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we consider in some representative closed bounded domain; all we say holds without
question as long as our sets are all sitting inside some closed bounded domain in
R™.

THEOREM B.2.1. C" is a closed subset of K(Bz ).

PROOF. Suppose K € X(Byz) is not convex. Then there are points z,y € K
and numbers A, e : 0 < A, e < 1so that if z = Az +(1—A)y, then (2+eBp )N K = 0.
Suppose K € X(Byz) and §(K,K) <.
Then there exist #,7 € K so that
€
3
If 2 = A% + (1 — A)j, then ||z — || < &, too. It follows that if # € K there would
be a w € K so that ||Z — w|| < §; but then

~ £ ~
lz = 2| < 5 and [ly — gl <

~ ~ £ 3
o= wll < llz = 2+ - wl < 5+ 5 <,

and this contradicts (z + €Bg2) N K = . The result is that z ¢ K and K is not
convex.

We've established that any K within § of K in (X(Byz),6) is non-convex.
Hence X\C" is open, which means C" is closed. a

The compactness of C™ has added importance because of the following.
THEOREM B.2.2. The function vol : C™ — [0, 00) given by
vol(K) = A\ (K)
1s continuous on (C™,§) where A, is Lebesgue measure on R™.

PrOOF. Start with K € C™.
Suppose vol(K) = 0. Then K must be contained in a hyperplane. Why?

Because otherwise K contains vectors z1, . .., T, that constitute a basis for R"™; after
translating, if necessary, we can assume K contains 0 as well as a basis {z1,...,zn}
for R™. But now K D co{0,z1,...,zZn}, too; since

n n
co{0,z1,...,zn} = {Z:/\Z:cZ 0< )\ < I’Z’\i <1},
=1 =1
K contains the set u(B}; ), where u : £, — R" takes e, to z, and B}; is the set

{(Al,...,)\n) eER™:0< )\Z,Z)\z < 1}
i=1
It is plain that A,(Bj;) > 0. Since u is invertible, it follows that A, (u(B};)) > 0.
Hence
vol(K) > vol(u(B};)) > 0.
So if we assume vol(K) = 0, then it follows that K lies in some hyperplane H C R™.
Suppose (K, K) < a < 1. Then K C K + aByz, so that

vol(K) < vol(K + aBy).

By rotating and translating, we may assume H = R"~! x {0}. A picture now tells
the story — draw your own.
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vol(K + aBpz) = M(K + aBg)

S / )\n—l(K + aBgi_l)dt

—a
=20 A-1(K+aBg_ )
=20 Ap—1(K + Bgz_ ) (since a < 1)
= c(K)a,
where ¢(K) is a constant depending on K.
So, if vol(K) = 0, then all K’s in C™ that are close to K in the metric § have
volumes that are close to 0.
What happens when vol(K) > 07 Well, K’s interior, K°, must be non-empty;
think about it: If K° = () then we’ve seen K cannot contain a basis for R” and so
it must lie inside a hyperplane. No harm is done if we translate our objects under

consideration to allow 0 to be an interior point of K. So be it.
Let € > 0. Choose v > 1 so that

(" = D" A (K) <e.
Choose p > 0 so that

pBep C K°.
We need to take advantage of the relationship pBy: C K°. To do this we recall
that if K € G, then the support function of K is given by

Sk(u) = sup{(u,z) : z € K}

where (, ) is the inner product in R™. Sk is a (continuous) convex function from
R™ to R and satisfies

Sk, < Sk, if and only if K; C Ky,

where K1, K, € C". Now it is plain (or ought to be!) that Sk, < Sk, if K; C Ky;
if there were o € K1\ K>, then there would be a u € R™ so that
Sk,(u) = sup (u,z) < (u,zo) < sup (u,x) = Sk, (u).
zeK, €K
Tt is also easy to see that if Ko C K7, then not only is it true that Sk, < Sk, but,
in fact, Sk, (u) < Sk, (u) for u # 0.

Now we're ready to take advantage of the relationship pBy: C K°. Here’s how:
if Ki,K, € C" satisfy Ko C K7, then there is a number 7 > 0 so small that
whenever K € €" and 6(K1,K') <n:KyCK.

Indeed, K5 C K7 ensures Sk, — Sk, is a positive continuous function on
R™\{0}. As such, Sk, — Sk, attains a positive minimum n on Spz. Let K ccer

satisfy §(Ky, K) < n. Then
Kl - k"'nta and K - K1 -’-'I]Bg?1

so that
Sk, < SR— + 1 and Sf{ < Sk, +m;
it follows that [Sk, (u) — Si(u)| < for u € Spz. But for u € Sz,

SKI (u) - SKz (’U,) >,
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so for u € Sz

Homogeneity soon says

Sk, < S and K, C K.

Choose a < (y—1)p so that for K € ", it follows from 6(K, K) < a that pBp C K.
Suppose §(K, K) < a. Then

KCK+ aBgz
C K+ (y—1)pByg
CK+(y-1K
— K.

Moreover,

K CK+aBg
CK+(y—1)pBe
CK+(y-1K°
CK+(y-1)K
=vK.

It follows that

Ah ha!
An(K) = An(K) < 4" Mn(K) = A (K)
= (V" = 1)An(K)
< (" = DY A (K)
and
/\n(K) - /\n(K) < 'Yn)‘n(K) - )‘n(K)
= (" = 1) (K)
< (" = D" A(K),

because 7™ > 1. Regardless of the effects of the new world order, we have
An(K) = An(K)| < (7" = D)y Ma(K) < e

and 0(K, K) < a. O



216 B. COMPACT CONVEX SETS IN FINITE DIMENSIONS

B.3. Ellipsoids in finite dimensional Banach spaces

Let X be a Banach space and u : £2 — X a bounded linear operator and let
K = {v € £2 : u(v) = 0} denote its kernel. Of course, K is a closed linear subspace
of the Hilbert space £2 and, as such, has an orthogonal complement K. Take note
that u|g 1 is injective and ||u|g.]| = ||u||. What’s more, u|x.(Bg+) is precisely
’LL(B g% )

We say that the absolutely convex compact subset F of X is an ellipsoid if it
is the image of Byz under some bounded linear operator for some n. By what we’ve
just noticed, if E C R* is an ellipsoid, then there is an n and an injective linear
operator u acting on £2 so that E is the image under the u of Byz.

Suppose F is a finite dimensional Banach space. Denote by E(F') the collection
of all ellipsoids contained in the closed unit ball Br of F. Here is what’s true about
E(F).

THEOREM B.3.1. &(F) is a closed subset of the compact metric space X(BF)
of all non-empty compact convexr subsets of Br.

PROOF. By our earlier remarks, if n = dimF and E € E(F), then there is
a linear operator ug : {2 — F so that E = ug(By). It follows that if (Ep,) is
a sequence of ellipsoids inside Br and C = lim,, F,, in X(Bp), then there is a
sequence U, = ug,, : {2 — F of linear operators such that Un(Bp) = Em; a
fortiori, each u,, is in the closed unit ball of £(¢2; F), a compact space.

By passing to a subsequence, if necessary, we can assume u = lim,, oo Um
exists. If we look at E' = u(Byz), then E is an ellipsoid and is, in fact, C. Why is
this so? Well, think what it means for two bounded linear operators a,b: £2 — F
to be close: If [la — b|| < ¢, then for any x € Bz, ||ax — bz|| < ¢; it is clear then
that aByz C bByz + small multiple of Byz and bByz C aByz + small multiple of
Byz and that just means that aBy: and bByz are close in the Hausdorff metric in
X(BF). O

It is a stunning discovery of John (1948), that, in fact, the ellipsoid of maximum
volume contained in the unit ball Bg of a finite dimensional Banach space E is
unique. This result has played an important role in recent advances in the structure
theory of Banach Spaces.

Note: The authors benefited a great deal from conversations with Artum Zvavitch
about the material of this appendix, as well as frequent referrals to the book of
Pisier (1989) as well as to the book of Schneider (1993).



APPENDIX C

A short introduction to Banach lattices

C.1. The facts, ma’m, just the facts

Banach lattices combine the best of Banach spaces and vector lattices thanks
to demanding that the bigger the “absolute value” of an element the greater its
length. To delve into the finer structure of a Banach lattice (as a Banach space)
we must attend to certain order theoretic affairs.

For the present we will deal with real linear spaces.

Suppose X is a linear space and X comes equipped with a partial order <; if
z+z<y=xzand pr <pyfor all z,y,z in X and all positive numbers p whenever
z < y, then we call X an ordered linear space. If the order of the ordered linear
space X is a lattice order, that is, for any z,y € X,  Vy, the least upper bound of
z and y, as well as x A y, the greatest lower bound of x and vy, coexist, then X is
called a wvector lattice.

It is vector lattices that are the present object of our concern.

Some notation is called for: If x is an element of the vector lattice X, then

zt=2Vv0, 27 =(-2) VO, |[z|=zF Va2,
The positive cone Xt of X is the set
Xt={zeX:z>0}

As in any subject of attractive complexity a certain amount of grubby cal-
culation is necessary; the relationships stated below require a bit of manipulative
demonstration, but in light of their uses the tedium is worth our while.

THEOREM C.1.1. Let X be a vector lattice. Then for any x,y,z € X:

(1) z+y=(xVy) +(zAy) andzVy=—[(—2) A (-y)};

(2) (xVy)+z=(x+2)V(y+2) and (zAy)+2z=(z+2)A(y+2);

B)z=zt—z7,|z|=zt+z~ andzt Az™ =0

(4) if x = uv where u,v € X+t anduAv=0,, then zT = u and 2~ = v.

(5) lax| = |a||z| for all real numbers a;

(6) |+l < [zl + |yl and, if || A lyl = 0,1z + ] = [z] + y| = |a| v |yl

() (eVy)Az=(xAN2)V(yAz) and (xAy)Vz=(zV2)A(yV2);

(8) (F. Riesz’s decomposition property) if 0 < z < z+y,z,y > 0 then there is
au€ Xt and there is av € Xt withu <z andv <y so that z = u + v;

) lze—yl=@VvVy - (@Ay)=|(zVz)—(yVa)|+|rz) - (yA2)l

PRrROOF. In so far as it is the only property positing the existence of external
elements we start with the proof of F. Riesz’s decomposition property (8).

Our setup is that z,y,2 € XT with0 <2<z +7y. Let wu =z A z and v has to
be (what else but) v = z — u. Now it is plain and easy to see that 0 < u (z, z are

217
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both >0) and u <z (u=x Az < z) and u < 2, too (same reason: u =z A z < 2).
Since u < z, v = z — u > 0. Further, v < y:

y—v=y—(z—u=y—z+u=(y—2)+(z A2
=y+(@x—2)A(z—2)=y+ ((z—2)A0)
=(y+z—2)ANy=(z+y—2)Ay>0.
Tra la! a

Such basic manipulations dominate the show that constitutes the proof of the
above theorem.

A Banach lattice is a Banach space that is a vector lattice with ||z|| < ||y||
whenever 0 < z < y; alternatively, if |z| < |y|,, then ||z|| < ||y||. Naturally ||z| =

[l]]-
THEOREM C.1.2. Let X be a Banach lattice, then:
(1) The lattice operations are continuous.
(2) Xt s closed.
(3) If (zn) is an increasing convergent sequence, then sup,, T, exists and is
= lim,, z,.
PROOF. (1) As is usual in bilinear type affairs, we proceed thusly,
[T Ayn — 2z AY| < |Tp Ayn —Zn Ayl + |z Ay —z Ayl
which by Theorem C.1.1(9)
<y =yl + |z — 2.
So
[zn Ayn =z Ayl = [[[(zn Ayn) — (A Y)]]
< lllyn =yl + |zn — 2l
< lyn =yl + [llen — ||
= llyn — ol + llzn — ||
and (1) follows.
(2) Suppose 0 < z, — z. Then z = lim, 2, = lim,(z, V 0) = (lim, z,) V0 =
zV0.Soz=2zVv0and z =lim,z, € X™.
(3) Suppose z,, < zny1 foralln € Nand z = limy, z,,. If m > n, then z,, —z,, >
0. From (2) we see that ¢ — z,, = limp, (zm — ) > 0. So > x, for each n;z is an
upper bound for {z, : n € N}.

Assume u € X and z,, < u < z for all n. Then u = z Au = lim,z, A u =
lim, z, = x. O

C.2. Some basics about duality in Banach lattices

Of course duality plays a crucial role in the study of Banach lattices and it is
the behavior of “positive” linear functionals that opens the way.

If X and Y are Banach lattices and w: X — Y is a linear mapping we say u is
positive if ux > 0 whenever z > 0.

THEOREM C.2.1. Positive linear mappings between Banach lattices are contin-
UOUS.
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ProOOF. Imagine, if you can, that u : X — Y is an unbounded positive linear
mapping between the Banach lattices X and Y. Then u is unbounded on By C
Bx+ — Bx+, where Bx+ = X N Bx (here we notice that if z € By, then z =
zt —z~ where zt,2~ € Bx+ since 0 < zt,z~ < |z| € Bx).

Hence u is unbounded on Bx+. Thus we can find a sequence (z,) in Bx+ such
that for each n, ||uz,|| > n3.

T x
Look at z = £,~= € X*. Plainly z > —= for each n, and so
n2 n?

\./

Tn\ _ u(Tn
uz 2 u (ﬁ) T n? 2 0.
So
3
n n?
OOPS! O

To get beneath the skin of the order/duality relations in a Banach lattice it is
useful to introduce the space X* of “order bounded” linear functionals on X. Recall
that a set B in the vector lattice X is called order bounded if there is z € X so
that |b| < z for all b € B. A linear functional f on X is order bounded, or f € X*,
if f takes order bounded sets in X onto bounded sets of R.

We can define an order structure on X*: If f g € X* then f < g means
f(z) < g(z) whenever z € X*.

THEOREM C.2.2. The linear space X* of all order bounded linear functionals
on X is a Dedekind complete vector lattice. The lattice operations are given by their
values on Xt as follows: Supposing x € X+,

(fVg)(z) =sup{f(y)+9(2):y,2€ XT 2 =y+ 2},
(f A g)(z) = inf{f(y) + g(Z) ry,z € XYz =y+2},
|f|( z) =sup{|f(2)[: 0 < z <z},
fH(z) =sup{f(y): 0 <y <z},
fr(x)=—-inf{—f(y): 0<y <z}
Should F be a non-empty directed subset of X* which is bounded above, then
g =supF is given on X T by g(x) = supser f(2).

Remark: In vector lattices functionals that are additive and positively ho-
mogeneous in the positive cone have unique linear extensions to the whole vector
space.

PROOF. Suppose f,g € X! and k € X! with f,g < k. Define h: X+ — R by
h(z) :=sup{f(y) + 9(z —y) : 0 <y < z}.
It is plain that if 0 < y < z, then

h(y) < f(y) +9(z —y)
< k(y) + k(z —y) = k(x).

So, if h is linear (on E*) and order-bounded, then it must be f V g. It is easy to
see h is positively homogeneous on E™; just let A > 0 and look:
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h(Az) = sup{f(y) + g(Az —y) : 0 <y < Az}
=sup{f(Az) + g(Ax — Az) : Az =y and 0 < y < Az}
=Asup{f(z) +g9(z —2):0< 2z <z}
= Ah(z).
Additivity calls in the Riesz decomposition property of vector lattices. Suppose

z,71,T2 € Xt with z = 21 + z2. If 0 < y < z, then we can find y; € [0,2;1] and
y2 € [0, z2] such that y = y; + y2; as a consequence,

f(y) +9(x—y) = fly1 +y2) + 9((z1 + 22) — (y1 +¥2))
= f(y1) + 9(z1 —y1) + f(y2) + 9(z2 — y2)

/

~~

< h(z1) + h(z32).
It follows that

h((l?l +$2) < h(:l?l) + h(:l?g)
Now should 0 < y; <z;and 0 < yp < xg,, then 0 < y; +y2 <21 + 22 =12. SO

f(y1) +9(z1r — 1) + f(y2) + 9(z2 — y2) = f(y1 +y2) + 9((z1 + 22) — (v1 +¥2))

= f(y1 +v2) + 9(z — (y1 + 12))
<sup{f(y) +g9(z—y):0<y<z}
= h(zx).

Fixing yo for the moment (and remembering that z,z; and x5 are going nowhere

for the same moment) we see that whenever 0 < y; < z3,

fy) +9(z1 — v1) < h(z) = [f(y2) + 9(z2 — 32)].
So whenever 0 < y; < o,

h(z1) < h(z) — [f(y2) + 9(z2 — y2)]

or, whenever 0 < yy < x9,
f(y2) — 9(z2 — y2) < h(z) — h(z1).
Now letting y, wander throughout its domain: 0 < y, < x5, we see
h(:l?z) < h(:l?) — h(fL‘l).

Tra la!
h is additive and positively homogeneous on X*. It is clear that h is bounded by
k on [0, x] so, for all intents and purposes h € X*.

Finally, suppose F is a non-empty directed set in X* that is bounded above in
Xt Then the functional

u: Xt -5 Ru(z) :=sup{f(z): fE€F} (z>0)

is positively homogeneous and additive on X+ and dominated on X by the upper
bound of F. Only additivity needs a word or two of explanation: Suppose z,z1, 2 €
Xt and z = =1 + z2; on the one hand, if fi,fo € F and f € F is > fi, f2, then,
from

fi(@y) + falz2) < (1) + fl22) = fz1 +22) = f(z) < u(x)
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it follows that u(z1) + u(z2) < u(z); on the other hand,

u(z) = sup{f(z): f + F}
=sup{f(z1) + f(z2) : f € F}
< sup{f(z1): f € F} +sup{f(zz): f €F}

= u(z1) + u(z2).
O

Since positive linear functionals are plainly in X*, and X" is a vector lattice
whose positive cone consists precisely of the positive linear functionals, X# = X #+
XU+, f € X" precisely when f is the difference of positive linear functionals on X.

COROLLARY C.2.3. Let X be a Banach lattice. Then X* = X1,

Proor. If X is a Banach lattice, then positive linear functionals are continuous
on X (as are all positive linear operators to Banach lattices), so X* C X*.

Members of X* are bounded on all bounded sets, in particular, on order-
bounded sets. a

A little bit of finagling with the order structure of X* will come in handy. From
the very fact that for z* y* € X*, if ¢ > 0,

(" Vy*)(z) =sup{z”(v) +y*(z —u) : 0 Su <z}

and the easy observation that 0 < u < z precisely when 0 < z — u < z, we see that
if x > 0, then

z*|(z) = [z" V (—=z7)](=)
=sup{z*(u) + (—z*)(z —u): 0 < u,z —u < z}
=sup{z*(u—(z—u)): 0 < u,z —u <z}
=sup{z*(y —2):0<y,z and y + z = z}.
It is plain that if 0 < y,zand y+2z =z, theny—2 < y+z=zand z—y < 24y =z,
so |y — z| < z. Hence, if z > 0,
|z*|(z) < sup{z”(w) : [w| < z}.
On the other hand, if w < z, then
z*(w) = o*(wt —w™
=z"(w") — 2" (w7)
< |z (w™) + 2% (w")
*|(lwl) = |2%[(x).

=z
It follows that if > 0, then
|z*|(x) = sup{z*(w) : |w| < «} = sup{lz*(w)| : |w| = =},
and so for general z,
|lz*(x)] < |z*[(|zl).

COROLLARY C.2.4. The dual X* of a Banach lattice is a Banach lattice. If
x* € X*, then
|z*|| = sup{|z*(z)| : 0 < = € Bx}.
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PROOF. Suppose |z*| < |y*|. Then

[*|| = sup{|z*(x)| : = € Bx}
< sup{|z*|(|z|) : z € Bx}
=sup{|z*|(p) : 0 < p € Bx}
< sup{ly*|(p) : 0 < p € Bx}.

But for p > 0,
ly*|(p) = sup{y*(v) —y"(p—u) : 0 < u < p}
=sup{y*(p — 2u) : 0 < u < p},

so,

z*|| <sup{y*(p—2u):0<u<pc Bx}
= sup{||y*[lllp — 2u|| : 0 <u < p € Bx}.

If 0 < u < p, then p — v and u are positive members of X whose sum is p so
|(p — u) — u| < p forcing us to conclude that

lp = 2ull = l[lp — 2ulll = [l[(p — ») — ull| < [p| =1.
Ah ha!
[l (| < [ly™ |-
O

At this stage we can show that for any vector x in a Banach lattice X, z > 0 if
and only if & > 0 (£ is just the image of x under the natural embedding of X into
X**). Indeed;

z > 0= x*(z) > 0 for each z* € (X*)*
= 3(z*) > 0 for each z* € (X*)*
=> Z > 0 as member of (X*)*.

Could it be that £ > 0 for some z ¢ X7 Well, if so, by X*’s closedness, there
would be an z* € X* so that z*(z) < 0 yet z*(p) > 0 for each p € X*. Plainly
such an z* is a positive linear functional. Just as plainly,

0 <&(z*) =z*(z) <O0.

OOPS! So the answer to the earlier question is “no way, José”.

It follows that in Banach lattices, x > 0 precisely when z*(z) > 0 for each
positive linear functional z*.

In truth, more is so, namely, the natural embedding X — X™** of a Banach
lattice X into its bidual is a lattice isomorphism. However, to show this a bit of
experience with lattice homomorphisms is needed.

C.3. Lattice homomorphisms

A few words about linear operators that preserve the lattice structure of a
Banach lattice are called for. We are particularly interested in lattice homomor-
phisms: A linear mapping v : X — Y between the vector lattices X and Y is
called a lattice homomorphism if for any z1,z2 € X, u(z1Vz2) = u(z1) Vu(zs) and
u(zy A x2) = u(zr) A u(za).
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Because we've incorporated linearity within our definition of a lattice homo-
morphism, it is enough to check either preservation of V’s or A’s to establish a
linear map is a lattice homomorphism; this follows, by the way, because for linear
maps —u(—z) = u(z) and for any z; and z; € X, 1 V22 = —(—x1 A —x2) and
T Axy = —(—11 V —I3).

ProprosiTION C.3.1. Let u : X — Y be a linear operator between the vector
lattices X and Y. Then the following are equivalent:
(1) w is a lattice homomorphism.
(2) |u(z)| = u(|z|) for each z € X.
(3) u(zt)Au(z™) =0 for each z € X.

PROOF. It is clear and easy that (1) implies (3) since zt Az~ = 0.

Suppose (3) holds for u. Of course, u is a positive operator — after all, if
z € X, then z = z* and = = 0. So (3) says u(z) > u(zt) Au(z™) = 0 so
u(z) > 0 for each z > 0. But now u(z) = u* — u~ with u™ Au™ = 0 is a unique
decomposition of u(z) into disjoint positive elements, so (3) just says u(z*) = u(z)*
and u(z~) = u(z)7; [u(z)] = uw(z) T +u(z)” = u(zt)+u(z™) =u(zt+z7) = u(|z|)
follows.

Finally, suppose (2) holds. Again, it is plain that u > 0. It follows that u(z)* =
u(z) VO <u(zt)Vu(zt)=u(zt) and u(z)~ < u(z™), so from (2)

u(@)t +u(z)” = |u(z)] = ulzl) = u(z™) +ulz”).
This, in turn, says u(z)* = u(z*) and u(z)~ = u(z~) for all z € X.
Suppose z, y € X. Then

crVy=z+y—xzAy

=y+(x—zAy)
=y+[-[(zAy) — 2]

=y +[-(0A (y — 2))]
=y+0O0VEz-y)=y+(@=-y"

It follows that

(z—-y)*)
(z—y)*

y) + [u(z) —u(y)]*

u(z Vy) = uly) +u(

|
g

Il
g
&
<
g
S

u is a lattice homomorphism. a
For functionals, the above proposition takes on particularly pleasing form.

COROLLARY C.3.2. Let X be a Banach lattice and z* € X*. Then the following
statements regarding ©* are equivalent:
(1) z* is a lattice homomorphism.
(2) For each z € X, min{z*(z*),z*(z7)} = 0.
(3) z* € X*t and ker(z*) is an ideal; a subset I of X is an ideal if I is linear,
and given x € X and i € I with |z| < |i|, thenz € I.
(4) z* € X*t and X}. is one-dimensional.
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PROOF. We already know that (1) and (2) are equivalent statements. Natu-
rally, * > 0 if z* is a lattice homomorphism.

Suppose (1) holds. Let z € ker(z*) and suppose |y| < |z|. Then |z*(y)| =
z*(Jy|) < z*(Jz|) = |=*(z)| = 0 so y € ker(z*), too; this is just (3). Now take x € X
and suppose z*(z7) Az*(z~) > 0. Choose a > 0 so that z*(zt —az™) = 0, that is,
zt —az™ € ker(z*). Since zt and az™ are each < |z — az |, (3) tells us z*(z¥)
and z*(az~) are each = 0, i.e. z*(z*),z*(z~) = 0. OOPS!

It is easy to manipulate the above argument to show that denial of (2) leads to
a denial of (3). So (2) follows from (3). (1), (2) and (3) are known equivalents! To
get (4) “in the loop”, notice that if y* € X* and |y*| < z*, then

ly* ()] < z*(|z)
for all # € X. Hence ker(y*) C ker(z*) in such a case, and so if (1) thru (3) are in
effect, (4) follows; after all, either ker(y*) = X or ker(y*) = ker(z*); in the former
case, well, y* = 0 while in the latter, y* = az* for some « : |a| < 1.
Alas, assume (4) is so. Fix z € X and let y* be defined on X+ by

v'(y) = limz*(y A na™).
It is plain that y* is positively homogeneous on X*. Since for p,q € X+ we have
(p+a) A (na*) < (p A (n2™)) + (g A (na™)),
it is easy to see y* is subadditive. If we fix € > 0 and choose n so that
y*(p) <z*(pA(na™)) +€ and y*(q) < z7(g A (na™)) +e,
then

v (p) +y" () <™ ([p A (na™)] + [g A (na™)]) +2¢
<z*((p+q) A (2nzt)) +2¢
<y'(p+q)+ 2

Additivity of y* follows from this.

Of course, 0 < y* < z*. By (4) y* = az* for some a > 0. If z*(z*) > 0, then
y*(z%) = z*(z%) and so a = 1; but, then z*(z~) = y*(z~) = 0 and (2) is the
result. O

An extremely important example of a lattice homomorphism, indeed a lattice
isomorphism, is the canonical embedding of a Banach lattice X into its bidual X **.
We saw earlier that this is a positive linear isometry. Now we show

THEOREM C.3.3. The natural embedding x — & of a Banach lattice X into its
bidual is a vector lattice isomorphism and an isometry.

—

PROOF. By our proposition, it is enough to show that (£)* and (z%) are the
same in X**, that is, both behave the same on X*.
First, remember that £ — £ s a positive linear isometry and z < ¢+ =z Vv 0,

soség(;r), and so (2)* =:EVO§(/CC+\)VO=(;+\).
On the other hand, if we let x* be a fixed positive linear functional and define
x on Xt by

X(y) = sup{z*(¢/) : 0 < ¢/ < 9,9 € |Jn0,2™]},
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then proceeding as we did in the previous corollary, we soon realize that y is
(positively homogeneous and) additive.
So x extends to a positive linear functional y* € X*. It is plain that 0 < y* < z*

and y*(z7) = 0. So
() =y*(a¥) =27 (=),

and so
(zH) (@) =z*(@*) = y*(x) < sup z%(x) = (&)*(z").

0<z*=x*

C.4. AM-spaces and AL-spaces

A Banach lattice X is called an AM-space if whenever z,y € Xt we have
lzVyll = |lz|| V ||lyll. If Bx has a biggest element u, then u is called the order unit
of X

A Banach lattice X is called an AL-space if whenever x,y € X we have
Iz +yll = llzll + lyll-

AM- and AL-spaces play a special role in the general theory of Banach lattices
and in the general theory of Banach lattices and in the general theory of Banach
spaces. Their role in each is defined by Kakutani’s representation theorems and it
is the pursuit of these that will dominate our efforts.

First, a remarkable duality result.

THEOREM C.4.1. Let X be a Banach lattice.
(1) X is an AM-space if and only if X* is an AL-space.
(2) X is an AL-space if and only if X* is an AM -space with order unit.
PROOF. Suppose X is an AM-space and let *, y* be positive linear functionals
on X. Then for any z,y > 0 in Bx we have ||z Vy| = ||lz|| V ||ly|| <1, and so
' (z) +y*(y) <z*(zVy) + v (z Vy)
=(@"+y")(zVy)
< llz* +y*[lllz vyl
< lla* + |
It follows that, if we fix y* for the moment, whenever x > 0 is in Bx we have
z*(z) < [lz” +y*l| — y*(y)-
So ||z*|| = sup{z*(z) : 0 <z € Bx} < |lz* +y"|| = y" ().
Turnabout is fair play: For each 0 < y € Bx we have
v () < llz* + o) = ll="l,
so that
ly*|| = sup{y*(y) : 0 <y € Bx} < [z" +y*|| - [|z”|.
We've shown that ||z*|| + ||y*|| < ||z* + v*||; the mere mention of the “triangle
inequality” should suffice to believe X* is an AL-space.
Now suppose X is an AL-space. Define e* on X* by e*(z) = |z||. Then e*
is additive and positively homogeneous. (X is an AL-space!) e* extends to a

member of X* which by its very definition is a positive linear functional on X.
Take x* € Bx~. Then for any x € Bx with £ > 0 we have

z*(z) < [lz7]| = €*(x).
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It follows that Bx~ C [—e*,e*]. Since ||e*|| is plainly = 1, Bx~ = [—e*,e*] and
so X* = X% is an AM-space with order unit e*.

In tandem these two paragraphs show (1) and (2), since X is always a closed
sublattice of X**. O

Note: If X is an AL-space, then Sx+ = {z > 0: |z|| = 1} is a convex set.

LEMMA C.4.2. Let X be an AL-space. Then x is an extreme point of Sx+ =
{zx € Xt :|z|| =1} if and only if X, is one-dimensional.

PROOF. Assume z > 0 is an extreme point of Sxy+ and let 0 < y < x. Then
z—y >0 and

r=y+(z—y)

so that
L= z|l =yl + |z = yll (=A+ (1= A), say).
Therefore,
o=l () +lle - ol (=)
Iyl lz —yll
=Az; + (1 — N)zo,

where ©; = ” ” and 5 = H%:_gylﬂ are both in Sx+. But z is an extreme point so
T =1, = x5 and so x = ——, that is, dim X, = 1.

Conversely, suppose x € Sx+ is such that X, is one-dimensional. Suppose
0<A<1land z=MAy+ (1—A)z where y,z € Sx+. Then, of course,

z=Ay+(1-N)z>Ay.
Since X, is one-dimensional, there is a p > 0, so

BT = Ay.
But ||z|| =1 = ||y|| and A, u > 0 so z = y and, as a consequence, * = z, too. That
is, x is an extreme point of Sx+. a

We now apply this lemma to one of the most important concrete examples of
an AL-space.

THEOREM C.4.3. Let K be a compact Hausdorff space. For each t € K, let
0: € C(K)* be defined by
o (f) = f(2).

(1) A non-negative p € C(K)* is an extreme point of Sic(ky~)+ if and only
if u is a O¢ for somet € K.
(2) 1 € Bek)» is an extreme point if and only if p = £6; for somet € K.

PROOF. It is easy to see that each d; is a lattice homomorphism and so C(K)j,
is one-dimensional; since C(K)* is an AL-space, it follows that d; is an extreme
pOiIlt of S(C(K)*)"’-

On the other hand, if y is an extreme point of S(¢(k)~)+, then, C(K)* being
an AL-space, C(K)7, is one-dimensional and so y is a lattice homomorphism. We
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want to show p = §; for some t € K and this will follow from sharing that uAd; # 0
for some t € K; consequently, we assume the contrary: uAd; = 0 for each t € K.
Then testing p A 6; at 1 given (for each t € K),

0= (uAd)(1)
inf{u(1 —g) +d:(9) : 0 < g <1}
=inf{l—p(g) +9(t): 0< g <1}

So for each t € K thereisa g, € Cso0< g, <1and0<1—pu(g)+g(t) <i. Itis

a quick and easy calculation to see that u(g:) > 3 ; after all, 1 —u(g:) < 1—pu(gs) +

9:(t) < 5. It is also easy to see that g;(t) < 3; indeed, g¢(t) < pu(gs)—3 <1-3% = 1.

Define the open sets

Ut) = [gt < l]

2
and notice t € U(t); hence, {U(t) : t € K} constitutes an open cover of K. K's
compactness ensures the existence of a finite subfamily {U(t;),...,U(tx)} which

still covers K. If we let g = g¢, A...Ags,,, then for any € K we know = € U(t;) for
some 1 < ¢ <m and so g(z) < g¢,(z) < % It follows that applying the probability
1 to g gives pu(g) < 3. BUT u(g) = p(gs, A...Age,.) is, thanks to u being a lattice
homomorphism, = (g, ) A ... A p(ge,.) > % OOPS!

Our supposition that pAd; # 0 for each t € K leads us astray. Deny uAd; #0
for each t € K. Don’t worry. Be happy. a

C.5. Kakutani’s vector lattice version of the Stone-Weierstrass theorem

Here is an approximation theorem that will play a crucial role in Kakutani’s
representation of AM-spaces. It is of considerable interest in its own right.

THEOREM C.5.1 (Kakutani (1941b)). Let V be a vector sublattice of C(K), K
a compact Hausdorff space. Suppose V' separates the points of K and contains the
constants. Then V = C(K).

PRrROOF. We proceed in three stages.
I. For every s,t € K such that s #t and a,b € R there is an f € V so that
f(s) =a and f(t) =b.
Since V' separates the points of K, there is a ¢ € V such that g(s) # g¢(t).
Define f by
[ag(z) — ag(t) — bg(z) + by(s)]
g(s) —g(t) '

fz) =

Then f €V, f(s) =a and f(t) =b.

II. If h € C(K), € >0 and s € K, then there is g5 € V such that gs(s) = h(s)
and for each t € K we have gs(t) > h(t) —e.

Indeed, I allows us to choose for each t € K an f; € V so that

fu(s) = h(s) and fy(t) = h).
Let U(t) be the open set U(t) := [ft > h — ¢]; plainly, t € U(t) for each t € K,
so the collection {U(t) : t € K} constitutes an open cover of the compact space K.
It follows that there is a finite subfamily {U(t1),...,U(ts)} which also covers K.
If we let g; € V be
gs :ffl V...\/ftm,
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then not only is gs € V but gs(s) = h(s) and regardless of t € K, as soon as
te U(t’t)»
gs(t) > fi,(t) > h(t) —e.
III. Fing
Let h € C(K), € > 0. For each s € K choose gs € V ala II, so

9s(s) = h(s) and g5(t) > h(t) —efor all t € K.

Now define the open set W (s) by W(s) = [gs < h + ¢€]. It is clear that s € W(s)
and so the collection {W(s) : s € K} constitutes an open cover of the compact
space K. There is a finite subfamily {W (s;),..., W (s,)} which still covers K. If we
let

g:gs1 /\"'/\gsna
then g € V' (each g;, is), and regardless of ¢ € K,

h(t) —e < g(t) < h(t)+e

the left-hand inequality coming through the still-present graces of I and the right-
hand by the work of III. The end result: ||g — hllc < &, where g € V is the
issue. a

C.6. Kakutani’s characterization of AM-spaces with unit

Recall that a Banach lattice X is called an AM-space if for z,y € X, ||zVy| =
llz|l V |lyll- If Bx has a biggest element u, then u is called an order unit.

We've seen that AM-spaces with unit arise frequently within the theory of
Banach lattices: Indeed, whenever X is a Banach lattice and x is a non-zero member
of X%, then X, is an AM-space with unit z if equipped with [—z, z] as a unit ball.
Here’s the final word about AM-spaces, practically speaking.

THEOREM C.6.1 (Kakutani (1941b)). Let X be an AM-space with order unit
e. Then the positive face (S%)t of Sx» is weak* compact and convez, the set K of
extreme points of (S*)t is weak* compact and X is vector lattice isomorphic and
isometric to C((K, weak*)) via the operator

X — C((K,weak™)) : z — fz()
where f.(z*) = z*(z) for z* € K.

PROOF. Since X* is an AL-space, S** = Sx- N (X*)* is a convex set; it is
also bounded and weak* closed because

St = (X" Nn{z*>0:2%) =1}.

So S** is weak* compact convex (and non-empty). It follows from the Krein-
Milman Theorem that S** has extreme points. Again X*’s being an AL-space,
the results of section C.4 tell us that the set K of extreme points of S*t consists
precisely of those positive linear functionals * of norm-one on X for which X7,
is one-dimensional; and so K consists entirely of the norm-one lattice homomor-
phism of X into R. But this provides us with the means to recognize K as being
weak* closed; after all, the pointwise limit of lattice homomorphisms is a lattice
homomorphism.
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Define f, € C((K,weak")) as we did above: f,(z*) = z*(z). If z € X, then
||| = sup{|z*(z)[ : 0 < z* € Sx-}
= sup{|z*(z)| : z* € extS*T}
= sup{|fz(z")| : " € K}
= [ felloo-

The map ¢ — f, is a linear isometry.
Now K is not just the set of extreme points of S**: K consists of lattice
homomorphisms! So if z,y € X and z* € K, then

favy(z7) = 2 (z Vy) = 27 (z) V2" (y) = fa(c) V fy(27)
and the map x — f, is as advertised, a vector lattice, isometric isomorphism of X
into C((K, weak™)).

Oh, yes! We also promised {f; : ¢ € X} would be all of C((K,weak™)), and
for this we note that {f; : ¢ € X} is a closed vector sublattice of C' that contains
the constant functions (f.(z*) = 1 all * € K) and separates the points of K.
So Kakutani’s vector lattice form of the Stone-Weierstrass theorem finishes this
proof. a

C.7. AL-spaces: The Freudenthal-Kakutani theorem

In this section we make serious headway in the study of AL-spaces; Kakutani’s
characterization of L (u)’s looms large as a result.
In AL-spaces we have a monotone convergence theorem:

ProrosiTiON C.7.1. Let (z,) be a sequence in an AL-space such that
0<z; <z < <zp < - <y
for some y € X. Then z = lim, z,, ezists (in norm) and 0 < z < y.
Proor. Note that zx4+1 — zx > 0, so by the AL-nature of the beast,
n—1 n—1
D lwker =@kl = 1) @rer — @l = llon — z1]l < lly — 2.
k=1 k=1

Hence Y o, [|Zk+1 — Zk|| < 0o and so limz, = z exists and it is plain to see that
0<z<y. a

We say that the norm of a Banach lattice X is order continuous if whenever
(z4)dep is a monotone non-increasing net with Apzg = 0, then limp |lz4|| = 0.

ProprosITION C.7.2. The norm of any AL-space X is order continuous.

PROOF. If (z4)dep is a monotone non-increasing net for which Apz4 = 0, but
limp ||z4|| > 0, then (z4)4ep cannot be a Cauchy net. It then follows that (z4)aecp
contains a non-increasing sequence which is not convergent, which is contradictory
to the Monotone Convergence Theorem. a

A Banach lattice X is Dedekind complete if, whenever a nonempty set A C X
is bounded below (in the lattice X), then inf A exists.

ProrosiTION C.7.3. Any AL-space X is Dedekind complete.



230 C. A SHORT INTRODUCTION TO BANACH LATTICES

PROOF. We may assume, by enlarging A if necessary, that A is directed down-
ward and sits inside Xt. Let L be the subset of lower bounds of A (lying inside
X*t)andlet C = A—L={a—1l:a€ A,l € L}. Then, C too, is directed downward.
Further, inf C = 0. Since X has order continuous norm, we can, for each n € N
find z,, € A, I, € L, so that ||z, — [,|| < }—l, Tna1 <lny lnv1 < L.

Naturally, for any k,n € N we have

0<zp — Tryk an_ln+k <z —n;
(z,) is a Cauchy sequence, with limit (= lim, y,),soc € Land z =infA. O

An ideal in X is a closed linear subspace Y of X such that if y € Y and |z| < |y],
then z € Y. An ideal Y is a band if whenever {y; : ¢ € I} C Y and V;y; exists in
X, then Vyy, €Y.

A positive element e in a Banach lattice is called a weak order unit if e Az =0
implies £ = 0. The natural model is an everywhere positive integrable function in
L* (), where p is a o-finite measure.

Much of our early analysis centers around some natural projections. If z > 0,
then we define P, as follows: Suppose z > 0 and put

P.(z) = Vn(nz A 2);

to be sure, we assume that X is at the very least Dedekind o-complete. Since
nx Az < z for all n, (in case of Dedekind o-completeness) the definition makes
sense; for y = y* —y~ € X we put P,(y) = Pr(y*) — Px(y™) and linearity follows.
Of course, P, is a positive linear map and, in fact, P, is a projection: For z > 0,

P,P,z = P, (Vn(nz A 2))
= Vm(mz A (Vp(nz A 2)))
=V Vp (M Anz)Az
=P,z

So P, is a positive linear projection of X onto PX. Further, for z,y > 0, zA
(y — Poy) =0.

Notice that if e > 0 is a weak order unit in X, then P, = idx.

A fundamental building block of our analysis is the following:

THEOREM C.7.4 (Kakutani (1941a)). Any Banach lattice with order continuous
norm (in particular, any AL-space) can be decomposed into an unconditional direct
sum of a (possibly uncountable) family of mutually disjoint ideals X, each having
a weak order unit xo > 0.

The decomposition is straightforward: After a bit of harmless “zornication”

find a maximal family of mutually disjoint positive elements {z, : a € A} in X.
Let
Xo={z€X: ifza Ay =0, then |z| Ay = 0};
A bit of play soon reveals that X, is precisely P, X. Indeed, testing > 0, if
o ANy =0, then
P,z ANy= (Vanza AT) Ay
=Vp(nza ANy Ax)

=V, (n(za A %)) ANz
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=0Azx
=0

so P,z € X,. On the other hand, if z € X, then o A (z — P, z) = 0 so
0=z A (x — P;_x), which since ¢ — P,_z < z, says that = P, _r € Px_X.

Naturally, we’ve set things up so that z,, is a weak unit for X.

Fix y > 0 and look at {P,_ y : « € A}. For any sequence (a;,) in A, the series
> n P, (y) converges to V, Pz, (y) and so only countably many of the P,_(y)’s
are non-zero and ), 4 Pz, (y) converges unconditionally to a member yo of X.
Since 3¢ 4 Pr, (y) is just VaeaPr, (y) and each term is <y, yo < y. But should
Yy — yo > 0, then the maximality of the family {z, : & € A} would produce an

& € A so that z4 A (y — yo) # 0. But then
0<zaA(y—w)<zaN(y—Foy) =0

It follows that y = yo and the unconditional decomposition has been estab-
lished.

The X,’s in the above theorem are even bands in X. Moreover, if X+ = {z €
X : |z|L|y| for each y € X,}, then X = X, @ X}, so each of the X,’s is a
“projection band” and, of course, inside X, =, is a weak order unit.

Henceforth, we’ll concentrate on the pieces {X, : @ € A} of X. We need some
notation and notions. A family B of commuting bounded linear projections on a
Banach space X is called a Boolean algebra of projections if P,Q € B ensures PQ
and P 4+ @ — PQ are each in B as well. If B is a Boolean algebra of projections,
we can make B a lattice if we set PAQ = PQ and PV Q = P+ @Q — PQ. The
Boolean algebra B of projections is o-complete if V,P,, Ap P, both exist in B for
any (P,) C B and

(VaPp)(X) = span(Vp, P X), AP X = (AnPp)(X).
For a Boolean algebra B of projections on X, if ¢ € X, then
N(z) = span{Pz : P € B}

is called the cyclic space generated by zx.
The main result of this section is the following:

THEOREM C.7.5 (Freudenthal (1936), Kakutani (1941a)]). Let X be a Dedekind
complete Banach lattice with order continuous norm and weak order unit e. Then the
family {P, : x > 0} is a o-complete Boolean algebra of projections and X = N (e)
is a cyclic space with respect to this Boolean algebra.

One can easily verify that
(a) Pe = idx;
(b) if z,y >0, then P, P, = Pypy;
(¢) f 2 >y >0, then P, — P, = P p,(2);
(d) the o-completeness of this Boolean algebra follows from X’s order com-
pleteness and the order-continuity of its norm.

To prove X = N (e), fix z > 0 and for real A > 0 put
:E(/\) = P()\e—a:)"' (6)

If 0 < X <mn, then (Ae —z)* < (ne —x)™, and so
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z(A) = Pre—z)+(€) = Va(n(Xe —z)* Ae)
< Vn(n(ne - $)+ A e) = P(ne—z)"’ (e) = z(’?)

As aresult z : [0,00) — X is a monotone non-decreasing function. We can
mimic the Riemann-Stieltjes construction and talk about

/Ooo Adz(A).

This integral is the limit in norm — if such exists — of sums of the form
> Ai(@(n) = z(hio1)).
i<n

We propose to show that
T = / Adz(N),
0

which will show that z € N(e) and so X, and with it all of X C N(e) as we
wanted.
First a small aid.

LemMa C.7.6. Suppose 0 < z € X satisfies z = P,(e); so z A (e — z) = 0.
Then whenever z < x()), we have P,(z) < Az and whenever z < e — z()\), we have
Az < P,(z).

PROOF. z < z()\) = Pye—q)+(€) says that
0<(z—-Xe)tAz< (z—Ae)t Az(N)
= (z = Ae)" A Pire—ny+ (€)
= (z = 2e)* A (Val(n(Xe —2)* Ae)))
=Van(de— )t AeA(z— de)t
=Van(de—z)t A(z—Xe)T Ae=0,
since (Ae — z)* A (z — Ae)* = 0. But then
(x—Xe)t Az=0,

and so

- + —de)t
(x—/\e)+/\2z:($ 2/\6) /\z+—(%/\z:0+0=0

and generally
(x—Xe)t Anz =0,
so that
P.((z—Xe)t) =0.
Since z < (z —Xe)T + e (after all, (z—Xe)T = (z—Xe) VO, so (z—e)t +de =
x V e > ), we see that
P.(z) < P,((x — Xe)t + Xe)
= P,((x — Ae)t) + AP, (e)
=0+ AP,(e)
= Az
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The other fact mentioned in the lemma is proved similarly. a

Now on to the proof that z = [° Adxz()).

Let € > 0 be given.

Let 0 < A < oo and partition [0, A] into a partition 7 : 0 = A < A1 < -+ <
An = A where the mesh of 7, ||7|| = maxo<i<n—1(Ait1 — As) is small, say < e. Let

zi=z(N) —z(Nioq) fori=1,2,...,n.
Notice that
zi = Py (e)
and
zZ; <e-— x(/\i—l)-
Since z; A z; = 0 if  # j we have the lower sum

s(m) = Z Aic1(2(M) — 2(Xi-1))

=Y X1z <Y P (z) = Por 4 (2) = Poay(2)
i=1 i=1

by the second part of our lemma. On the other hand, z; < z()\;), so the first part

of our lemma tells us that
n n

Pay(x) =Y Pu(z) < Z iz = S(m),

=1
the upper sum. Hence

1S(m) — s(m)|| < elle]|
which, if we let ¢ — 0, gives us

A

But 2(A) = Ppe—g)+(e) < e and X is Dedekind complete with order continuous
norm and so, since T(A) = Ppc_z)+(e) <ee,

z(o0) = Ah_r’réo z(A) = Sl;p z(A)

exists in X.

Now

e —2(00) = Pe_z(c0)(€) and e — z(o0) < e —z(A)
for any A. By the second part of our lemma we have
A(e - Z‘(OO)) < Pe—z(oo) (:E)
Hence
Alle = z(00) || < || Pe—a(o0) (@)l
and
”Pe—z(oo) (ZIJ)”
A

z(o0) = e follows. But now the o-completeness of the Boolean algebra { P, : z > 0}
of projections comes into play to tell us that

le — z(c0)]| < — 0as A — oco.

Alim Pa:(A) (ZII) = Pe(CL‘) =
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and from this o
/ Adz(N) =z
0

follows.
What we’ve shown is the following:

THEOREM C.7.7 (Spectral theorem of Freudenthal (1936) and Kakutani (1941a)).
Let X be a Dedekind complete Banach lattice with an order continuous norm and a
weak order unit e. Then the Boolean algebra of commuting projections {P, : > 0}
is o-complete and if x € X with x > 0, then defining ©(A) = P(re—z)+(e) we have
that x = f0°° Adz(X), where this integral is interpreted in the classical Riemann-
Stieltjes way.

C.8. Kakutani’s characterization of AL-spaces

THEOREM C.8.1 (Kakutani). Let X be an AL-space with weak unit. Then X
is Banach lattice isometric to an L*(u)-space for some finite measure p.

X is order complete and its norm is order continuous. We’ll assume that X’s
weak unit e > 0 has ||e|| = 1. Consider the Boolean algebra B = {P, : ¢ > 0} of
projections on X and realize that X = A(e). We’ll find an isometry of X to an
L'(u) so that e is carried onto the constant function 1.

By Stone’s Representation Theorem, the Boolean algebra B (by the way, com-
plementation in B is given by P; = P._(zx¢)) can be identified with the Boolean
algebra A of all clopen sets of some compact Hausdorff, totally disconnected space
S. If we now set u(P;) = ||Pz(e)|| for £ > 0, we obtain a finitely additive measure
on (S, A). But such a measure is plainly countable additive thereupon! After all,
any member of A that is a countable union of a pairwise disjoint sequence (A,) of
members of A is surprised to find that but for finitely many n’s, A, = ¢; this fol-
lows from the compact/open nature of members of A. Caratheodory lets us extend
p to the o-field ¥ of subsets of S generated by A in a countably additive (real-
valued) fashion. Here’s how we take X to L'(u): Let z1,...,7, € XT be disjoint
(ziANz; =01if i # j) and a1,...,an € R, define T(}_,, a;P:,(€)) = > aixp,, -

Then
1 aiPe (o)l = laill| Pe.(e)] = Y laslu(Pz,)

and T is an isometry from

{ZaiPEI(e) 1a1,...,an €R, x1,..., 0, € X7, z; Nz; =0 if 4 75]}
i<n
into L*(u). But X = N(e) so the domain of T is dense in X. On the other hand,
the Caratheodory procedure ensures that span {x4 : A € N} is dense in L}(p),

too. DONE DEAL.
In tandem with Kakutani’s Theorem C.7.4, Theorem C.8.1 has the following

crisp version.

CoOROLLARY C.8.2. Let X be an AL-space. Then there is a measure yu such
that X is Banach lattice isometrically isomorphic to L*(u).

Proor. By Kakutani’s Theorem C.7.4, X is an unconditional sum of a family
{X; : i € I} of bands each of which has an element that serves as a weak order
unit. On the one hand, Theorem C.8.1 tells us that each X; must be an L*(y;), for
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some measure f;; on the other hand, since X is an AL-space, the unconditionality
is just an ¢'-sum. So X is Banach lattice isometrically isomorphic to the space

(@ Xi)p = (DL (k))e = L'((@pi)er), where p = (@ pi)e is the measure
defined on the disjoint union of the domains of u; in the most natural manner
imaginable. a

Note: The p of Corollary 2 enjoys the added property that L (u)* = L*(u).

C.9. Grothendieck’s inequality for Banach lattices

Kakutani’s representation theorems allow us to develop a beautiful functional
calculus in Banach lattices, a calculus that will let us make sense of quantities like

(Z |$n|p)%

where p is a real number > 1. This in hand we can formulate, and prove, a natural
generalization of Grothendieck’s inequality in Banach lattices.

Let L be a Banach lattice.

For any n € N, we’ll denote by C,,, the family of all real-valued functions on
R™ which are obtained from the coordinate functions

(tl»"'»tn)_)tk, lgkgn,

by finitely many operations of addition, multiplication by a real number and taking
suprema and infima of finitely many real functions.
Note that if h,h’ € G, and

h(t1,.. ., tn) = K (t1,...,tn), for all (¢1,...,tn) € Ry,
then

h(z1,...,2n) = K (z1,...,2,), for all z,...,2, € L.
Indeed, temporarily fix z1,...,z, € L and look at z = |z1| V -+ V |z,| € L. Since
both h,h’ € C, it follows that h(zy,...,z,) and h'(z1,...,z,) belong to I(z), the
ideal generated by x. Of course J(x) is an M-space with unit z and so thanks to
Kakutani, we have that J(x) is isomorphic (as a Banach lattice) to C(K) for some
compact K. But the algebraic and order relations in C'(K) are defined pointwise!
So having

h(ti,. . tn) = K (t1,...,tn), for all (¢1,...,t,) € Ry,
ensures that for all z;,...,z,(€ L) we have

h(z1,...,zn) = K (z1,...,Z0)

in J(z) (aka C(K)) and also in L.
Hence we have a well-defined map
j:C,— L
that takes h € C, to h(z1,...,z,). Since C, is plainly a vector lattice, it makes

sense (and is so) that j is linear and preserves order.
Now we bootstrap and approximate functions like

(b1, estn) = (3 [667)7
k<n

by members of C,. Here a call will be made on Kakutani’s vector version of the
Stone-Weierstrass theorem (Theorem C.5.1).



236 C. A SHORT INTRODUCTION TO BANACH LATTICES

Let 3, denote the space of all continuous real-valued functions f on R™ that
are positively homogeneous of order 1, that is, that satisfy

F(At1, .., Atn) = Af(t1, ..., tp) for all (t1,...,tn) € Ry, and all A > 0.

It is plain that 3(, is a vector lattice; in fact, 3, is a different model of C(See).
Now C,, is a sublattice of }{,,. Moreover, C,, separates the points of Sy and contains
the constants.

Hence €, is dense in (C(Sex), || - [loo)-

Now things fall into place. The map j : €, — L is continuous and linear on
Cn (viewed as sitting in C(Se~)) and so extends uniquely to a continuous linear
operator, that we’ll still call j, from C(Sy) (= H,) to L which is order preserving.

It is natural to denote j(h) by h(zi,...,z,) and realize that the procedure
just described takes h € I, and, with z1,...,2, in hand, assigns the element
h(z1,...,2n) € L in an unambiguous manner.

This is what we refer to as the functional calculus in L.

We make quick mention of a few more or less standard facts that indicate the
power inherent in this functional calculus. The proofs are quite direct and painless.
For details we refer to [Diestel, Jarchow, and Tonge (1995), pp. 328-329].

ProprosiTiON C.9.1. Let xy,...,x, be members of the Banach lattice L.
(a) if 1 < p < oo, then

1
<Z|mn|”>p :sup{Zakmk:a:(al,...,an) eBzﬁf}
k<n k<n

where p’ is the index conjugate to p;
(b) supy<, |Tk| = sup { D k<n OkTk 1@ = (a1,...,an) € Be;},'
(c) for any 1 < p < oo, there are constants A,, B, > 0 so that

w(Smr) ([T nonl) <n(Shee)
k<n 0 “k<n k<n

where ri(-) denotes the k-th Rademacher function.

This version of the functional calculus is closest to the development given by
Krivine (1974); a slightly different version that ends up with the same result was
developed by Carne (1980). Either approach allows us to formulate and prove a
generalization of Grothendieck’s inequality.

Here then is Grothendieck’s inequality as it appears in a Banach lattice setting.

THEOREM C.9.2 (Krivine (1978), Krivine (1979), Carne (1980)). Let X and
Y be Banach lattices and T : X — Y be a bounded linear operator. Then for any
T1,...%n, € X we have

|(Z )| < Kol ( 3 lael?)
k<n k<n

Proor. We'll take three giant steps.

Step 1. Suppose T : £ — €L . Let x1,...,2T, € €52 with z; = (a;1,...,aim) for
i =1,2,...,n. Let (okj)1<k,j<m be the matrix representing 7. We’ll want to
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1
estimate quantities of the form ||(Y", ., |2:]?)® Hp where z; € R,,,. Of course, the

1
vector (ZiSn |zi|%)? is easy to recognize: If z; = (21, Zi2, - - - , Zim), then
1 1 1 1
(O 1zl O Lz, O lziml®)?) = (D |2) 2
i<n i<n i<n i<n
So,

3 j e |2ij)E g if 1 <p< oo,
IS 1), - { (yen(Cin )} i1
SUpPj<m (Zign |Zij| ) if p= oc0.

H
In other words, ||(3-,<, |2i2)2 l|lp is just the norm of the vector

((211,...,an,O,O...),(le,...,an,O,O,...),...,(Zlm,...,an,O,O,...))
in ¢? (¢?). This in mind we can appeal to the duality between £ (¢?) and £3°(¢?)

and choose vectors yi,...,Yn € £ = (£1)* so that
1 1
I 16al?) * [l = 1 and [|(D_1T2:l?) [, = 3 vs(Tw).
i<n i<n i<n

Suppose y; = (bi1, .-, bim)-
Let’s look at the vectors ux = (aik,...,ank) and v = (bik,...,bnk) in £2.
Direct computation shows

H(Z |T$z| Zyz Tz;)

i<n i<n

=Y Y akjenby

i<n 1<k, j<m

= Y a(uk,vy).

1<k, j<m

Of course, computations similar to those above show

g Il = (S )’

and

max ol = | (3 Il

i<n

=1.

If we now just apply Grothendieck’s inequality to the matrix (%ﬁ) we see that

A _
I =) = 2 )

i<n

< K¢ n}cax ||uk|| max [lv ||

< KG” Z |CC,|

i<n
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Step 2. Now let T': C(K) — Li(u) be a bounded linear operator and fi,..., f, €
C(K) be given. )
For a fixed € > 0 there is a partition of unity ¢1,...,¢n and fi(e),..., fa(e)
in [¢; : 7 < m] such that for i =1,...,n,
Ifs = Fi(e)ll < ellfall-

Pick 91, ...,%m simple functions in L;(u) so that for j =1,...,m,
€
ITs = wills <
The 1;’s lie in an isometric and lattice isomorphic copy of £¥ inside L;(x) and the
operator T; : [¢;] — [1;] defined by T,.¢$; = 9; enjoys
[ Te = T lig,i<m) || < e
by our choice of ¢; and the fact that ¢1, ..., ¢, is the unit vector basis of
[¢j: 5 <m]
which is isometric and lattice isomorphic to £Z inside C(K).
T, :[¢;:5<m]—[v;:5<m]CL

Hence, by Step 1,

(IR < KolTA(X 1) ?)

i<n i<n

Now the idea is, as almost always, to let € — 0 and see what remains when the

dust clears.
To start,

ITell < \IT lig,izm | + 1T = T lig, iz |
< |7 +e,

and

|fi = file)| < el filloo,

SO
(LR < (D 1A - £ + (X147
i<n i<n i<n
<e(S AR+ (1A 5
i<n i<n
So

IS T F©@F) ]| < Ka (Tl + o ([ 1P )| +e(SIA12) ).

i<n i<n i<n

To get control of the left-hand side, notice that for i =1,...,n
gi_I;%Tefi(E) =Tfi (in Ly(p)).
So by F. Riesz’s good graces we can find a sequence € \, 0 so that fori=1,...,n,
limT,, fi(ex) = Tfi p— ace.
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But now — and here’s where it’s important that we're in Li(u) —
hm Z |T. f;(sk)| Z ITfi]?)? p—ae.
i<n i<n
Fatou’s lemma tells us

|| Z|Tf, ||1 < hmmf” Z‘Tekfz sk)| ) ”

i<n i<n
1

< liminf K (| 7] + ) (| (3 1£:?) Hra( U179

i<n i<n

= Ke|TI|(D_1£:l%)*

i<n

Note: Above we use Riesz’s theorem that if f is the L-limit of (f,), then there is
a subsequence (g,) of (f,) that converges to f almost everywhere. This is plainly
so in finite measure spaces, hence, in o-finite measure spaces and, since sequences
are involved, in any measure space.

Step 3. Let T be any bounded linear operator from X to Y. Take z1,...,z, €

1 1
X. Put zg = (X;cpl2il?)? and yo = (X, [Txil?)?. Let I(zo) be the ideal
generated by zo; so ¢ € J(xo) means there is a A > 0 so that |z| < Azo/||zo.

Look at the order interval [ — T Wzg—“] and let ||| - ||| be the gauge functional of
[ = 123 1as)- (o), [l - 111) is a Banach lattice with an order unit 325; in fact,
(I(zo), || - |l) is an abstract M-space. Kakutani warns us that (J(zo), ||| - |||) is

isometrically isomorphic as a Banach lattice to a space C(K).
Next, let y* € Y** satisfy y3 € Sy~ and

Yo (o) = llwoll-
For y € Y, define ||y||; by

lylls = w5 (Iyl)-
Notice that ||-||; is a seminorm on Y. If we factor out those z € Y such that ||z]|; =0
and, then complete the resulting quotient normed lattice, then the completion Y;
is an abstract L-space and so, with another call on Kakutani for his own particular
brand of magic, we find Y; to be isometrically isomorphic, as a Banach lattice, to
an L' (u)-space for some measure p.

Let Joo : (J(o0), ||| - |l]) < X and J; : Y — ¥; be the natural maps defined
implicitly by the above machinations. J;TJu : J(xzg) — Y; is a bounded linear
operator from the C(K)-space (J(zo), |||-|||) into the L!-space Y; with ||J;TJol| <
[T By Step 2,

1 1
[ 1ATTeo(@:)*) ? ||, < KGITI (Y I2il*)®
i<n i<n
But .
IO 12:*) || = llolloo = llol]
i<n
and

1
(D 1M T Tao () ) 2, = llwolls = w3y = llvoll;

i<n
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hence

1 1
13- 1Tzil) *[ly = llvoll < KelTlllzoll < K TI (D la:l?)* |

i<n i<n

ad

Notes and remarks. There are many outstanding references to be consulted
when studying Banach lattices. We mention but a few: Riesz spaces, I by Lux-
emburg and Zaanen (1971), Riesz spaces, II by Zaanen (1983), Banach lattices by
Meyer-Nieberg (1991), Banach lattices and positive operators by Schaefer (1974),
Classical Banach Spaces I by Lindenstrauss and Tzafriri (1977), Classical Banach
Spaces II by Lindenstrauss and Tzafriri (1979), as well as the survey paper by
Buhvalov, Veksler, and Lozanovskii (1979). We also often found ourselves referring
to the original papers of Kakutani: [Kakutani (1941a)] and [Kakutani (1941b)].



APPENDIX D

Stonean spaces and injectivity

D.1. The Nakano Stone Theorem

A compact Hausdorff space S is called Stonean (or extremally disconnected) if
the closure U of any open set U in S is open. Alternatively, S is Stonean if given
disjoint open sets U and V in S, U and V are disjoint, too.

These spaces, isolated independently by Nakano (1941) and Stone (1949), are
central to the study of Banach spaces and enjoy many spectacular properties.

A hint at the importance of Stonean spaces in Banach space theory is contained
in the following now-classical result.

THEOREM D.1.1 (Nakano (1941), Stone (1949)). Let S be a compact Hausdorff
space. S is Stonean if and only if C(S), the space of continuous real-valued functions
defined on S, is a Dedekind complete lattice.

PROOF. Suppose C(S) is a Dedekind complete lattice and let V' be an open
subset of S. By Urysohn’s lemma we can find a family {f,} of continuous real-
valued functions on S with 0 < f, < 1, each f, vanishing outside of V and such
that for each s € S,

sup fa(s) = xv (s).
Let fo be the supremum of f,’s in C(S) :

fO = \/afa'

Then fo(s) = 1if s € V since some f,(s) = 1 for such s. It follows that fo(s) =1 if
s € V. However, if so ¢ V, then there is a g € C(S) such that 0 < g < 1,g(sq) =0
and g(u) = 1 for all u € V. It follows that g is an upper bound for {f,} and so
fo < g. From this we see that fy(sg) = 0 and so fo = x¢!! V must be open and S
Stonean.

Now for the more delicate part of the proof, we suppose S is Stonean and
consider a bounded family {fo} in C(S). Define hg : S — R by ho(s) = sup,, fa(s),
s€S.

Of course, hg € £°(S) and if A € R, then [ho > A] = J,[fa > 5] s0 [ho > A] is
open. Suppose that for each s € S, —My < ho(s) < My and partition the interval
[— Mo, My] into (small) pieces

T —Mog=MX <A << Ay = M.
Each of the sets Cx = [ho > M), K = 0,1,...,n, is open, Cy = S,C, = 0 and
Cy 2 Cry1. Moreover, the sets Cy are open and closed, thanks to S’s Stonean
nature. So S = JpZs(Cx\Cr+1) decomposes S into the union of pairwise disjoint

clopen sets.
Let g, be given by gr(s) = Y _p_o AXG\Grs1 (8). Then g € C(S).

241
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Let G, be the nowhere dense set G, = Ur—,(Ck\Ck). Notice that the sym-
metric difference of Cx\Ck+1 and Ci\Ck; satisfies

(Ci\Cr+1) A(C\Crer1) € (Ci\Ci) | J(Cr41\C41) € G

for k =0,1,...,n—1. Also notice that because Ay < ho(s) < Mgy for s € Cx\Cry1
we have |ho(s) — g (s)| < mesh(r) for s € S\G,. Okay?

Now choose a sequence (m,) of partitions of [—My, My], each a refinement of
its predecessor, so that lim, mesh(r,) = 0. The result: (g.,) is a Cauchy, hence
convergent, sequence in C(S) with limit go € C(S). Of course, go(s) = ho(s) for
s € S\U,, Gr,.- But S\U,, G, is dense in S!! Why is this?

Imagine not. Then (S\ U, G,rn> would be a non-empty open subset of the
compact Hausdorff space S. But

S\(UJGn) =l ((S\Uannfﬂc,rn) ,

a set of the first category, something emphatically forbidden by Baire’s theorem.

Hence, go(s) > fa(s) for each s in the dense set S\(UJ,, Gr,) and all a. It
follows that go(s) > fa(s) for each s € S and all «. Hence g is an upper bound of
{fa} in C(S).

But if h € C(S) satisfies h > f, for all «, then h(s) > ho(s) for all s € S.
Since ho(s) = go(s) for s € S\(U,, Gr,.) we see h(s) > go(s) for all s € S\(U,, Gx..),
a dense subset of S. Hence h > go and go is the least upper bound of {f,} in
C(9). O

D.2. Injective Banach spaces

A Banach space Z is called an injective Banach space if whenever X is a Banach
space (over the same scalar field as Z) and u: X — Z is a bounded linear operator,
then regardless of the Banach space Y that contains X as a closed linear subspace,
there is a bounded linear operator U : Y — Z such that U|x = uw and ||u|| = ||U].

THEOREM D.2.1. If S is a Stonean compact Hausdorff space, then the Banach
space C(S) is injective.

We’ll need the following lemma which has a familiar look to it.

LEMMA D.2.2. LetY be a real linear space and X be a linear subspace of Y.
Suppose p : Y — C(S) satisfies the following two conditions for all A\ > 0 and

Y,Y1,92 €Y

p(y1 +v2) < p(y1) + p(v2),
p(Ay) = Ap(y).

Assume u : X — C(S) is a linear operator such that u(z) < p(z) for each x € X.
Then there is a linear operator U : Y — C(S) such that

Ulx =u and Uy < p(y) for ally €Y.

Of course, this is a modified version of the Hahn-Banach extension procedure
for functionals. Its proof is also a small modification.
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ProoF. To be sure, the key step is to extend u from X to the linear span of
X U{yo} for some yo € Y\ X.
Now a typical vector y in this linear span is of the form

Y=+ ayp

for some z € X and o € R. The problem is to choose U(y) in such a manner that
U(y') < p(y’) for all ¥ in the linear span of X U {yo}. Regardless of the choice we
know Uy = ux + aUyp will be the only possible choice of values for the desired
linear extension.

Let’s test the waters: Let z,z’ be arbitrary members of X. Then

(1) u(z) —u(z") = u(z — ')
<p(z—2)
=p(T+yo—yo — )
< p(z + o) +p(—yo — ).

Consequently, for any z,z’ € X,

(2) —p(=yo0 — 2') — u(z’) < p(z + yo) — u(z).

But C(5) is a Dedekind complete lattice, so a long look at (2) reveals that
sup {~p(~30 — ') ~ (W)} < inf ol + ) ~ (@)},

where the sup and the inf are taken in C(S). Choose fy so that

(3) —p(—yo — ') —u(z’) < fo < p(z + yo) — u(2)

for all z,z’ € X. Define U(yo) = fo. The gods are smiling with satisfaction at our
choice! U’s linearity is clear. Test p’s continued domination.
Look at

Y=+ ayo.
If a >0: fo < p(z+yo) —u(x) for all z € X; replace z by Z and notice that
afo < p(z + ayo) — u(z) results, or, likewise,

Uly) = u(z) + aU(yo) = u(z) + afo
< p(z + ayo) = p(y)-
If o < 0, then we turn to the other side of (3) for help: For all z’ € X,
—p(=yo — ') —u(z’) < fo,
so replacing z’ by Z gives
x
Py —)— “(a) < fo,

which, if we multiply all in sight by «, is the same as

(1) —ap(=yo — 3) —ulz) = afo
(remember o < 0); but —a > 0, so

T
—ap(—yo — a) = p(ayo + ).

Piecing things together we get
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U(y) = U(z + ayo) = u(z) + aU(yo)
= u(z) + afo < —ap(—yo — 2) (by (1))
= p(ayo + ) = p(y).

Of course, the proof of the lemma is now completed through standard use of
Zorn’s lemma. O

PROOF OF THEOREM D.2.1. We first consider the real case. If p(z) = ||z] - 1,
then a linear operator u : X — C(S) has norm < 1 precisely when u(z) < p(z) for
all z € X. The injectivity of C(S) for S Stonean is now a simple consequence of
the lemma (and the Dedekind completeness of C(S)).

Now to the case of complex scalars: Let X be a linear subspace of the complex
Banach space Y and let u : X — C(S) be a bounded linear operator into the Banach
space C(S) of all continuous complex-valued functions on the Stonean space .S. For
z € X, look at

u(z) = Re(u(x)) + iIm(u(z)).
Notice (with Bohnenblust and Sobczyck) that if & and 3 are real and z,z’ € X,
then
Re(ou(z) + Bu(z)) = aRe(u(x)) + BRe(u(z'))
and
IRe (u(z))| < [|l=[l - 1,
where all equalities and inequalities are comparing members of C(S).

Viewing Y as a real Banach space and keeping p(y) = ||y|| - 1 clearly in our
field-of-vision, use what the gods have given us earlier to extend Reou to all of Y
in a fashion that ensures the extension RU : Y — C(S) is real-linear and enjoys
the domination

|RU(y)| < llyll -1

for all y € Y. Define U : Y — C(S) by
Uy = RU(y) — iRU (iy).

U is linear. U extends u. Each of these is so as they were when dealing with
functionals and for the same reasons. We see that ||U] = ||u||. It is enough to do
this in case ||ul| = 1. So suppose y € Y and ||y|| = 1. For any s € S, there is a
¢s € [—m, 7] so that
Uy(s) = [Uy(s)|e'*.

Hence,

[Uy(s)| = e+ Uy(s) = U(e™*y)(s)

= RU(e™**y)(s)

never exceeds 1; after all, |[e~*sy|| = 1. Hence |Uy|| < 1 and ||U| < 1 is the
consequence. g

We now set out to establish the converse, that is, that if Z is an injective
Banach space, then there is a Stonean compact Hausdorff space S such that Z is
isometrically isomorphic to C(S). This remarkable result is due in the real case to
Nachbin (1950), Goodner (1950) and Kelley (1952), while the complex case was
established by Hasumi (1958).
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We’ve chosen to take a different path, one blazed by Gleason (1958). Along
the way we encounter some beautiful scenery, much of a homological nature, with
Stonean spaces coloring the background.

We start with the notion of an irreducible map. Let S,T be compact Hausdorff
spaces and 7w : S — T a continuous surjection; we say that 7 is irreducible if
whenever Sy is a closed subset of S such that 7(Sp) =T, Sp = S.

Irreducibility is always around when we have a continuous surjection, indeed,
Zorn’s Lemma whispers: If w: S — T is a continuous surjection from the compact
Haussdorff space S onto the compact Hausdorff space T, then there is a closed subset
So of S so that m|s, : So = T is an irreducible continuous surjection.

A hint of the role played by Stonean spaces is found in the following:

THEOREM D.2.3 (Gleason (1958)). Let S and T be compact Hausdorff spaces
and w: S — T an irreducible continuous surjection. Suppose that T is Stonean.
Then 7 is a homeomorphism.

PROOF. First, we’ll show that if G is an open subset of S, then 7(G) C [r(G*°)]e.
Let s € G and let U be an open set containing 7(s). GNw*~ (U) is a non-empty open
subset of S with a complement that is a proper closed subset of .S; from this and
7’s irreducibility it follows that 7([G N7 (U)]¢) is a proper closed subset of T". Let
t be a point in T that is not in m([GN 7 (U)]¢). Necessarily, t € 7(G°)°. But 7 is a
surjection so t = m(sg) where plainly s € GNm—(U). Sot = n(sg) € m(v—(U)) =U
and so t € U and m(G°)¢; together these tell us that U N 7w (G€)¢ # ¢. Any open set
U containing a point m(s), where s € G, intersects 7(G¢)°. It follows that 7(G) is
contained in 7(G¢)¢, as claimed.

Now for the main course. Suppose s; and s, are distinct points of S for which
m(s1) = 7(s2). Let G; and G2 be disjoint open subsets of S with s; € G; and
s2 € Go. G§ and G§ are compact so 7(G§)¢ and 7(G$)¢ are open. Further, they
are disjoint since G§ U G§ = S, ensuring 7(G$) Un(GS) = n(GSUGS) = n(S) = T.
Now m(G§)¢ and w(G$)¢ are disjoint open sets in the Stonean space T and so they

have disjoint closures, 7(G$)¢ and w(GS)c. But 51 € G1 so 7(s1) € 7(G1) C 7(GS)¢

and sy € Gg, so 7(s2) € 7(G2) C [7(GS)]¢ making m(s;) = 7(s2) a common point
of disjoint sets. OOPS! a

To bring the above notions into play in our study of Stonean spaces and the na-
ture of injective Banach spaces, we take an interesting and informative side trip and
present more of Gleason-style magic. This is another case of “abstract nonsense”
that makes perfect sense.

Suppose S is a Stonean compact Hausdorff space and denote by |S|, S with
the discrete topology. If i : |S| — S is the formal identity, then ¢ has a unique
continuous extension ¢ : B|S| = S to the Cech-Stone compactification B|S|; ¢ is
surjective. We know now that there must be a closed subset @ of §|S| so that
¢|lg : @ — S is an irreducible continuous surjection. But S is Stonean and so ¢|g
is a homeomorphism. So what? Well, this tells us (if we just stop to listen) that

(ple) oy :BIS| = Q
is a retraction of 3|.S| onto a homeomorphic image of S. So Stonean compact Haus-
dorff spaces are (homeomorphic to) retracts of S(D)’s for discrete spaces D.

A compact Hausdorff space S is called projective if given any compact Hausdorff
spaces T and W and any continuous functions § : T'— W and ¢ : S — W with 6
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being surjective, there is a continuous ¥ : S — T so that § o ) = ¢, that is, we can
fill in the dotted arrow

For any discrete space D, 3D is projective. After all if T, W, p and 6 are given
in the above set-up and d € D, then 8 ({(d)}) is a non-empty subset of T', thanks
to 0’s surjectivity. Choose a point 9(d) from 6 ({¢(d)}), and be happy with the
map 1 : D — T It is continuous! So the very nature of i ensures that the formula

fop =9

holds on D. Now 1 has a unique continuous extension (still called) 1 to a continuous
map v : 3D — T which a fortiori satisfies the same equation it obeyed on D.

Now suppose S is a closed subset of D, where D is still a discrete space,
and that S is in fact a retract of 3D. This means there is a continuous surjection
v : 3D — S so that

v|g = idg.
Let’s look at the test diagram for projectivity:
68D

inje:V
S T
w

Here T and W are compact Hausdorff spaces, § and ¢ are continuous and § : T — W
is surjective. Extend ¢ from S to 8D by ¢ = powv. BD is projective so we can
find ¢ : BD — T so that this diamond-in-the-rough shines

mjec:y' \\
N4

Define 1 : § — T by 9 = |s. Then
p="0o7

and S is projective, too. We've shown that retracts of 8D’s are projective for
discrete D’s.

Now suppose we let S be a projective compact Hausdorff space and let G be
an open subset of S. Take the two point Hausdorff space {p, ¢} and look at T":

T =[G x{pHU[C x {g})] W =S x {p,q}.
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Both T and W are compact Hausdorff spaces. Let 7 be the natural projection of
W onto S,7(s,p) = m(s,q) =s for s € S;let §: T — W be 7 |p . Here is what we

have
S T
i& Q/ﬁﬂ'lq’*
S

Now 6 is surjective and so we can apply S’s projectivity to find a continuous
¥ : S — T so that

fot =idg.
But 6 is injective from G x {¢} to G so for z € G,
P(z) = (z,9)-

Hence, G = 9~ (G x {q}). But G x {q} is open in T!! It follows that
G=4"(Gx{dq})

is open in S!! We took an arbitrary open subset G of our projective compact

Hausdorff space S and showed that G is open as well. All projective compact

Hausdorff spaces are Stonean.
We’ve proved the following:

THEOREM D.2.4 (Gleason (1958)). Let S be a compact Hausdorff space. Then
the following statements are equivalent:

(1) S is Stonean;
(2) S is (homeomorphic to) a retract of BD, for some discrete space D;
(3) S is projective.

LEMMA D.2.5. Let S be a compact Hausdorff space and ¢ : S — S a continuous
map. Suppose that ¢ is not idg. Then there is a proper closed subset @ of S such

that S = QU o (Q).

PROOF. Let s € S be chosen so that ¢(s) # s. Let U and V be disjoint open
subsets of S with s € U and ¢(s) € V. Look at

RQ=[Une=(V)]*=UU[p (V)]
Clearly s € Q° =U Ny~ (V) so that Q is a proper closed subset of S. Further,
RQE=UnNe= (V) S (V) S (U°) Ce™(Q),
and so
S=QURCQUY(Q)CS

and the lemma’s proof is complete. a

THEOREM D.2.6 (Gleason (1958)). For every compact Hausdorff space S there
is a pair (G, ), where G is a Stonean space and ¢ is an irreducible continuous
surjection of G onto S.

The space G is called the Gleason space of S.
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PRrROOF. Let |S| be S with the discrete topology. Of course, the formal identity
map 7 : |[S| — S is a continuous surjection and has a unique extension 3 : B|S| - S
that is continuous and surjective. Let G be a closed subset of 3|S| such that 8|q
is irreducible. Here is the picture:

SELINGTPS » S« G
¢ AlS| B Ble
where jo : G — f|S] is the natural inclusion of G into 3|S|. But §|S] is projective
so we can find a continuous map 9 : B|S| — G such that the following diagram

commutes:

LN

S|

B Blc
S

Claim: 9 o fg = idg. Once established ¢ will be seen to be a retraction of 3|5
onto G and so G must be Stonean. Let us establish the claim.
Because f3|¢ is just what it is,

ﬂojG :/BIGv

and so

(%) Blg oo jo =10 jc = PBlc-

Now if 1o jg is NOT idg, then our lemma assures us that there is a proper closed
subset Q of G such that

G=QU[Wojg) (Q)-

But this means that
Ble(G) = Ble
= fla

QUI[(¥ojc)~(Q))

Q) UBla((¥oje)™(Q)
=Ble(Q) U (Bla oo jc) (¥ 0ja)™(Q))
= Ble(Q)

contradicting the irreducibility of the continuous surjection §|g : G — S.
It follows that 1o jg is idg and so G is a retract of the Stonean space 3|S|. O

A~ o~ o~ o~

Now we’re heading into the home stretch.

To help us find our way to the finish we’ll need to know about the dual ball of
a Banach space and, more particularly, about the structure of the set of extreme
parts thereof. The role played by the extreme points in this situation was first
recognized by Kelley (1952) and it is his ideas that were the driving force behind
finishing the real case of this characterization of injective spaces. We, however, will
follow a slightly different tact, one aimed at dealing with both real and complex
spaces, more or less in the same manner. In detail we follow Cohen (1964).

LEMMA D.2.7. Let X be a real Banach space. Then there is a subset U of
ext Bx~ such that

(1) Uu (—U)"wk = extBX*"mk* and

@) (~U)nT™™ =0,
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PROOF. We open with a CLAIM: If O is a weak* open symmetric (non-empty)

PR k* .
subset of extBx~ , then O contains a non-empty open set V for which V N
(=V) = 0. In fact, if we choose zf € O with ||z = 1, then there is an 29 € X so
z3zo = 1. Look at {z* € O : z*(z¢) > 3} = V and be done with it.

Consider the collection of all non-empty weak*-open O’s inside extBx-
such that O N (—0O) = 0. Order by inclusion and consider a chain, (O, : a € A) of

. . ———weak™ .
such; (J,, O, is such a set, too. So there is an open subset W of extB o which
weak™

eak™

is (non-empty and) mazimal with respect to all open subsets V' of extBx«
that are disjoint from —V.

For such a W we have
(1) [W NextBx-] U[(~W) NextBx-] is weak* dense in extBx-
But what would the alternative be? The set

ext B~ """k*\W u=-w)"

would be non-empty; it is certainly open and symmetric. In tandem we see a
contradiction to W’s maximality by tacking the set

eak™

ak™

ak™

extBx- " \WU (—W)"

onto W to get a bigger set than W of the same ilk. OKAY?
Look at U = W NextBx: (1) is just (f).
—weak™

To see (2) imagine an z* € (-U)NU : z* € (=U), hence z* € (—-W)

———weak”™ .
and (—W) is a weak* open subset of extBx~ . ; it follows that (—W) intersects
—weak™

U (z* is in each) so (W) NU # 0 forcing (-W)NW (2 (-W)NU) to be
non-empty, too. OOPS! (2) follows. O

If A C X, then the circled hull cir(A) is the set {Aa : |A] = 1,a € A}; A is
circled if A = cir(A).

LEMMA D.2.8. Let X be a complex Banach space. Then there exists a subset
U of extBx» such that

k™ weak™

(1) cir(U)" = extBx- ;
(2) for any u* € U, cir{u*} N [ {u*}.

PRrROOF. Just as in the proof of Lemma D.2.7 we start by making a CLAIM!

It is just this: Every non-empty circled open subset @ of extB X*Weak contains
a non-empty open subset V for which, if v* € V, then Av* € V for all |A] =1
except one such A. In fact, let D be the open unit disk in C with [0,1) removed,
choose zf € Q, z§ # 0 (Q does intersect ext Bx~) and then choose zo € X so that
z§(zo) € D. Let V be the set {z* € Q : ©*(xo) € D}; V is just 5 (D) N W and
x5 € V. If o* € V, then z*(x¢) € D and so with precisely one exception for all
A Al =1, Az*(z0) € D, too, leaving all Az*’s in V' but for one. Zorn speaks: There

. . .~ —weak”
is a maximal non-empty open “deleted” subset W in extB e

For such a W we have -
(t1) extByx- Ncir(W) is weak* dense in extBx-

. . . . . ——p —weak” .
or, likewise, cir(W) is weak* dense in extB x- . As a matter of record let it be

. weak™ , — weak®™
known that “otherwise” would entail ext Bx~ \cir(W) being non-empty as
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well as open and circled. But then our CLAIM would jump in to provide an open

weak™

subset V # ( inside extBx» \cir(W)Mk for which given v* € V for all Av*’s,
ly| = 1, belong to V save for exactly one A. Tacking V onto W contradicts W’s
maximality. (1) is a “fait accompli”.

Let U = {z* € extBx~ : * ¢ W but Az* € W for all other X, |A\| = 1}. (1)
follows from (ft) since cir(U) = extBx» N cir(W).

. . . ————weak”
To see (2) notice that W is open in extBX*Wea and U C W€, a weak* closed
—weak™ —weak™

set. Hence, U C We, too. But U NW = @ follows. Now should u* € U
and A # 1 with |A| = 1, then Au* € W so Au* ¢ T Hence, the only point
A, A = 1, that is in T is u* itself. O

So inside ext Bx~ we can always find a subset U such that

e if X is real, then

(@) TO ()™ = extBxa "™
and veak-
(b) (=U)NT™™ =0

and
e if X is complez, then
——weak” w
(a) cirtU = extBx»
and
—weak™

(b) cir{u*}NU = {u*} for each u* € U.
—weak”™

Let K =U . K is a compact subset of (Bx~, weak™). Let S be the Gleason
space of K and 3 : S — K the associated Gleason map; S is Stonean and § is an
irreducible continuous surjection.

Define J : X — C(S) by
Jz(s) = B(s)(x), zeX,s€S.

For any s € S,(s) € K C Bx- so 5(s)(z) makes sense. What is more, 3 is contin-
uous from S to K, which is equipped with the weak* topology making evaluation
at  weak™* continuous.

eak™

LEMMA D.2.9. J ts a linear isometry.
PROOF. It is plain that for any = € X,

[Jz|| = sup |B(s)(z)| < sup |z*(z)| = [|z]|.
seS Bxx

Take an € X and let € > 0 be our margin of error. Then there is an z* € extBx-
so that z*(z) = ||z||; after all, the support functionals at « are an extremal subset
of Bx~ and so contain a point of ext Bx~. Look to U as described above; there is a
u* € U so that |u*(z)| > ||z|| — €, since U satisfies (a). Since u* € U,u* € K, and
so there is an 5o € S so that 3(sg) = u*. Hence,

|[Jz(s0)| = [B(s0) ()| = [u"(2)] > [[z]| —e.

J is an isometry. O

Here is a property of the pair (J,C(S)) that is key to our characterization of
1-injectivity. We continue with the accumulated notations in hand.
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LEMMA D.2.10. The pair (J,C(S)) enjoys the following phenomenon: If G :
X —Y is a linear isometry and A : C(S) — Y is a bounded linear operator with
|A]l < 1 such that the diagram

commutes, then A is an isometry.

PROOF. Suppose Y,G : X — Y, A: C(S) — Y have all answered the stage call
and are ready to play their parts.

Let f € C(S) and € > 0.

Our goal is to estimate || Af]|; this in mind we’ll suppose ||f|| = f(so) for some
sp € S and look at the open subset

Ve=1[If = lIFlIl <el.

Since B : S — K is irreducible and V; is open in S,

B(Ve) € K\B(V),

and so the open set K\B(V¥) in K has a preimage under ( that lies inside V
and is, in fact, dense therein. Now K is just U’s weak* closure so we can find
u* € U C extBx~ so that 87 ({u*}) C V, again by (’s irreducibility.

A change of view. Let S be S viewed as point changes {d; : s € S} in
(C(S)*,weak™). If u € co(B({ux})), then |u(f)| > ||f|l — 2¢! Why is this so?
Well, 3~ ({u*}) C V¢, so any s € B ({u*}) belongs to V; that is,

|£(s) = 1£I1 = 16s(F) = IIfII <e.

Alternatively, for any s € g ({u*}),

[l =& <6s(f) < Ifll +e

Now this inequality plainly is enjoyed by any p € co({ds : s € B~ ({u*})}). So
for any such u we have
I£1l =& < u(f)I-
We can approximate any pu € €6"°** ({d, : s € 8~ ({u*})}) at f within € by w’s in
co({ds : s € B ({u*})}) so, indeed, for all p’s in Eweak*ﬂ‘_/({;}), ()] > Ifil—2e.

—

But 8~ ({u*}) = J*~({u*}) N § and we know from our study of U that
T ({uw)nS = J({u*}) Ncir(S);
after all, if |A\| = 1 and J*\d; = AB(s) = u*, then v* € U and “7* =f(s) € K =

—weak™

U SO % =1=X
Here is where we find ourselves: u* € extBx- and J* is linear and weak*-weak*
continuous (as well as norm bounded), so the weak* compact convex set

J*"({u}) N Bes)-
is extremal, and so
@weak*ﬂ@}) — mweak* (J*c—({u*}) N S)
_ mweak* (J*‘_({u*}) n cirS’)
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= 0" (J*~ ({u*}) NextBo(s)-)
= o™ (ext(J* ({u*}) N Bgs)+)
= J""(u") N Bg(sy--

Now we're ready to compute!

Start with
X —>C
Dualize
X* <—C

\/

The Hahn-Banach theorem assures us there is a y* € Y* of norm one with
G*y* = u*.
So
JTA(y") = (JTAN) () = (AD)"(y") = Gy =u”.
A*y* € J*=({u*}) N Bg(s)- = 0" B ({u*}), and so

" (AN = A"y (H] > [IfIl - 2.
€ > 0 is arbitrary and ||A|| < 1, so this can only happen if ||[Af| = || f|- Done. O

LEMMA D.2.11. Let X be a Banach space. Then there is a pair (J,Y) where
Y is an injective Banach space and J : X — Y is a linear isometry such that if Z
is any injective subspace of Y such that J(X) C Z CY, then Z =Y.

PRrOOF. Naturally, (J,C(S)), where S is the Stonean compact Hausdorff space
constructed earlier and J : X — C(S) is the map discussed at length above, is the
pair we have in mind. If Z is an injective subspace of C'(S) that contains J(X), then
Z is complemented in C'(S) via a norm one projection H : C(S) — C(S),H(C) = Z.
Look at the diagram

x—2¢(8)
H
VA
Since J is an isometry and JX C Z, H o T is an isometry. But now we can

appeal to our previous theorem to conclude that H must itself be an isometry, so
Z = C(S). a

Remark: The pair (J,Y) is actually unique and called the injective envelope of X.

HoJ

COROLLARY D.2.12. If X is an injective Banach space, then X is isometrically
isomorphic to a space C(S), where S is a Stonean compact Hausdorff space.

Proor. If (J,C(S)) is the injective envelope of X, then J is an isometry and
as JX is an injective subspace of C(S). By golly we can apply Lemma D.2.11 to
conclude that JX = Z = C(S)! O
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Notes and remarks. In this section we’ve characterized the “injective” Ba-
nach Spaces in the isometric category of Banach spaces. Our exposition owes a
great deal to the beautiful lecture notes of Bade (1971) and Lindenstrauss (1964).

An incisive analysis of lifting and extension properties of compact (and weakly
compact) linear operators is to be found in the thesis of Lindenstrauss (1964).
Among the many beautiful conclusions drawn in this important work one finds
connections drawn between extending compact linear operators and isometrically
injective spaces. For instance:

THEOREM. For a Banach space X, the following statements are equivalent:

(1) X** is isometrically injective;

(2) if Y is a closed linear subspace of the Banach space Z and J :' Y — X is
a compact linear operator, then for each € > 0 there is a compact linear
operator T, : Z — X such that Tely = T and ||T¢|| = (1 +¢)||T);

(3) whenever X CW andT : X — Y is a compact linear operator, there is a
compact linear operator T : W — Y such that T|x =T and ||T| = |T||;

(4) whenever X CW and T : X — Y 1is a weakly compact linear operator,
there is a weakly compact linear operator T:W — Y such that T| x=T
and ||T|| = ||T.

Note that (3) and (4) are extension theorems for operators with X as a domain.

Lindenstrauss’s analysis exposes the profound relationship between extension
properties of operators and intersection properties of balls, a relationship first
broached in the work of Nachbin (1950).

There is a related notion in the isomorphic category: A Banach space X is
tsomorphically injective if given any bounded linear operator u : Y — X where
Y is a closed linear subspace of the Banach space Z, there is a bounded linear
operator U : Z — X so that U |y= u. Any isomorphically injective Banach space
is a Px-space for some A > 1: X is a Py-space if, whenever X is a closed linear
subspace of the Banach space Y there is a bounded projection P : Y — Y with
P(Y) = X and ||P|| < A. Alternatively, X is a Py-space if, whenever u: Z — X
is a bounded linear operator and Z is a closed linear subspace of the Banach space
W there is a bounded linear U : W — X with |U|| < A|ju| and U |z= wu.

The classification of the isomorphically injective Banach spaces remains an open
question. In fact it is a famous open problem whether or not an isomorphically
injective Banach space is isomorphic to an isometrically injective Banach space.

Several striking passes have been made at the problem. Here are a few results.

From [Lindenstrauss and Pelczyriski (1968)] and [Lindenstrauss and Rosenthal
(1969)] we know:

o X is a L'-space if and only if X* is isomorphically injective.
o X is a L%-space if and only if X** is isomorphically injective.

[Rosenthal (1970)] contains a wealth of information and directions to the erst-
while student of this topic.

A striking result of Haydon (1978) must be mentioned: If X is an isomorphi-
cally injective bidual space, then X is isomorphic to £2°(T) for some set T.

Earlier Isbell and Semadeni (1963) and Amir (1962) had shown that if a C(K)-
space is a Py-space with A\ < 2, then K is extremally disconnected; Wolfe (1978)
contributed to the understanding of C'(K')-spaces that are Py for A < 3.
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One late addition to the classification of isomorphically injective spaces is the
following result of Argyros, Castillo, Granero, Jiménez, and Moreno (2002): Let
X be an isomorphically injective Banach space. Suppose Bx~ has weak® density
character T and X contains a weakly compact set of density character 7. Then X
1s isomorphic to £>° (7).

Incidentally, it is not always plain that certain viable candidates for isomor-
phically injectivity pass or fail the test; the space of bounded Lebesgue measurable
functions defined on [0,1] and the space of bounded Borel functions defined on
[0,1], fails to be isomorphically injective. This was shown by Argyros (1983). It is
crucial to note that each of these spaces is a function space; no equivalence classes
modulo null sets are involved.



Epilogue

The past twenty years have seen the development of a third important category
of Banach spaces: operator spaces. Described by Gilles Pisier as noncommutative
Banach space theory, operator spaces incorporate the Banach space structure of a
(complex) space with its implicit topological-algebraic structure when embedded
into a C*-algebra. Invented by Effros, Ruan, Blecher and Paulsen, operator spaces
have enjoyed considerable success in solving old problems in operator theory and
have breathed new life into Banach space theory, allowing new, finer gradations of
Banach spaces.

Relevant to these deliberations is the fact that operator spaces have been a
fertile ground for the Grothendieck programme. Tensor products live!

What, then, is an operator space?

The short answer is any closed linear subspace of a space B(H) of all bounded
linear operators on some Hilbert space H, equipped with the operator norm. Now
this includes all Banach spaces, thanks to the Gelfand-Naimark-Segal theory. So
what’s difficult? Well, the manner of embedding matters as does our manner of
comparison.

At the heart of the matter is the notion of a completely bounded linear operator.
Denoting by My, »(E) the space of all m x n matrices with entries in the operator
space F (and making the abbreviation, M, (E), for all n x n matrices with entries in
E), a linear mapping T' between two operator spaces X C B(H) and Y C B(K) is
completely bounded if the induced operators T,, : M,,(X) — M, (Y) have uniformly
bounded norm. Here M, (X) inherits its norm from B(¢2(H)) and T,((zs5)) =
(Tzij). So the completely bounded norm of T, ||T'||cp, is just

1T||cb = SuPn”TnHMn(X)—»M,,(Y)«

When we speak of the category of operator spaces, our objects are Banach
spaces with the embeddings into B(H)’s in hand; the morphisms are the completely
bounded linear maps.

Naturally, two operator spaces X and Y are completely isomorphic if there
is a completely bounded invertible 7' : X — Y whose inverse is also completely
bounded.

Beware! This new category is really different from our old friends, the isometric
and the isomorphic categories of Banach spaces. In fact, this new category is chock
full of delicious surprises.

To wit: In the classical categories of Banach spaces, the density character of a
Hilbert space of infinite dimensions completely characterizes the equivalence class
the space belongs to. If you’ve seen one infinite dimensional separable Hilbert space,
you've seen them all.

255
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Not so in the operator space category. Hilbert space comes in many guises.
One is column Hilbert space C: Starting with B(¢?), look at C, the closed linear
span in B(¢?) of {en; : n € N}; another is row Hilbert space R: Starting with B(¢2),
look at R, the closed linear span of {e1, : n € N}. Of course, en, is the operator
in B(¢?) whose matrix representation has a 1 in the m** row and n** column and
0’s elsewhere. It is plain and easy-to-see that C' and R are isometrically isomorphic
(to £2, even) in the isometric and isomorphic categories. However, and this is a
startling fact (at least for the novice) discovered by Mathes (1994), if T : C — R
is completely bounded, then T is a Hilbert-Schmidt operator. In the category of
operator spaces, C and R are completely different, pardon the irresistible pun.

The above definition of operator spaces, while attractive for its simplicity, lacks
flexibility. A remarkable characterization of operator spaces, due to Ruan (1988),
was discovered about twenty years ago. It was the spark that set off an amazing
rush of activity, activity that continues to this very day. Here is Ruan’s fundamental
result.

Let F be a complex vector space given together with a sequence (a,,) of norms
on the spaces M, (E), that is, for each n we have a norm a,, on M, (E). We assume
these norms are compatible in the sense that by embedding M, (E) into M, 1 (F)
(by adding zeros in the last row and column), o, coincides with «,41’s restriction
to M, (E). Rather than work with this sequence of norms, we might choose to work
with one norm, the natural norm defined on the “union” Ky(F) of all the spaces
M, (F). We can view Ky(FE) as the union of an ascending sequence

Mi(E) C My(E) C ... C M,(E) C Mp1(E) C ...

and equip Ko(FE) with the norm « induced by the spaces M, (E).

It is easy to see that the sequence of norms that come from an operator space
structure on E (assuming such already exists) satisfy the following:
(Ry) forallneN, ifze M,(F) and a,b € M,(C), then

an(a-z-b) < |[|allm, an(@)]|blar,;

and
(Rg) forallm,neN, if x € M,(E),y € M, (F), then

an+m(fc (&) y) = max {O[n(fl?), am(y)},

where @ y is the (n +m) by (n + m) matrix ( 3 2 )

Further, and this reflects the C*-algebraic character implicit in operator spaces,
we have
(R) for any finite sequences (a;) and (b;) in Ko(C) and any finite sequence (z;)
in Ko(FE), we have

1 1
(X o) < | wd |} supar((e)) | bl
Here, then, is the fundamental (and extremely elegant) result of Ruan.

THEOREM (Ruan (1988)). Let E be a complex vector space. Let (o) be as
above, a sequence of compatible norms on the spaces My (E) and let o be the cor-
responding norm on Ko(E). The following statements are equivalent:

(1) (R1) and (R2) are satisfied.
(2) (R) is satisfied.
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(3) For a judiciously chosen Hilbert space H, there is a linear embedding J :
E — B(H) such that for any n € N, idpy, ® J is an isometry between
(Myp(E), ap) and M,(J(E)) C M,(B(H)), where M,(J(E)) is equipped
with the C*-algebra norm of M, (B(H)) restricted to My (J(E)).

Since M, (B(H)) is easily identified with B(¢2(H)), (3) just says E is an oper-
ator space.

Armed with Ruan’s theorem, the practitioners of operator space theory pre-
sented a unified approach to such fundamental constructs as “dual space”, “quo-
tient space”, “bidual”, “direct sum”, “complex interpolation” and “ultra product”;
in short all the usual abstract accompaniments we want within a category dealing
with Banach spaces regardless of view point.

We rush to interject here an important bit of information. Although the investi-
gation into operator spaces per se started in earnest only in the late 1980’s, already
there are three excellent monographs by leaders in the field. Each introduces the
ambitious, able student to the subject from a particular vantage point. We refer
the reader to the references at the end of this Epilogue for complete details.

[Effros and Ruan (2000)] offers a beautifully detailed exposition by two of the
creators of “quantized functional analysis’!

[Paulsen (2002)] offers a look into how operator spaces shed light on operator
algebras, seen through the eyes of one of the originators of the subject, one who is
responsible for many of the successes. Again, written with the apt student in mind.

[Pisier (2003)] may be the “Résumé” of operator spaces, setting forth the ba-
sics in early chapters and positing a list of possible building blocks for the future
development of the subject.

With texts like these and the expanding number of truly outstanding practi-
tioners, operator space theory is experiencing remarkable progress. It is not our in-
tention to chronicle such — it would be far beyond our capabilities anyway. Rather,
in the next few paragraphs we want to speak of how the Grothendieck programme
looks in this new setting.

As in the classical setting, the operator space projective and operator space
injective tensor products play a central role in the theory.

First, to reflect the added structure of an operator space, the norms we consider
are subcross matrix norms: For operator spaces V and W, an operator space norm
pon VW is a subcross matriz norm if ||v ® wl|, < |lv]| |Jwl] for all v € My(V)
and w € Mg(W); if |lv @ w||, = |[v|| ||w| for all v’s, w’s, then u is called a cross
matriz norm.

Subcross matrix norms play a role in operator space theory similar to reasonable
crossnorms in classical Banach space theory.

We are now ready to define the operator space projective tensor norm || - ||a
on V ® W, where V and W are any pair of operator spaces. We know, by Ruan'’s
theorem that we need to specify ||u|| for u € M,(V ® W), and all n € N in such a
way that (R;) and (R;) are satisfied: Given an element u € M, (V ® W), we define

ullr = inf{{le|l o]l wll|8]] : v = - v @ w - B},
where the infimum is taken over arbitrary decompositions of u with v € M,(V),

w € Mg(W), @ € My pxq, B € Mpxgn, p,qg € N. This is an operator space norm,
the largest subcross matrix norm on V @ W.
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If V and W are operator spaces, we will denote the completion (as in the

Banach space case) of (V@W, ||-||») by V ® W and we call this space the operator
space projective tensor product.

The norm || - ||, enjoys the following Universal Mapping Property: If V,W, X
are operator spaces, then there is a natural completely isometric identification of

CB(V (§> W;X) and CB(V x W;X). Here CB(V x W;X) denotes the space of
completely bounded bilinear maps ¢ : V x W — X that is, those bilinear ¢’s such
that there is a K > 0 so that for any p, ¢ € N, the mappings

Ppg i Mp(V) X Mg(W) — My q(X)
given by
Pp,q(vsw) = (@(vij,wk,1))
satisfy [l¢pql < K. Naturally [[¢|lcb = sup, ,ll¢p,qll- This basic feature of the
operator space projective tensor product was discovered by Blecher, Paulsen, Effros
and Ruan. We refer to the bibliography at the end of this epilogue for further
references.

At the other end of tensorial considerations, we have the operator space injective
tensor norm, || - ||v. For operator spaces U and V and u € M, (V ® W) we define

lullv = sup {I(f @ Pn(w)l : f € Mp(V"), g € M(W*), |If]l <1, lg]l < 1}.

The completion of (V @ W, || - ||v) is called the operator space injective tensor

product and denoted by V Q\é w.

Just as the operator space projective tensor product mimics the Banach space
projective tensor product via a Universal Mapping Property, the operator space
injective tensor product mimics its Banach space counterpart in a myriad of man-

nerisms. To state but two: The natural embedding of V* é W of the operator
space injective tensor product of the operator spaces V* and W into the operator
space CB(V, W) of completely bounded bilinear functionals on V- x W is completely
isometric; again, if ¢ : V. — Vi, ¢ : W — Wi are complete isometries, then

pRY:V é W —-W é W1 is a complete isometry

There are, of course, many operator space tensor norms, just as there are
many tensor norms in the Banach space setting. In the Banach space setting
the 14 natural tensor norms of Grothendieck rightfully occupy center stage in the
development of the theory.

In the operator space setting there is one operator space tensor norm, the
Haagerup norm that plays a key role in the theory and there is no corresponding
tensor norm in the Banach space setting. Since we plan only to talk about the
Haagerup norm, we refer the reader to the texts listed earlier for lively and in-
formative discussions regarding this norm. (Also see [Blecher and Smith (1992)].)
Suffice it to say that within the category of operator spaces the Haagerup norm is
projective, injective and self dual! Of course, as we saw in our discussion of the
Gordon-Lewis Theorem A.2.2 no tensor norm that is both projective and injective
exists in the Banach space setting.

Of course Grothendieck’s programme entailed much more than just tensor prod-
ucts in various tensor norms. He generated classes of a-integral and a-nuclear
operators with striking factorizations, characteristic of injective and/or projective
properties of the generating tensor norms. So, too, operator space theory has its
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classes of integral operators and nuclear operators with corresponding operator
space factorizations. (See [Effros and Ruan (1994b)], [Effros and Ruan (1994a)],
[Effros and Ruan (1997)] and [Effros, Junge, and Ruan (2000)].)

Notions that arise in the Banach space categories have analogous notions in
the operator space category. Injectivity [Effros, Ozawa, and Ruan (2001)], approx-
imation property [Effros and Ruan (1990)], local reflexivity [Effros, Junge, and
Ruan (2000)], all have special meanings in the new enriched category and precise
delineation is a quest well worth pursuing. We make special mention here of the
point of departure of these categories, separable injectivity. A space is separable
injective if it is separable and complemented by a projection of suitable nature in
any separable super space. It is a still wonderful theorem of Zippin (1977) that
says co is the only separable isomorphically injective infinite dimensional Banach
space; that co is separably injective (in the isomorphic theory) is a now classical
result of Sobczyk (1941). In the category of operator spaces, the proper setting
for this problem is to ask which (separable) operator spaces U have the property
that given a separable operator space V and a completely bounded linear operator
a : V — U such that if V is a subspace of the separable operator space W, then
there is a completely bounded operator A : W — U such that A|y = a? This
question has striking results already in evidence, results different from those in the
isomorphic category. Rather than tell tales, we refer those interested, to the paper
of Rosenthal (2000) for an informative read.

We close with one more hint of how the subject of operator spaces has pro-
gressed in a manner parallel to the understanding of the Résumé: The operator
space version of Grothendieck’s inequality.

Conjectured by Effros and Ruan (1991a): If A and B are C*-algebras and
¢ : Ax B — C is a jointly completely bounded bilinear functional, then there
exists states fi1, f, on A and states g;, g2 on B, such that for all a € A and b € B,

lo(a, )| < Kllellen(f1(aa") 291 (5°b)% + fo(a®a) 2 g1 (b07)%)
where K is a universal constant.

Pisier and Shlyakhtenko (2002) verified the Effros-Ruan conjecture (and much,
much more) with K = 2% provided that at least one of the C*-algebras A and
B is “exact”. Recently, Haagerup and Musat (2007) have verified the Effros-Ruan
conjecture for any C*-algebras with K = 1. Consequently, any completely bounded
linear map 7' : A — B* from a C*-algebra A to the dual B* of a C*-algebra B
admits a factorization T" = vw through R & C (R is row Hilbert space and C is
column Hilbert space) where v: R® C — B* and w: A — R @ C are completely
bounded linear operators such that

[vllcnllwllen < 2[|T |eb-

Enough said here about operator spaces. No better advice can be given than
to go to the sources cited herein. Enjoy!

References to operator spaces

Monographs.
[A] Effros, E. G. and Ruan, Z.-J. (2000). Operator spaces, volume 23 of

London Mathematical Society Monographs. New Series. The Clarendon
Press, Oxford University Press, New York.



260 EPILOGUE

[B] Paulsen, V. (2002). Completely bounded maps and operator algebras, vol-
ume 78 of Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, Cambridge.

[C] Pisier, G. (2003). Introduction to operator space theory, volume 294 of
London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge.

Papers.

(1] Blecher, D. P. (1992). Tensor products of operator spaces. II. Canad. J.
Math., 44(1) 75-90.

[2] Blecher, D. P. and Paulsen, V. I. (1991). Tensor products of operator
spaces. J. Funct. Anal., 99(2) 262-292.

[3] Blecher, D. P. and Smith, R. R. (1992). The dual of the Haagerup tensor
product. J. London Math. Soc. (2), 45(1) 126-144.

[4] Effros, E. and Ruan, Z.-J. (1994a). The Grothendieck-Pietsch and Dvo-
retzky-Rogers theorems for operator spaces. J. Funct. Anal, 122(2)
428-450.

[5] Effros, E. G., Junge, M., and Ruan, Z.-J. (2000). Integral mappings and
the principle of local reflexivity for noncommutative L!-spaces. Ann. of
Math. (2), 151(1) 59-92.

[6] Effros, E. G., Ozawa, N., and Ruan, Z.-J. (2001). On injectivity and
nuclearity for operator spaces. Duke Math. J., 110(3) 489-521.

[7] Effros, E. G. and Ruan, Z.-J. (1990). On approximation properties for
operator spaces. Internat. J. Math., 1(2) 163-187.

[8] Effros, E. G. and Ruan, Z.-J. (1991a). A new approach to operator spaces.
Canad. Math. Bull., 34(3) 329-337.

[9] Effros, E. G. and Ruan, Z.-J. (1991b). Self-duality for the Haagerup
tensor product and Hilbert space factorizations. J. Funct. Anal., 100(2)
257-284.

[10] Effros, E. G. and Ruan, Z.-J. (1994b). Mapping spaces and liftings for
operator spaces. Proc. London Math. Soc. (8), 69(1) 171-197.

(11] Effros, E. G. and Ruan, Z.-J. (1997). On the analogues of integral map-
pings and local reflexivity for operator spaces. Indiana Univ. Math. J.,
46(4) 1289-1310.

[12] Haagerup, U. and Musat, M. (2007). The Effros-Ruan conjecture for
bilinear forms on C*-algebras.

[13] Mathes, B. (1994). Characterizations of row and column Hilbert space.
J. London Math. Soc. (2), 50(1) 199-208.

[14] Pisier, G. and Shlyakhtenko, D. (2002). Grothendieck’s theorem for op-
erator spaces. Invent. Math., 150(1) 185-217.

[15] Rosenthal, H. (2000). The complete separable extension property. J.
Operator Theory, 43(2) 329-374.

(16] Ruan, Z.-J. (1988). Subspaces of C*-algebras. J. Funct. Anal., 76(1)
217-230.

[17] Sobczyk, A. (1941). Projection of the space (m) on its subspace (cp).
Bull. Amer. Math. Soc., 47 938-947.

[18] Zippin, M. (1977). The separable extension problem. Israel J. Math.,
26(3-4) 372-387.



Bibliography

Alon, N. and Naor, A. (2004). Approximating the cut-norm via Grothendieck’s
inequality. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, pages 72-80 (electronic). ACM, New York.

Amemiya, I. and Shiga, K. (1957). On tensor products of Banach spaces. Kodai
Math. Sem. Rep., 9 161-178.

Amir, D. (1962). Continuous functions’ spaces with the bounded extension property.
Bull. Res. Council Israel Sect. F, 10F 133-138 (1962).

Argyros, S. A. (1983). On the space of bounded measurable functions. Quart. J.
Math. Ozford Ser. (2), 34(134) 129-132.

Argyros, S. A., Castillo, J. F., Granero, A. S., Jiménez, M., and Moreno, J. P.
(2002). Complementation and embeddings of ¢o(I) in Banach spaces. Proc.
London Math. Soc. (3), 85(3) 742-768.

Arregui, J. L. and Blasco, O. (2002). (p,q)-summing sequences. J. Math. Anal.
Appl., 274(2) 812-827.

Bade, W. G. (1971). The Banach space C(S). Lecture Notes Series, No. 26. Matem-
atisk Institut, Aarhus Universitet, Aarhus.

Bishop, E. and Phelps, R. R. (1963). The support functionals of a convex set. In
Proc. Sympos. Pure Math., Vol. VII, pages 27-35. Amer. Math. Soc., Providence,
R.IL

Blecher, D. P. (1992). Tensor products of operator spaces. II. Canad. J. Math.,
44(1) 75-90.

Blecher, D. P. and Paulsen, V. I. (1991). Tensor products of operator spaces. J.
Funct. Anal., 99(2) 262-292.

Blecher, D. P. and Smith, R. R. (1992). The dual of the Haagerup tensor product.
J. London Math. Soc. (2), 45(1) 126-144.

Bochnak, J. (1970). Analytic functions in Banach spaces. Studia Math., 35 273-292.

Bombal, F., Pérez-Garcia, D., and Villanueva, I. (2004). Multilinear extensions of
Grothendieck’s theorem. Q. J. Math., 55(4) 441-450.

Bourgain, J. (1984). New Banach space properties of the disc algebra and H®.
Acta Math., 152(1-2) 1-48.

Bourgain, J. (1986). Real isomorphic complex Banach spaces need not be complex
isomorphic. Proc. Amer. Math. Soc., 96(2) 221-226.

Bourgain, J. and Davis, W. J. (1986). Martingale transforms and complex uniform
convexity. Trans. Amer. Math. Soc., 294(2) 501-515.

Bu, Q. (2003). On Banach spaces verifying Grothendieck’s theorem. Bull. London
Math. Soc., 35(6) 738-748.

Bu, Q. and Diestel, J. (2001). Observations about the projective tensor product of
Banach spaces. I. IP®X, 1 < p < co. Quaest. Math., 24(4) 519-533.

261



262 Bibliography

Buhvalov, A. V., Veksler, A. 1., and Lozanovskii, G. J. (1979). Banach lattices —
some Banach aspects of the theory. Russian Math. Surveys, 34 159-212.

Carne, T. K. (1978). Tensor products and Banach algebras. J. London Math. Soc.
(2), 17(3) 480-488.

Carne, T. K. (1980). Banach lattices and extensions of Grothendieck’s inequality.
J. London Math. Soc. (2), 21(3) 496-516.

Casazza, P. G. (2001). Approximation properties. In Handbook of the geometry of
Banach spaces, Vol. I, pages 271-316. North-Holland, Amsterdam.

Chevet, S. (1969). Sur certains produits tensoriels topologiques d’espaces de Ba-
nach. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 11 120-138.

Cohen, H. B. (1964). Injective envelopes of Banach spaces. Bull. Amer. Math. Soc.,
70 723-726.

Cohen, J. S. (1973). Absolutely p-summing, p-nuclear operators and their conju-
gates. Math. Ann., 201 177-200.

Davie, A. M. (1975). The Banach approximation problem. J. Approzimation The-
ory, 13 392-394. Collection of articles dedicated to G. G. Lorentz on the occasion
of his sixty-fifth birthday, IV.

Davis, W. J., Figiel, T., Johnson, W. B., and Pelczynski, A. (1974). Factoring
weakly compact operators. J. Functional Analysis, 17 311-327.

Davis, W. J. and Johnson, W. B. (1974). Compact, nonnuclear operators. Studia
Math., 51 81-85.

Defant, A. and Floret, K. (1993). Tensor norms and operator ideals. North-Holland
Publishing Co., Amsterdam.

Diestel, J., Fourie, J., and Swart, J. (2003). The projective tensor product. I. In
Trends in Banach spaces and operator theory (Memphis, TN, 2001), volume 321
of Contemp. Math., pages 37-65. Amer. Math. Soc., Providence, RI.

Diestel, J., Jarchow, H., and Tonge, A. (1995). Absolutely summing operators,
volume 43 of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge.

Diestel, J. and Uhl, Jr., J. J. (1977). Vector measures. American Mathematical
Society, Providence, R.I. With a foreword by B. J. Pettis, Mathematical Surveys,
No. 15.

Dixmier, J. (1950). Les fonctionnelles linéaires sur I'’ensemble des opérateurs bornés
d’un espace de Hilbert. Ann. of Math. (2), 51 387-408.

Dubinsky, E., Pelczynski, A., and Rosenthal, H. P. (1972). On Banach spaces X for
which II2(Leo, X) = B(Loo, X). Studia Math., 44 617-648. Collection of articles
honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI.

Dunford, N. and Pettis, B. J. (1940). Linear operations on summable functions.
Trans. Amer. Math. Soc., 47 323-392.

Effros, E. and Ruan, Z.-J. (1994a). The Grothendieck-Pietsch and Dvoretzky-
Rogers theorems for operator spaces. J. Funct. Anal., 122(2) 428-450.

Effros, E. G., Junge, M., and Ruan, Z.-J. (2000). Integral mappings and the princi-
ple of local reflexivity for noncommutative L!-spaces. Ann. of Math. (2), 151(1)
59-92.

Effros, E. G., Ozawa, N., and Ruan, Z.-J. (2001). On injectivity and nuclearity for
operator spaces. Duke Math. J., 110(3) 489-521.

Effros, E. G. and Ruan, Z.-J. (1990). On approximation properties for operator
spaces. Internat. J. Math., 1(2) 163-187.



Bibliography 263

Effros, E. G. and Ruan, Z.-J. (1991a). A new approach to operator spaces. Canad.
Math. Bull., 34(3) 329-337.

Effros, E. G. and Ruan, Z.-J. (1991b). Self-duality for the Haagerup tensor product
and Hilbert space factorizations. J. Funct. Anal., 100(2) 257-284.

Effros, E. G. and Ruan, Z.-J. (1994b). Mapping spaces and liftings for operator
spaces. Proc. London Math. Soc. (3), 69(1) 171-197.

Effros, E. G. and Ruan, Z.-J. (1997). On the analogues of integral mappings and
local reflexivity for operator spaces. Indiana Univ. Math. J., 46(4) 1289-1310.
Effros, E. G. and Ruan, Z.-J. (2000). Operator spaces, volume 23 of London Mathe-
matical Society Monographs. New Series. The Clarendon Press Oxford University

Press, New York.

Enflo, P. (1973a). A Banach space with basis constant > 1. Ark. Mat., 11 103-107.

Enflo, P. (1973b). A counterexample to the approximation problem in Banach
spaces. Acta Math., 130 309-317.

Figiel, T. (1973). Factorization of compact operators and applications to the ap-
proximation problem. Studia Math., 45 191-210. (errata insert).

Figiel, T. and Johnson, W. B. (1973). The approximation property does not imply
the bounded approximation property. Proc. Amer. Math. Soc., 41 197-200.

Fishburn, P. C. and Reeds, J. A. (1994). Bell inequalities, Grothendieck’s constant,
and root two. SIAM J. Discrete Math., 7(1) 48-56.

Fourie, J. H. and Réntgen, I. M. (2003). Banach space sequences and projective
tensor products. J. Math. Anal. Appl., 277(2) 629-644.

Fourie, J. H. and Swart, J. (1981). Tensor products and Banach ideals of p-compact
operators. Manuscripta Math., 35(3) 343-351.

Freudenthal, H. (1936). Teilweise geordnete Moduln. Proc. Acad Sci. Amsterdam,
39 641-651.

Gamelin, T. W. and Kislyakov, S. V. (2001). Uniform algebras as Banach spaces.
In Handbook of the geometry of Banach spaces, Vol. I, pages 671-706. North-
Holland, Amsterdam.

Garling, D. J. H. and Gordon, Y. (1971). Relations between some constants asso-
ciated with finite dimensional Banach spaces. Israel J. Math., 9 346-361.

Gilbert, J. E. and Leih, T. J. (1980). Factorization, tensor products, and bilinear
forms in Banach space theory. In Notes in Banach spaces, pages 182-305. Univ.
Texas Press, Austin, Tex.

Gleason, A. M. (1958). Projective topological spaces. Illinois J. Math., 2 482-489.

Godefroy, G., Kalton, N. J., and Saphar, P. D. (1993). Unconditional ideals in
Banach spaces. Studia Math., 104(1) 13-59.

Godefroy, G. and Saphar, P. D. (1989). Three-space problems for the approximation
properties. Proc. Amer. Math. Soc., 165(1) 70-75.

Goodner, D. B. (1950). Projections in normed linear spaces. Trans. Amer. Math.
Soc., 69 89-108.

Gordon, Y. and Lewis, D. R. (1974). Absolutely summing operators and local
unconditional structures. Acta Math., 133 27-48.

Gordon, Y., Lewis, D. R., and Retherford, J. R. (1973). Banach ideals of operators
with applications. J. Functional Analysis, 14 85-129.

Grothendieck, A. (1953). Sur les applications linéaires faiblement compactes
d’espaces du type C(K). Canadian J. Math., 5 129-173.



264 Bibliography

Grothendieck, A. (1953/1956a). Résumé de la théorie métrique des produits ten-
soriels topologiques. Bol. Soc. Mat. Sio Paulo, 8 1-79.

Grothendieck, A. (1953/1956b). Sur certaines classes de suites dans les espaces de
Banach et le théoreme de Dvoretzky-Rogers. Bol. Soc. Mat. Sdo Paulo, 8 81-110
(1956).

Grothendieck, A. (1955a). Produits tensoriels topologiques et espaces nucléaires.
Mem. Amer. Math. Soc., 1955(16) 140.

Grothendieck, A. (1955b). Une caractérisation vectorielle-métrique des espaces L!.
Canad. J. Math., 7 552-561.

Grothendieck, A. (1955c). Une caractérisation vectorielle-métrique des espaces L.
Canad. J. Math., 7 552-561.

Gurarii, V. I. (1965). The index of sequences in C' and the existence of infinite-
dimensional separable Banach spaces having no orthogonal basis. Rev. Roumaine
Math. Pures Appl., 10 967-971.

Haagerup, U. (1985). The Grothendieck inequality for bilinear forms on C*-
algebras. Adv. in Math., 56(2) 93-116.

Haagerup, U. (1987). A new upper bound for the complex Grothendieck constant.
Israel J. Math., 60(2) 199-224.

Haagerup, U. and Musat, M. (2007). The Effros-Ruan conjecture for bilinear forms
on C*-algebras. Preprint.

Hasumi, M. (1958). The extension property of complex Banach spaces. Téhoku
Math. J. (2), 10 135-142.

Havin, V. P. (1973). Weak completeness of the space L'/H}. Vestnik Leningrad.
Univ., 13(Mat. Meh. Astronom. Vyp. 3) 77-81, 172.

Haydon, R. (1978). On dual L'-spaces and injective bidual Banach spaces. Israel
J. Math., 31(2) 142-152.

Isbell, J. R. and Semadeni, Z. (1963). Projection constants and spaces of continuous
functions. Trans. Amer. Math. Soc., 107 38—48.

Jarchow, H. and John, K. (1994). Bilinear forms and nuclearity. Czechoslovak
Math. J., 44(119)(2) 367-373.

John, F. (1948). Extremum problems with inequalities as subsidiary conditions. In
Studies and Essays Presented to R. Courant on his 60th Birthday, January 8,
1948, pages 187-204. Interscience Publishers, Inc., New York, N. Y.

John, K. (1983). Counterexample to a conjecture of Grothendieck. Math. Ann.,
265(2) 169-179.

John, K. (1984). Tensor product of several spaces and nuclearity. Math. Ann.,
269(3) 333-356.

John, K. (1986). Tensor powers of operators and nuclearity. Math. Nachr., 129
115-121.

John, K. (1990). On the compact nonnuclear operator problem. Math. Ann., 287(3)
509-514.

Johnson, J. (1979). Remarks on Banach spaces of compact operators. J. Funct.
Anal., 32(3) 304-311.

Johnson, W. B. (1971). Factoring compact operators. Israel J. Math., 9 337-345.

Johnson, W. B. (1974). On finite dimensional subspaces of Banach spaces with
local unconditional structure. Studia Math., 51 225-240.

Johnson, W. B., Rosenthal, H. P., and Zippin, M. (1971). On bases, finite dimen-
sional decompositions and weaker structures in Banach spaces. Israel J. Math.,
9 488-506.



Bibliography 265

Jones, P. W. (1985). BMO and the Banach space approximation problem. Amer.
J. Math., 107(4) 853-893.

Kadets, M. I. and Snobar, M. G. (1971). Certain functionals on the Minkowski
compactum. Mat. Zametki, 10 453—-457.

Kahane, J.-P. (1968). Some random series of functions. D. C. Heath and Co.
Raytheon Education Co., Lexington, Mass.

Kaijser, S. (1983). A simple-minded proof of the Pisier-Grothendieck inequal-
ity. In Banach spaces, harmonic analysis, and probability theory (Storrs, Conn.,
1980/1981), volume 995 of Lecture Notes in Math., pages 33—-44. Springer, Berlin.

Kaijser, S. and Sinclair, A. M. (1984). Projective tensor products of C*-algebras.
Math. Scand., 55(2) 161-187.

Kaiser, R. J. and Retherford, J. R. (1983). Eigenvalue distribution of nuclear oper-
ators: a survey. In Proceedings of the conferences on vector measures and integral
representations of operators, and on functional analysis/Banach space geometry
(Essen, 1982), volume 10 of Vorlesungen Fachbereich Math. Univ. Essen, pages
245-287. Univ. Essen, Essen.

Kaiser, R. J. and Retherford, J. R. (1984). Eigenvalue distribution of nuclear
operators: a survey. In Proceedings of the second international conference on
operator algebras, ideals, and their applications in theoretical physics (Leipzig,
1983), volume 67 of Teubner-Texte Math., pages 173-177. Teubner, Leipzig.

Kakutani, S. (1941a). Concrete representation of abstract (L)-spaces and the mean
ergodic theorem. Ann. of Math. (2), 42 523-537.

Kakutani, S. (1941b). Concrete representation of abstract (M)-spaces. (A charac-
terization of the space of continuous functions.). Ann. of Math. (2), 42 994-1024.

Kalton, N. J. (1974). Spaces of compact operators. Math. Ann., 208 267-278.

Kalton, N. J. (1995). An elementary example of a Banach space not isomorphic to
its complex conjugate. Canad. Math. Bull., 38(2) 218-222.

Kelley, J. L. (1952). Banach spaces with the extension property. Trans. Amer.
Math. Soc., 72 323-326.

Kislyakov, S. V. (1975). Sobolev imbedding operators, and the nonisomorphism of
certain Banach spaces. Funkcional. Anal. © PriloZen., 9(4) 22-27.

Kislyakov, S. V. (1976). On spaces with ”small” annihilators. Funkcional. Anal. i
Prilozen., 65 192-195.

Kislyakov, S. V. (1989). Proper uniform algebras are uncomplemented. Dokl. Akad.
Nauk SSSR, 309(4) 795-798.

Kislyakov, S. V. (1991). Absolutely summing operators on the disc algebra. Algebra
t Analiz, 3(4) 1-77.

Kislyakov, S. V. (1995). Some more spaces for which an analogue of the Grothen-
dieck theorem holds. Algebra i Analiz, 7(1) 62-91.

Kislyakov, S. V. (1998). Bourgain’s analytic projection revisited. Proc. Amer.
Math. Soc., 126(11) 3307-3314.

Kislyakov, S. V. and Sidorenko, N. G. (1988). Absence of local unconditional
structure in anisotropic spaces of smooth functions. Sibirsk. Mat. Zh., 29(3)
64-77, 220.

Konig, H. (1986). Eigenvalue distribution of compact operators. Birkhduser Verlag,
Basel.

Krivine, J. L. (1974). Théorémes de factorisation dans les espaces réticulés. In
Séminaire Maurey-Schwartz 1973-1974: Espaces LP, applications radonifiantes



266 Bibliography

et géométrie des espaces de Banach, Ezp. Nos. 22 et 23, page 22. Centre de
Math., Ecole Polytech., Paris.

Krivine, J.-L. (1978). Constantes de Grothendieck et fonctions de type positif sur
les spheres. In Séminaire sur la Géométrie des Espaces de Banach (1977-1978),
pages Exp. No. 1-2, 17. Ecole Polytech., Palaiseau.

Krivine, J.-L. (1979). Constantes de Grothendieck et fonctions de type positif sur
les sphéres. Adv. in Math., 31(1) 16-30.

Kwapieri, S. and Pelczynski, A. (1980). Absolutely summing operators and
translation-invariant spaces of functions on compact abelian groups. Math.
Nachr., 94 303-340.

Lapresté, J.-T. (1976). Opérateurs sommants et factorisations. A travers les espaces
LP. Studia Math., 57(1) 47-83.

Lewis, D. R. (1973). Conditional weak compactness in certain inductive tensor
products. Math. Ann., 201 201-209.

Lima, A., Nygaard, O., and Oja, E. (2000). Isometric factorization of weakly
compact operators and the approximation property. Israel J. Math., 119 325-
348.

Lindenstrauss, J. (1964). Extension of compact operators. Mem. Amer. Math. Soc.
No., 48 112.

Lindenstrauss, J. (1971). On James’s paper “Separable conjugate spaces”. Israel
J. Math., 9 279-284.

Lindenstrauss, J. and Pelczynski, A. (1968). Absolutely summing operators in
Lp-spaces and their applications. Studia Math., 29 275-326.

Lindenstrauss, J. and Rosenthal, H. P. (1969). The L, spaces. Israel J. Math., 7
325-349.

Lindenstrauss, J. and Tzafriri, L. (1977). Classical Banach spaces. I. Springer-
Verlag, Berlin. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzge-
biete, Vol. 92.

Lindenstrauss, J. and Tzafriri, L. (1979). Classical Banach spaces. II, volume 97 of
Ergebnisse der Mathematik und threr Grenzgebiete [Results in Mathematics and
Related Areas]. Springer-Verlag, Berlin. Function spaces.

Lomonosov, V. (2000a). A counterexample to the Bishop-Phelps theorem in com-
plex spaces. Israel J. Math., 115 25-28.

Lomonosov, V. (2000b). On the Bishop-Phelps theorem in complex spaces. Quaest.
Math., 23(2) 187-191.

Lomonosov, V. (2001). The Bishop-Phelps theorem fails for uniform non-selfadjoint
dual operator algebras. J. Funct. Anal., 185(1) 214-219.

Luxemburg, W. A. J. and Zaanen, A. C. (1971). Riesz spaces. Vol. I. North-Holland
Publishing Co., Amsterdam. North-Holland Mathematical Library.

Mathes, B. (1994). Characterizations of row and column Hilbert space. J. London
Math. Soc. (2), 50(1) 199-208.

Maurey, B. (1974). Type et cotype dans les espaces munis de structures locales
inconditionnelles. In Séminaire Maurey-Schwartz 1973-1974: Espaces L, appli-
cations radonifiantes et géométrie des espaces de Banach, Exp. Nos. 24 et 25,
page 25. Centre de Math., Ecole Polytech., Paris.

Maurey, B. and Pisier, G. (1976). Séries de variables aléatoires vectorielles
indépendantes et propriétés géométriques des espaces de Banach. Studia Math.,
58(1) 45-90.



Bibliography 267

Meyer-Nieberg, P. (1991). Banach lattices. Universitext. Springer-Verlag, Berlin.

Michal, A. D. and Wyman, M. (1941). Characterization of complex couple spaces.
Ann. of Math. (2), 42 247-250.

Milne, H. (1972). Banach space properties of uniform algebras. Bull. London Math.
Soc., 4 323-326.

Moedomo, S. and Uhl, Jr., J. J. (1971). Radon-Nikodym theorems for the Bochner
and Pettis integrals. Pacific J. Math., 38 531-536.

Mooney, M. C. (1972). A theorem on bounded analytic functions. Pacific J. Math.,
43 457-463.

Mufioz, G. A., Sarantopoulos, Y., and Tonge, A. (1999). Complexifications of real
Banach spaces, polynomials and multilinear maps. Studia Math., 134(1) 1-33.
Nachbin, L. (1950). A theorem of the Hahn-Banach type for linear transformations.

Trans. Amer. Math. Soc., 68 28-46.

Nakano, H. (1941). Uber das System aller stetigen Funktionen auf einem topolo-
gischen Raum. Proc. Imp. Acad. Tokyo, 17 308-310.

Paulsen, V. (2002). Completely bounded maps and operator algebras, volume 78
of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge.

Pelczyniski, A. (1971). Any separable Banach space with the bounded approxima-
tion property is a complemented subspace of a Banach space with a basis. Studia
Math., 40 239-243.

Pelczynski, A. (1974). Sur certaines propriétés isomorphiques nouvelles des espaces
de Banach de fonctions holomorphes A et H>®. C. R. Acad. Sci. Paris Sér. A,
279 9-12.

Pelczynski, A. (1977). Banach spaces of analytic functions and absolutely summing
operators. American Mathematical Society, Providence, R.I. Expository lectures
from the CBMS Regional Conference held at Kent State University, Kent, Ohio,
July 11-16, 1976, Conference Board of the Mathematical Sciences Regional Con-
ference Series in Mathematics, No. 30.

Pelczyniski, A. and Wojciechowski, M. (2002). Sobolev spaces in several variables in
L*-type norms are not isomorphic to Banach lattices. Ark. Mat., 40(2) 363-382.

Pelczynski, A. and Wojciechowski, M. (2003a). Sobolev spaces. In Handbook of the
geometry of Banach spaces, Vol. 2, pages 1361-1423. North-Holland, Amsterdam.

Pelczynski, A. and Wojciechowski, M. (2003b). Spaces of functions with bounded
variation and Sobolev spaces without local unconditional structure. J. Reine
Angew. Math., 558 109-157.

Pérez-Garcia, D. and Villanueva, I. (2004). There is no lattice preserving natural
tensor norm. Quaest. Math., 27(3) 267-273.

Persson, A. and Pietsch, A. (1969). p-nukleare une p-integrale Abbildungen in
Banachrdumen. Studia Math., 33 19-62.

Phillips, R. S. (1940). On linear transformations. Trans. Amer. Math. Soc., 48
516-541.

Pietsch, A. (1966/1967). Absolut p-summierende Abbildungen in normierten
Raumen. Studia Math., 28 333-353.

Pietsch, A. (1980). Operator tdeals. North-Holland Publishing Co., Amsterdam.
Translated from German by the author.

Pietsch, A. (1987). Eigenvalues and s-numbers. Cambridge University Press, Cam-
bridge.



268 Bibliography

Pisier, G. (1978a). Grothendieck’s theorem for noncommutative C*-algebras, with
an appendix on Grothendieck’s constants. J. Funct. Anal., 29(3) 397-415.

Pisier, G. (1978b). Some results on Banach spaces without local unconditional
structure. Compositio Math., 37(1) 3-19.

Pisier, G. (1978c). Une nouvelle classe d’espaces de Banach vérifiant le théoréme
de Grothendieck. Ann. Inst. Fourier (Grenoble), 28(1) x, 69-90.

Pisier, G. (1980). Un théoréme sur les opérateurs linéaires entre espaces de Banach
qui se factorisent par un espace de Hilbert. Ann. Sci. Ecole Norm. Sup. (4),
13(1) 23-43.

Pisier, G. (1982a). Holomorphic semigroups and the geometry of Banach spaces.
Ann. of Math. (2), 115(2) 375-392.

Pisier, G. (1982b). Holomorphic semigroups and the geometry of Banach spaces.
Ann. of Math. (2), 115(2) 375-392.

Pisier, G. (1983). Counterexamples to a conjecture of Grothendieck. Acta Math.,
151(3-4) 181-208.

Pisier, G. (1986). Factorization of linear operators and geometry of Banach spaces,
volume 60 of CBMS Regional Conference Series in Mathematics. Published for
the Conference Board of the Mathematical Sciences, Washington, DC.

Pisier, G. (1989). The volume of convez bodies and Banach space geometry. Cam-
bridge University Press, Cambridge.

Pisier, G. (1992). A simple proof of a theorem of Jean Bourgain. Michigan Math.
J., 39(3) 475-484.

Pisier, G. (2003). Introduction to operator space theory, volume 294 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cam-
bridge.

Pisier, G. and Shlyakhtenko, D. (2002). Grothendieck’s theorem for operator spaces.
Invent. Math., 150(1) 185-217.

Rieffel, M. A. (1968). The Radon-Nikodym theorem for the Bochner integral. Trans.
Amer. Math. Soc., 131 466-487.

Rietz, R. E. (1974). A proof of the Grothendieck inequality. Israel J. Math., 19
271-276.

Rosenthal, H. (2000). The complete separable extension property. J. Operator
Theory, 43(2) 329-374.

Rosenthal, H. P. (1970). On injective Banach spaces and the spaces L*°(u) for
finite measure u. Acta Math., 124 205-248.

Rosenthal, H. P. (1973). On subspaces of LP. Ann. of Math. (2), 97 344-373.

Ruan, Z.-J. (1988). Subspaces of C*-algebras. J. Funct. Anal., 76(1) 217-230.

Ryan, R. A. (2002). Introduction to tensor products of Banach spaces. Springer
Monographs in Mathematics. Springer-Verlag London Ltd., London.

Saphar, P. (1970). Produits tensoriels d’espaces de Banach et classes d’applications
linéaires. Studia Math., 38 71-100. (errata insert).

Schaefer, H. H. (1974). Banach lattices and positive operators. Springer-Verlag,
New York. Die Grundlehren der mathematischen Wissenschaften, Band 215.
Schatten, R. (1960). Norm ideals of completely continuous operators. Ergebnisse

der Mathematik und ihrer Grenzgebiete. N. F., Heft 27. Springer-Verlag, Berlin.

Schneider, R. (1993). Convex bodies: the Brunn-Minkowski theory, volume 44 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge.



Bibliography 269

Schiitt, C. (1978). Unconditionality in tensor products. Israel J. Math., 31(3-4)
209-216.

Sobezyk, A. (1941). Projection of the space (m) on its subspace (c). Bull. Amer.
Math. Soc., 47 938-947.

Stegall, C. (1981). The Radon-Nikodym property in conjugate Banach spaces. II.
Trans. Amer. Math. Soc., 264(2) 507-519.

Stone, M. H. (1949). Boundedness properties in function-lattices. Canadian J.
Math., 1 176-186.

Szankowski, A. (1976). A Banach lattice without the approximation property. Israel
J. Math., 24(3-4) 329-337.

Szankowski, A. (1978). Subspaces without the approximation property. Israel J.
Math., 30(1-2) 123-129.

Szankowski, A. (1981). B(H) does not have the approximation property. Acta
Math., 147(1-2) 89-108.

Szarek, S. J. (1978). On Kashin’s almost Euclidean orthogonal decomposition of
1L, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26(8) 691-694.
Szarek, S. J. (1986). A superreflexive Banach space which does not admit complex

structure. Proc. Amer. Math. Soc., 97(3) 437-444.

Szarek, S. J. (1987). A Banach space without a basis which has the bounded
approximation property. Acta Math., 159(1-2) 81-98.

Tomczak-Jaegermann, N. (1974). The moduli of smoothness and convexity and the
Rademacher averages of trace classes Sp(1 < p < 00). Studia Math., 50 163-182.

Tomczak-Jaegermann, N. (1989). Banach-Mazur distances and finite-dimensional
operator ideals. Longman Scientific & Technical, Harlow.

Van Zyl, A. J. (2007). Complexifications of tensor products of Banach spaces and
Banach ideals of operators. Preprint.

Varopoulos, N. T. (1974). On an inequality of von Neumann and an application of
the metric theory of tensor products to operators theory. J. Functional Analysis,
16 83-100.

Wenzel, J. (1995). Real and complex operator ideals. Quaestiones Math., 18(1-
3) 271-285. First International Conference in Abstract Algebra (Kruger Park,
1993).

Wojtaszczyk, P. (1991). Banach spaces for analysts. Cambridge University Press,
Cambridge.

Wolfe, J. (1978). Injective Banach spaces of continuous functions. Trans. Amer.
Math. Soc., 235 115-139.

Zaanen, A. C. (1983). Riesz spaces. II, volume 30 of North-Holland Mathematical
Library. North-Holland Publishing Co., Amsterdam.

Zippin, M. (1977). The separable extension problem. Israel J. Math., 26(3-4)
372-387.



This page intentionally left blank



Author Index

Alon, N. 201 Gleason, A. M. 245, 247
Amemiya, I. ix, 191 Godefroy, G. 185, 186
Amir, D. 253 Goodner, D. B. 81, 244

Argyros, S. A. 254
Arregui, J. L. 209

Gordon, Y. 66, 171, 179, 186

Granero, A. S. 254

Grothendieck, A. 7, 10, 13, 14, 17, 18,
Bade, W. G. 253 21-23, 36, 42, 43, 45, 48, 59, 62-64, 69,
Bishop, E. 168 74, 76, 81, 84, 91, 94, 96, 98-100,
Blasco, O. 209 103-105, 121, 122, 127, 128, 130, 131,
Blecher, D. P. 258 142, 144-147, 149-153, 155-157,

Bochnak, J. 168 160-162, 168, 178, 183, 186, 188, 201,
Bombal, F. 176 208

Bourgain, J. 168, 208-210 Gurarii, V. I. 183
Bu, Q. 66, 209

Buhvalov, A. V. 240

Carne, T. K. 169, 236
Casazza, P. G. 186
Castillo, J. F. 254
Chevet, S. 66

Cohen, H. B. 248
Cohen, J. S. 66

Davie, A. M. 184
Davis, W. J. 186, 209
Defant, A. ix, 66, 179, 195, 201

Diestel, J. 66, 69, 71, 176, 179, 189, 190,

201, 209, 236
Dixmier, J. 185
Dubinsky, E. 181, 190
Dunford, N. 71

Effros, E. G. 257, 259
Enflo, P. 183, 184

Figiel, T. 184-186

Fishburn, P. C. 201

Floret, K. ix, 66, 179, 195, 201
Fourie, J. H. 66, 209
Freudenthal, H. 231, 234

Gamelin, T. W. 189
Garling, D. J. H. 179
Gilbert, J. E. ix

Haagerup, U. 201, 202, 259
Hasumi, M. 81, 244

Havin, V. P. 188

Haydon, R. 253

Isbell, J. R. 253

Jarchow, H. 66, 176, 179, 189, 190, 201,

210, 236
Jiménez, M. 254
John, F. 216
John, K. 210
Johnson, J. 186
Johnson, W. B. 184-186, 209
Jones, P. W. 185
Junge, M. 259

Kadets, M. 1179
Kahane, J.-P. 179
Kaijser, S. 198, 202, 205
Kaiser, R. J. 210

Kakutani, S. 76, 227, 228, 230, 231, 234,

240
Kalton, N. J. 168, 186, 210
Kelley, J. L. 81, 244, 248
Kislyakov, S. V. 189, 208-210
Konig, H. 179
Krivine, J.-L. 195, 236
Kwapien, S. 189

271



272

Lapresté, J.-T. 66

Leih, T. J. ix

Lewis, D. R. 24, 66, 171, 186

Lima, A. 186

Lindenstrauss, J. ix, 181, 185, 192, 240, 253
Lomonosov, V. 168

Lozanovskii, G. J. 240

Luxemburg, W. A. J. 240

Mathes, B. 256
Maurey, B. 180, 189
Meyer-Nieberg, P. 240
Michal, A. D. 168
Milne, H. 184
Moedomo, S. 72, 73
Mooney, M. C. 188
Moreno, J. P. 254
Muiioz, G. A. 168
Musat, M. 259

Nachbin, L. 81, 244, 253
Nakano, H. 241

Naor, A. 201

Nygaard, O. 186

Oja, E. 186
Ozawa, N. 259

Paulsen, V. L. 257

Pelczynski, A. ix, 179, 181, 184, 186,
188-190, 192, 253

Pérez-Garcfa, D. 175, 176

Persson, A. 66

Pettis, B. J. 71

Phelps, R. R. 168

Phillips, R. S. 71

Pietsch, A. ix, 66, 177, 179

Pisier, G. 176, 179, 180, 185, 189, 201, 202,
208-210, 216, 257, 259

Reeds, J. A. 201
Retherford, J. R. 66, 210
Rieffel, M. A. 73

Rietz, R. E. 195
Rontgen, I. M. 66

AUTHOR INDEX

Rosenthal, H. P. 181, 184, 185, 190, 208,
253, 259

Ruan, Z.-J. 256, 257, 259

Ryan, R. A. ix

Saphar, P. D. 66, 179, 185, 186
Sarantopoulos, Y. 168
Schaefer, H. H. 240
Schatten, R. 142
Schneider, R. 216

Schiitt, C. 176, 189
Semadeni, Z. 253

Shiga, K. ix, 191
Shlyakhtenko, D. 259
Sidorenko, N. G. 189
Sinclair, A. M. 202, 205
Smith, R. R. 258

Snobar, M. G. 179
Sobczyk, A. 259

Stegall, C. 75

Stone, M. H. 241

Swart, J. 66, 209
Szankowski, A. 184
Szarek, S. J. 168, 185, 210

Tomczak-Jaegermann, N. 179, 201

Tonge, A. 66, 168, 176, 179, 189, 190, 201,
236

Tzafriri, L. 240

Uhl, J. J., Jr. 69, 71-73

Van Zyl, A. J. 168
Varopoulos, N. T. 192
Veksler, A. 1. 240
Villanueva, 1. 175, 176

Wenzel, J. 168
Wojciechowski, M. 189
Wojtaszczyk, P. 179
Wolfe, J. 253

Wyman, M. 168

Zaanen, A. C. 240
Zippin, M. 184, 185, 259



Index of Notation

Generalities

R The field of real numbers (scalars)

C The field of complex numbers (scalars)
K The generic scalar field R or C

R™ The n-dimensional Euclidean space

T (E) The inverse image of the set E under the operator T’
ker(T') The kernel of T' (=T ({0}))

A The closure of the set A

A° The interior of the set A

co(A) The convex hull of the set A

co(A) The closed convex hull of the set A

T:X —»Y T is asurjective linear operator
T:X —Y T is an injective linear operator

F(X) The set of all finite dimensional subspaces of the Banach
space X

Bx The unit ball of a Banach space X

idx The identity operator on the vector space X

extA The set of all extreme points of a set A in a vector space

XA The indicator or characteristic function of A

rn(*) The n-th Rademacher function defined on [0, 1]:

Tn(t) = sign(sin2"7t)

Vector spaces; Banach spaces

X’ The algebraic dual of a vector space X
X* The (continuous) dual of a Banach space
1/ The Banach space of all absolutely p-summable scalar se-

quences: ( {(An)n : Z,} [AnlP < 00});
1An)nll = (3, 1AnlP)?

£° The Banach space of all bounded scalar sequences;
[(An)nll = supy, [An|

Co The Banach space of all scalar null sequences; ||(An)n| =
sup,, |An|

% or ¢°(X) The Banach space of all absolutely p-summable sequences 16
in a Banach space X

£ or £>°(X) The Banach space of all bounded sequences in a Banach 16
space X

co(X) The Banach space of all null sequences in a Banach space 16
X
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ZP

weak

weak (X)
uc(X)
L (n)

L% (1)

C(K)

*(Bx)
£ (Bx+)

INDEX OF NOTATION

The Banach space of weakly p-summable sequences in a
Banach space X

The subspace of £, (X), consisting of all sequences (z,,)
of vectors in X, such that:

limpo0 (0, ., 0,Zn, Tng1, .- )ller, =0

The Banach space of all unconditionally summable se-
quences in a Banach space X; this is the same Banach
space as flweak(X )

The Banach space of all Bochner integrable functions de-
fined on some measure space (2, 1) with values in a Banach
space X |z, = /| fllxdu

The Banach space of all Bochner p-integrable functions de-
fined on some measure space (€2, 1) with values in a Banach

1
space X; || fllzs = (S 1 fl%du)?
The Banach space of all continuous functions defined on a
compact set K

Spaces of linear and bilinear functions

The space of all linear functions f : X — Y; X,Y vector

spaces
The space of all bilinear functions ¢ : X xY — Z; XY, Z

vector spaces
The space of all bilinear functionals (forms) on X x Y

The space of all bounded linear operators T : X - Y; X, Y

Banach spaces
The Banach space of all bounded bilinear operators ¢ :

X xY — Z; X,Y, Z Banach psaces
The Banach space of all bounded bilinear forms on X x Y

X,Y Banach spaces
The space of all bounded linear operators T': X — Y of

finite rank
The space of all compact linear operators T: X — Y

The space of all weakly compact linear operators T': X —

Y
The C*-algebra of all bounded linear operators T : H — H

defined on a Hilbert space H
The space of all compact linear operators T' : H — H

defined on a Hilbert space H
The space of all a-integral operators (operators of type )

The a-integral operator norm

The space of all a-nuclear operators

The a-nuclear operator norm

The space of bilinear functionals of type «; or a-integral

bilinear forms .
The space of a-nuclear bilinear forms

16

16

18

172
173

47
47
54
54
32

54



H(X,Y)

INDEX OF NOTATION

The collection of all continuous bilinear functionals on
X x Y satisfying the equivalent conditions set forth in
Proposition 3.1.1

Tensor products

TRy
‘(g®h)

XQY
(X®Y,a)

«
X®Y

[e%

Q< « R

An elementary tensor

The transposition of the tensor g®h under the transposition
ma

Thg algebraic tensor product of the vector spaces X and Y
The tensor product X ®Y assigned with a reasonable cross-
norm o

The completion of X ® Y equipped with the norm a

The dual norm associated with the tensor norm «

The transpose of the tensor norm o

The contragradient norm associated with the tensor norm
v 4 v t * t *

a: o of o given by a=*(a*) = (*a)

The injective tensor norm
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The greatest lower bound of z and y in an ordered space
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