach lattices and positive linear
maps needs attention. Notice that the objects and the maps are more restricted
but that the extensions need to have a stronger property (i.e. positivity) as well.
The outcome is surprising and most of the surprise is in the following theorem.

Theorem 50. L1(µ) is a 1-injective Banach lattice.

This theorem was proved by Lotz in [211]. Important contributions were made
in [67] by Cartwright, where the influence of Nachbin’s result and some of Lin-
denstrauss’ papers (e.g. [196] and [202]) nicely combine into more examples of
1-injective Banach lattices. The focus of research in this direction was an investi-
gation into L∞-combinations of L1’s and L1-combinations of L∞’s as 1-injective
Banach lattices. The results are too technical to record here. A conclusive pa-
per is [132] by Haydon. For λ-injective Banach lattices, the situation is a little
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better than for λ-injective Banach spaces, but a characterization is still missing.
However, for the isomorphic characterization of injective Banach lattices there
are some partial results in [203] by Lindenstrauss and Tzafriri and in [221] by
Mangheni.

We mention two more directions of research. One is about injective hulls of
Banach spaces. The fundamental paper is [74] by Cohen and additional references
are [73] by Cohen and Lacey, [77] by Daigenault, [148] by Isbell and [165] by
Kaufman. The other is about separably-injective spaces; the final paper on the
topic is [350] by Zippin. For Banach lattices see [63] by Buskes.

16. The interpolation property

In Banach’s proof of the Hahn–Banach Theorem a number A is chosen such
that

−p(−x− x0)− f0(x) ≤ A ≤ p(x+ x0)− f0(x) for all x ∈ E0 .

In other words, it is used that R has the interpolation property or, equivalently,
the least upper bound property. Early on there was an effort to understand the
role of the least upper bound property in Banach’s proof. Kantorovich was the
first to investigate ordered spaces F instead of R in [162]. We consider a linear
space F ordered with a wedge (see Section 8).

Definition 51. F is said to have the interpolation property if for each pair
of subsets U, V of F with a ≤ b for all a ∈ U and all b ∈ V there exists c ∈ F
such that a ≤ c ≤ b for all a ∈ U and all b ∈ V .

Definition 52. F is said to have the least upper bound property if every set
in F which has an upper bound has a least upper bound.

Clearly F has the least upper bound property if and only if it has the inter-
polation property. It is a matter of copying Banach’s proof word by word to find
that

Theorem 53. The Hahn–Banach Theorem (Second Version) holds with R
replaced by an ordered space F with the interpolation property.

In the reverse direction, there is an interesting history. In 1959 Silverman
and Yen announce that one needs an extra condition on the wedge for the con-
verse (see [308]). They name the extra condition lineally closed (see page 25 of
[79]). To summarize, they prove that an ordered space F can replace R in the
Hahn–Banach Theorem (Second Version) if and only if it has the interpolation
property and its wedge is lineally closed. In 1966 Bonnice and Silverman (see
[48]) find that the counterexample to show that lineally closed could not be left
out from the 1959 paper was wrong. Moreover, they prove that it can be left
out if F is finite-dimensional. A year later Bonnice and Silverman in [47] prove
that the condition was unnecessary altogether. Thus, the new status was that the
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interpolation property is necessary and sufficient for the Hahn–Banach Theorem.
In 1969, Ting On To finds a mistake in the 1966 paper by Silverman and Bonnice
(see [326]) and he fixes the finite-dimensional case. In 1970 (see [327]), he gives
a proof of the general case (i.e., the interpolation property is equivalent to the
extension property). All of the work in the history above is geometric in nature
and technical in execution. After trying to figure out what is right and what is
wrong in this sequence of events, there is a sigh of relief with the 1981 paper [147].
Ioffe proves in it the equivalence of the Hahn–Banach Extension Theorem for F to
the interpolation property for F in an elegant fashion that fits well into the central
themes of this paper. In the process he reproves the Hahn–Banach Theorem in
the following way. Recall that Nachbin’s investigations about the First Version
of the Hahn–Banach Theorem relied on a certain intersection property of closed
balls. We replace the role of the closed balls by a collection < of subsets of F
with certain invariance properties:

(i) If A ∈ < and f ∈ F then f +A ∈ <,
(ii) If A1 ∈ < and A2 ∈ < then A1 +A2 ∈ <,
(iii) If A ∈ < and λ ∈ R then λA ∈ <.

Furthermore, it is required that every element of < is convex.

Definition 54. A map ψ : E → < is called a fan if

(i) ψ(αx) = αψ(x) for all x ∈ E and all α ∈ R+,
(ii) ψ(x+ y) ⊂ ψ(x) + ψ(y) for all x, y ∈ E,
(iii) 0 ∈ ψ(0),
(iv) ψ(x) 6= ∅ for all x ∈ E.

A fan ψ is called odd if ψ(−x) = −ψ(x) for all x ∈ E. Fans are the analogs
of sublinear functions.

Definition 55. A linear map f : E → F is called a selection for the fan ψ
if A(x) ∈ ψ(x) for every x ∈ E.

Theorem 56 (Ioffe). The following are equivalent.

(1) Every selection for every odd fan on any subspace of E extends to a
selection on all of E.

(2) < has the binary intersection property.

Ioffe mentions that the implication (2)⇒(1) was already proved in [282] (see
also page 75 in [104]).

A commonly held conviction says that if a Hahn–Banach Theorem holds for R
as a range space then it holds more generally for any Dedekind complete ordered
space. That conviction turns out to hold true surprisingly often. However, one
can not always copy the R-valued proof . The difficulties in mimicking R-valued
proofs are often caused when a Hahn–Banach argument is combined with a topo-
logical technique, like the Krein–Milman Theorem. We also remark that not
much research has been done to see which parts of Hahn–Banach Theorems hold
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if the range space is σ-Dedekind complete or has the σ-interpolation property. In
[64] by Buskes and van Rooij one can find a theory of ultrapowers for Dedekind
complete Riesz spaces which makes many nonstandard arguments accessible to a
wider range of spaces.

17. Invariant extensions

In this section we follow the treatment by Larsen in [193] of some results by
Silverman ([309], [310] and [311]) and Klee [175]. There are connections here with
Banach limits, fixed point theorems, the Banach–Tarski paradox and amenability.
Naturally, we also have to point in the direction of Greenleaf’s book [119].

Theorem 57. Let E, E0, f0 and p be as in the Hahn–Banach Theorem (Second
Version). Let G be an Abelian semigroup of transformations E → E such that
T (E0) ⊂ E0 for all T ∈ G. Suppose furthermore that

f0(T (x)) = f0(x) and p(T (x)) ≤ p(x)

for all x ∈ E0 and for all T ∈ G. Then there exists an extension f : E → R of f0
such that

f(T (x)) = f(x) for all x ∈ E and all T ∈ G .
The proof is ingenious. A new subadditive function is defined by

p0(x) = inf
{
p(
∑n
k=1 Tk(x))
n

: n ∈ N and {T1, . . . , Tn} ⊂ G
}

for all x ∈ E.

Each term in the right hand side is not smaller than −p(−x) and a proof of
the subadditivity uses the fact that G is Abelian. The gain is in the following
property:

p0(x− T (x)) = p0(T (x)− x) = 0 for all x ∈ E and all T ∈ G .
Using the Hahn–Banach Theorem with p0 instead of p we find an extension f of
f0 with

−p0(T (x)− x) ≤ f(x− T (x)) ≤ p0(x− T (x)) for all x ∈ E and all T ∈ G .
In other words, f(T (x)) = f(x) for all x ∈ E and all T ∈ G.

The ordinary Hahn–Banach Theorem follows from the previous theorem by
considering the group G with the identity operator only. The aforementioned
results in [309], [310], [175] and [193] contain more information and applications.
More in particular, Klee in [175] relaxes the conditions on the semigroup G. In
his paper, G is not necessarily Abelian. His definition of an auxiliary subadditive
function bears resemblance to both p0 above as well as q in Pták’s proof of
the Mazur–Orlicz Theorem. His main result covers the above theorem, but also
the situation in which each finite subset of G generates a finite subgroup of G.
Silverman in [309], [310] and [311] continued the study of which semigroups admit
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invariant extensions. It is interesting to compare the five classes that admit such
invariant extensions in Silverman’s work with the five classes that occur in 10 of
the beautiful book [335] by Wagon.

This paper would not be complete without at least one proof of the existence
of Banach limits. For each convergent sequence of real numbers (an) we define

f0((an)) = lim
n→∞

an .

This defines a linear function on c, the linear subspace of all convergent sequences
of `∞. We define p((an)) = ‖(an)‖∞ and T ((an)) = (an+1). Furthermore, G =
{Tn : n ∈ N}. Applying the above theorem now yields a Banach limit. Banach
proved the existence of such a limit in his book [28] (see page 20 of the English
translation) as an application of the Hahn–Banach Theorem.

18. Locally convex spaces

A particular consequence of the Hahn–Banach Theorem is the fact that E∗

separates the points of E for normed vector spaces E. Actually, the First Version
of the Hahn–Banach Theorem holds for a seminorm just as well as for a norm.
This implies that the dual of a locally convex space separates the points.

Theorem 58. In a locally convex topological space E the following hold.

(1) If E0 is a vector subspace of E and f0 is a continuous linear functional
on E then there exists f ∈ E∗ such that f |E0 = f0.

(2) E∗ separates the points of E.

We will say that a topological vector space E has the Hahn–Banach Extension
Property (in short HBEP) if it has property (1) of the theorem above. For non-
locally convex topological vector spaces the situation is rather different. Some
spaces do have HBEP and some do not. The one and only result (that I know
of) which characterizes HBEP for a large class of spaces is due to Kalton. Kalton
proved in [160] the following result for F -spaces (also see Kalton–Peck–Roberts
in [159] and Kalton in [161]).

Theorem 59 (Kalton). For every F-space E the following are equivalent.

(1) E is locally convex.
(2) E has the Hahn–Banach Extension Property.

In [161], Kalton remarks that the following problem is still unsolved.

Problem 60A. Is every metrizable topological vector space with the Hahn–
Banach Extension Property automatically locally convex?

Partial results and references to more partial results to the above problem can
be found in [161] and [272].
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19. Non-commutative Hahn–Banach Theorems

One of the amazing features of the Hahn–Banach Theorem is its flexibility.
On first sight it seems to depend totally on order. Nonetheless, the Hahn–Banach
Theorem for C and Ingleton’s Theorem for non-Archimedean valued fields depend
on a closer study of its proof. Studying non-commutative settings, one realizes
that the range space is to be an anti-lattice, once again as remote from R and
the comfort of its order structure as one can get. We remind the reader that a
subset E0 of a partially ordered set E is called cofinal if for every e ∈ E there
exists an f ∈ E0 such that e ≤ f . The analogy in form between the following
theorems should be striking and anyone whose fancy it strikes should consult the
references.

Theorem 60 (Kantorovich in [162]). Let E be an ordered vector space and
E0 a cofinal (i.e. majorizing) subspace of E. Let F be an order complete vector
space. Then each positive linear map E0 to F can be extended to a positive linear
map E → F .

Theorem 61 (Lipecki–Plachky–Thomsen in [206] and Luxemburg–Schep in
[212]). Let E be a vector lattice and E0 a cofinal vector sublattice of E. Let F be
an order complete vector lattice. Then each vector lattice homomorphism E0 → F
can be extended to a vector lattice homomorphism E → F .

Theorem 62 (Arveson in [20]). Let E be a C∗-algebra and let E0 be a cofinal
∗-invariant subspace of E. Let H be a Hilbert space and B(H) the space of all
bounded operators on H. Then each completely positive linear map E0 → B(H)
extends to a completely positive linear map E → B(H).

Obviously, the condition of cofinality in these theorems is an analog of a
sublinear functional, which indeed in the case of the first two theorems can be
readily introduced by taking an appropriate infimum in the range space. All three
theorems know variations with regard to the cofinality. In the first two, sometimes
E0 contains an order unit from E, and in the third, E0 might have a unit instead
of being majorizing. All three theorems can be formulated as E being a (positive,
lattice homomorphic, completely positive, respectively) retract of any bigger space
in which it majorizes, which should be compared with (2) of Proposition 48.

The last of these theorems requires more care. Though Arveson proved it in
1969, it was only in 1981 (see [342]) that Wittstock brought the theorem into
the realm of Hahn–Banach Theorems. Arveson’s theorem becomes even more
surprising if one realizes that just “positive” instead of “completely positive”
doesn’t do when the range space is not C. Wittstock’s contribution was to go
from “completely positive” to “completely bounded” and he proved a beautiful
Hahn–Banach Theorem in First Version fashion.

Theorem 63 (Wittstock). Let E be a unital C∗-algebra and let E0 be a sub-
space of E. Let f0 be a completely bounded linear map E0 → B(H). Then there
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exists a completely bounded map f : E → B(H) which extends f0 and such that
the completely bounded norm of f , ‖f‖cb, equals the completely bounded norm of
f0, ‖f0‖cb.

Wittstock’s approach is based on sublinear functionals with values in the sub-
sets of B(H), i.e. on a Second Version Hahn–Banach Theorem. It is amusing to
see how many of the theorems and techniques that we have seen in this paper
come together in a recent elegant paper by Schmitt (see [294]). The subject of
completely bounded maps on C∗-algebras is popular and there is an extensive
literature. Much is known about injective objects and injective hulls in this cat-
egory. Indispensable papers in that direction are [69] by Choi and Effros, [126]
and [127] by Hamana, [289] by Ruan, [341] and [342] by Wittstock. I have not
come across any attempts to study λ-injectivity for operator algebras.

20. The strength of the Hahn–Banach Theorem

Section 12 (and perhaps Section 11) is part of an investigation of the strength
of the Hahn–Banach Theorem. In Section 12 we measured its strength by com-
paring it to some giants (that is, stronger set-theoretic results). In this section we
see what consequences it has in the absence of such giants. While the Axiom of
Choice was a topic of heated debate right from its earliest discovery, the emphasis
in critique on AC never was on the Hahn–Banach Theorem. There were more
likely candidates, in particular the Banach–Tarski paradox and the existence of
nonmeasurable subsets of R, to stir doubts about the truth of AC. Interestingly,
the Hahn–Banach Theorem has turned out to imply both.

Theorem 64 (Foreman–Wehrung in [101]). The Hahn–Banach Theorem ef-
fectively implies the existence of a nonmeasurable subset of R.

Theorem 65 (Pawlikowski in [255]). The Hahn–Banach Theorem effectively
implies the Banach–Tarski paradox.

We discuss some of the techniques in [101]; the proof of Pawlikowski follows
similar lines. We remark that before [101] there were proofs of the existence of
nonmeasurable subsets (Vitali’s and less known Bernstein’s), using the Axiom of
Choice or at best the Ultrafilter Theorem (Sierpiński’s proof in [303]).

Foreman and Wehrung consider a set Ω, the collection of its subsets ℘(Ω) and
a probability measure µ on ℘(Ω). G is a group that acts on Ω

(i) measure preservingly and
(ii) free (i.e. gω = ω ⇒ g is the identity element of G).

For an element [x] in Ω/G, they consider the direct sum of the subsets of [x],
℘[x], as a Boolean algebra. With the aid of the Hahn–Banach Theorem one then
produces a measure µ[x] on each ℘[x]. For A ⊂ G define a function a on Ω by

a(x) = µ[x](Ax)
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and define a measure λ on ℘(G) that is invariant under G, by

λ(A) =
∫
a(x) dµ(x) .

In proving the additivity of λ, condition (i) is used; the invariance under G uses
(ii). Then the crux of the matter: F2, the free group on two generators, is not
amenable (see [335]). If one assumes that there exists a probability measure on
the sphere S2 that is invariant under the rotation group SO(3), then one almost
gets a free and measure preserving action of F2 on S2. The “almost” in the pre-
vious sentence is because of some fixed points for each action, a small technicality
because only countably many points are involved.

Conclusion: The Hahn–Banach Theorem implies that there does not exist a
probability measure on S2 that is invariant under SO(3).

Amenability is a widely studied subject (see [79] by Day and [254] by Pa-
terson). It has branched out into many areas of mathematics and so has the
Hahn–Banach Theorem. A study of the relationship between the two in ZF
might turn out profitable in other directions than the above.

21. Other categories

There are many categories in which a Hahn–Banach Theorem is available. We
number the subsections, followed by the category that we discuss.

21.1. Groups and semigroups. The first to consider the category of com-
mutative semigroups as a setting for the Hahn–Banach Theorem were Aumann
in [23] and Halperin in [124]. There are many other papers now. A nice survey
is given in [104] by Fuchssteiner and Lusky. “Forgetting” some of the structure
in the Hahn–Banach Theorem (in this case scalar multiplication or more) brings
with it at least as many complications as adding structure (like extension of vec-
tor lattice homomorphisms in Theorem 34). For instance, the natural analog of
the Hahn–Banach Theorem (Second Version) need not hold. A natural Sandwich
Theorem (Theorem 1.1.2 in [104]) does hold. Important contributions came from
Dinges in [86], Fuchssteiner in [106], [107] and [108], Kaufman in [163] and [166],
Kranz in [183], [184] and [185], Seever in [296], Simons in [313] and [314], and Top-
søe in [328]. On its turn, this renewed interest in variations on the Hahn–Banach
Theorem, which took place in the late sixties and early seventies (not counting
the precursors), influenced a new look at the Hahn–Banach Theorem itself. Par-
ticularly, the German School, in which Anger and Lembcke ([15], [17] and [18]),
Fuchssteiner and König [105], König ([178], [179], [180], [181] and[182]), Neumann
([248], [249] and [250]) and Rodé [278] produced a string of papers approaching
the Hahn–Banach Theorem from various kinds of directions, with an emphasis on
convex analysis. The diversity of applications to their results is wide. We present
one of their results, due to König.
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Theorem 66 (König). Let E and p be as in the Hahn–Banach Theorem (Sec-
ond Version). Let T be a nonempty subset of E and τ : T → R be such that

(i) there exist α, β > 0 with inf{p(w − αu − βv) − τ(w) + ατ(u) + βτ(v) ≤
0 : w ∈ E} ≤ 0 for all u, v ∈ T and

(ii) τ ≤ p.

Then there exists a linear function f : E → R such that f ≤ p and τ ≤ f
on T .

If T is convex and q is superlinear then any α, β with α + β = 1 satisfies the
inequality in (i) and that is the relation between this theorem and the Mazur–
Orlicz Theorem. (A proof for that special situation can be given using exactly
Pták’s argument for the Mazur–Orlicz Theorem.) Neumann in [248] gives a proof
for the more general case where the range space is a Dedekind complete vector
lattice. We refer the reader to his paper for many interesting insights. One of
the most general Hahn–Banach Theorems in this direction is Rodé’s Abstract
Hahn–Banach Theorem ([278]). By the best of my knowledge it has not been
investigated how close generalizations of the Hahn–Banach Theorem like Rodé’s
are to the Axiom of Choice.

21.2. Vector lattices. We mentioned a Hahn–Banach Theorem for homo-
morphisms on vector lattices in Section 12. Many Hahn–Banach Theorems (Ba-
nach’s proof that R is amenable, Klee’s Invariant Extension Theorem in [175],
Pták’s argument for the Mazur–Orlicz Theorem of Section 13, Nakano’s gener-
alization of the Hahn–Banach Theorem in [247], the Musielak–Orlicz generaliza-
tion of the Hahn–Banach Theorem in [243] and many, many more) are proved
by adapting a given sublinear function to a somewhat smaller one that still ma-
jorizes whatever needs to be majorized; the ordinary Hahn–Banach Theorem is
then applied to yield the required result. The resulting theorems invariantly turn
out to be effectively equivalent to the Hahn–Banach Theorem. There is one such
technique which is easily and often applied in the theory of vector lattices. If p
is the sublinear functional involved, the adaptation defines

q(x) = p(x+) .

Notice that a linear f dominated by q is automatically positive: if x ≥ 0 then

−f(x) = f(−x) ≤ q(−x) = p(0) = 0 .

This technique gives an immediate proof of the following Hahn–Banach Theorem
for normed vector lattices.

Theorem 67. Let E be a normed Riesz space. Let E0 be a positive linear
functional on E0. Then there exists a positive linear extension f of f0 such that
‖f0‖ = ‖f‖.

With respect to the Hahn–Banach Theorem for Vector Lattice Homomor-
phisms or the Lipecki–Luxemburg–Schep Extension Theorem the reader may
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marvel at the many ways in which these results can be proved (see Aron–Hager
–Madden in [19], Bernau in [41], Buskes – van Rooij in [64] and [65], Lipecki in
[205] and [208], Luxemburg–Schep in [212]).

21.3 Algebras. The area of extension theorems for algebras is not well
developed. The situation just might be inhospitable for Hahn–Banach Theorems
as is shown by the following example.

Example 68. Take E = C, E0 = R, f0 : R → C the identity and p(x) = |x|
(x ∈ C). p is sublinear and even multiplicative. However, any homomorphic
extension f : E → R of f0 will satisfy f(i)2 = f(i2) = −1, which is impossible.

Nonetheless, positive results have been obtained by Grilliot in [120]. In more
particular situations, say Banach algebras or C∗-algebras, there is no difficulty
(see Kadison and Singer in [155] and Żelazko in [349]). We believe that the most
common reason for the relative ease in such circumstances lies in an extreme be-
havior of algebra homomorphisms in classes of simpler mappings. The problem
is then adequately dealt with by applying the result on maximal extensions by
Andenaes in [13] or by combining the ordinary Hahn–Banach Theorem with the
Krein–Milman Theorem as in [107] by Fuchssteiner. Such combinations of the
Hahn–Banach Theorem and extreme point arguments tend to be equivalent to
the Axiom of Choice (see also [141], where it is shown that Krull’s Theorem about
the existence of maximal ideals implies the Axiom of Choice).

21.4. Distributive lattices and Boolean algebras. For Boolean algebras
there is the following Hahn–Banach Theorem.

Theorem 69 (Monteiro in [236]). Let E be a Boolean algebra and E0 a
Boolean subalgebra. Let F be a complete Boolean algebra and p : E → F a
map with p(x∨y) = p(x)∨p(y) for all x, y ∈ E and p(1) = 1. Then every homo-
morphism E0 → F that is dominated by p can be extended to a homomorphism
E → F that is dominated by p.

In fact, Monteiro also proves a Sandwich Theorem for homomorphisms on
Boolean algebras. The classical result by Sikorski that we mentioned in Section 12
is a consequence and so are other facts from the theory of Boolean algebras (for
instance Stone’s Theorem proving that if I is an ideal disjoint from a filter F then
there exists a prime ideal ℘ disjoint from F with ℘ ⊃ I). Cignoli transferred these
results to the more general setting of distributive lattices (see Cignoli in [71]) and
Bacsich in [24] investigated the relation with Sikorski’s Extension Theorem more
closely. Bernau in his proof [41] of the Lipecki–Luxemburg–Schep Theorem for
vector lattice homomorphisms used Cignoli’s Theorem (without quoting Cignoli)
while Luxemburg and Schep [212] employed Stone’s Theorem. Notice that there
is no Sandwich Theorem for vector lattice homomorphisms (see [65]). Recently,
a special type maps called orthomorphisms have become increasingly more im-
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portant in the study of vector lattices; for a study of extension theorems for
orthomorphisms see [338] by Wickstead.

21.5 Module versions of the Hahn–Banach Theorem. Instead of con-
sidering vector spaces over a field, we now consider modules. To not confuse the
issue by technicalities, we assume that

(i) A = C(X) is a σ-Dedekind complete space,
(ii) E is an A-module,
(iii) F is a Dedekind complete A-module,
(iv) E0 is an A-submodule of E,
(v) p : E → F is an A-sublinear mapping (i.e. p is subadditive and p(αx) =

αp(x) for all x ∈ E and all α ∈ A+).

In the light of the remarks at the end of Section 16, the reader does not miss
much by putting F = R in the next theorem.

Theorem 70. In the situation above, let f0 : E0 → F be an A-linear (i.e.
additive and preserving the action of A) map dominated by p. Then there exists
an A-linear map f : E → F that extends f0 and that is dominated by p.

The proof is significantly different from Banach’s proof of the Hahn–Banach
Theorem in one place only. Choosing an element of F to be the value of an addi-
tional element x0 from E\E0 under an extension can be copied. But to prove that
the extension is still dominated by p is more difficult, for we now have to show that

f(x+ ax0) ≤ p(x+ ax0) for all x ∈ E0 and all a ∈ A
and you may recall that in the case A = R the invertibility of any a 6= 0 played a
role in that part of the proof. (To be honest, one has to check that the map f is
well defined, but that also follows from the inequality above.) Theorem 70 is not
the most general at all. In Ghika’s [112] A is an F -ring and in Vuza’s [334] A is
a G-ring . The situation with A = C(X) is rather special and was investigated in
[252] by Ohron. The paper [333] by Vincent-Smith also contains extreme point
arguments in the style of [13] and [261] as well as some results about averaging
operators. Vuza’s paper [334] also has a section on Banach limits.




