Chapter |4
ORDER STRUCTURES

The present chapter is devoted to a systematic study of order structures
within the framework of topological vector spaces. No attempt has been made
to give an account of the extensive literature on Banach lattices, for a survey
of which we refer the reader to Day [2], nor is any special emphasis placed on
ordered normed spaces. Our efforts are directed towards developing a theory
that is in conformity with the modern theory of topological vector spaces,
that is to say, a theory in which duality plays the central role. This approach
to ordered topological vector spaces is of fairly recent origin, and thus cannot
be presented in a form as definite as a mature theory; it is nonetheless hoped
that the reader who has encountered parts of it in the literature (e.g., Gordon
[1], [2], Kist [1], Namioka [1], Schaefer [1]-[5]) will obtain a certain survey
of the methods available and of the results to which they lead. The fact that
ordered topological vector spaces abound in analysis is perhaps motivation
enough for a systematic study; beyond this, the present chapter is followed by
an appendix intended to illustrate some applications to spectral theory. As in
the preceding chapters, further information can be found in the exercises.

Section 1 is concerned with algebraic aspects only and supplies, in parti-
cular, the basic tools needed in working with vector lattices. For simplicity
of exposition we restrict attention to ordered vector spaces over R; Section 2
discusses briefly how these concepts can be applied to vector spaces over C,
which is often called for by applications (particularly to measure theory and
spectral theory). Section 3 gives the basic results on the duality of convex
cones. The concept of normal cone, probably the most important concept of
the theory, is introduced and a number of immediate consequences are
established. The discussion proceeds covering the real and complex cases
simultaneously; the reader who finds this too involved may well assume first
that all occurring vector spaces are defined over R. Section 4 introduces
ordered topological vector spaces and establishes two more properties of
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normal cones, among them (Theorem (4.3)) the abstract version of a classical
theorem of Dini on monotone convergence. The duality of ordered vector
spaces is not discussed there, since such a discussion would have amounted to
a direct application of the results of Section 3, which can be left to the reader.

Section 5 is concerned with the induced order structure on spaces of linear
mappings; the principal results are Theorem (5.4) on the extension of con-
tinuous positive linear forms, and Theorem (5.5) establishing the continuity
of a large class of positive linear forms and mappings. The order topology,
a locally convex topology accompanying every ordered vector space over R,
is studied in some detail in Section 6. The importance of this topology stems
in part from the fact that it is the topology of many ordered t.v.s. occurring
in analysis. Section 7 treats topological (in particular, locally convex) vector
lattices. We obtain results especially on the strong dual of a locally convex
vector lattice, and characterizations of vector lattices of minimal type in
terms of order convergence and in terms of the evaluation map. (For the
continuity of the lattice operations see Exercise 20.) The section concludes
with a discussion of weak order units.

Section 8 is concerned with the vector lattice of all continuous real valued
functions on a compact space, and with abstract Lebesgue spaces. The Stone-
Weierstrass theorem is presented in both its order theoretic and its algebraic
form. Further, the dual character of (AM)-spaces with unit and (AL)-spaces
is studied as an illuminating example of the duality of topological vector
lattices treated in Section 7. (AL)-spaces are represented as bands of Radon
measures, characterized by a convergence property, on extremally discon-
nected compact spaces. The classical representation theorem of Kakutani
for (AM)-spaces with unit is established, and an application is made to the
representation of a much more general class of locally convex vector lattices.

1. ORDERED VECTOR SPACES OVER THE REAL FIELD

Throughout this section, we consider only vector spaces over the real
field R.

Let L be a vector space over R which is endowed with an order structure R
defined by a reflexive, transitive, and anti-symmetric binary relation “<”’;
L is called an ordered vector space over R if the following axioms are satisfied :

(LO); x < yimpliesx+z<y+zforall x,y,zeL
(LO), x <y implies Ax < Ay for all x, y e L and 2. > 0.

(LO), expresses that the order of L is translation-invariant, (LO), expresses
the invariance of the order under homothetic maps x — Ax with ratio 4 > 0.
Examples of ordered vector spaces abound; for example, every vector space
of real-valued functions f on a set T is naturally ordered by the relation
“f<gif f(¢) £ g(¢) for all t € T”; in this fashion, one obtains a large number
of ordered vector spaces from the examples given in Chapter II, Section 2,
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and Chapter III, Section 8, by considering real-valued functions only and
taking K = R.

It is immediate from the axioms above that in an ordered vector space L,
the subset C = {x: x = 0} is a convex cone of vertex O satisfying Cn — C
= {0}; a cone in L with these properties is called a proper cone in L. The
elements x € C are called positive, and C is called the positive cone of the or-
dered vector space L.

Two ordered vector spaces L;, L, are isomorphic if there exists a linear
biunivocal map u of L, onto L, such that x < y if and only if u(x) < u(y)
(equivalently, such that ¥ maps the positive cone of L; onto the positive
cone of L,).

If L is any vector space over R, a proper cone H < L is characterized by
the properties

() H+ Hc H,
(ii) AH < H for all A >0,
(iii) H n —H = {0}.

It is verified without difficulty that each proper cone H < L defines, by
virtue of “x <y if y — xe H”, an order of L under which L is an ordered
vector space with positive cone H. Hence for any vector space L, there is a
biunivocal correspondence between the family of all proper cones in L and
the family of all orderings satisfying (LO), and (LO),. If R, and R, are two
such orderings of L with respective positive cones C; and C,, then the
relation “ R, is finer than R,” is equivalent with C; = C,; in particular, if
{R,: 2 € A} is a family of such orderings of L with respective positive cones
C,, the coarsest ordering R which is finer than all R, (x € A) is determined by
the proper cone C = (),C,. (Cf. Exercise 2.) A cone H c L satisfying (i) and
(ii) is said to be generating if L = H — H.

Let L be an ordered vector space. The order of L is called Archimedean
(or L Archimedean ordered) if x < 0 whenever there exists € L such that
nx < y for all n e N (in other words, if x < 0 whenever {nx: n € N} is major-
ized). For example, if L is a t.v.s. and an ordered vector space whose positive
cone is closed, L is Archimedean ordered; on the other hand, R{ is not
Archimedean ordered for » = 2 under its lexicographic ordering (see below).
An order interval in L is a subset of the form {zeL: x £ z < y}, where x, y
are given; it is convenient to denote this set by [x, y]. (There is little danger of
confusing this with the inner product notation in pre-Hilbert spaces (Chapter
III, Section 2, Example 5) if we avoid using the symbol in different meanings
in the same context.) A subset 4 of L is order bounded if 4 is contained in
some order interval. Every order interval is convex, and every order interval
of the form [—x, x] is circled. An element e € L such that [—e, e] is radial is
called an order unit of L. The set L® of all linear forms on L that are bounded
on each order interval is a subspace of L*, called the order bound dual of L.

Let L be an ordered vector space over R and let M be a subspace of L.
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If C is the positive cone of L, then the induced ordering on M is determined
by the proper cone C n M; an ordering of L/M is determined by the canonical
image C of C in L/M, provided that C is a proper cone. (Simple examples,
with L = R2, show that this is not necessarily the case.) If {L,: xe A} is a
family of ordered vector spaces with respective positive cones C,, then
C =[].C, is a proper cone in L = [ [,L, which determines an ordering of L.
The orderings so defined are called the canonical orderings of M, L/M (pro-
vided C is proper), and of [],L,. In particular, the algebraic direct sum @,L,
is canonically ordered as a subspace of [[.L, and if T is any set, then L”
is canonically ordered by the proper cone {f: f(¢) e C for all t € T}.

Let L be an ordered vector space which is the algebraic direct sum of the
subspaces M (i =1, ..., n); L is said to be the ordered direct sum of the sub-
spaces M if the canonical algebraic isomorphism of L onto [ [;M; is an order
isomorphism (for the canonical ordering of [[;M)).

If L,, L, areordered vector spaces# {0} withrespective positive cones C; and
C,, then C = {u: u(C,) = C,} is a proper cone in the space L(L,, L,) of linear
mappings of L, into L,, if and only if C; is generating in L, ; whenever M is a
subspace of L(L,, L,) such that C n M is a proper cone, the ordering defined
by C n M is called the canonical ordering of M. A special case of importance
is the following: A linear form f on an ordered vector space over R is positive
if x 2 0 implies f(x) = 0; the set C* of all positive linear forms on L is a
cone which is the polar, with respect to (L, L*), of —C. The subspace
L* = C* — C* of L*is called the order dual of L; it is immediate that L* < L°.
However, there exist ordered vector spaces L for which L™ # L” (see Namioka
[1], 6.10).

In order to use the tool of duality successfully in the study of ordered vector
spaces L, one needs sufficiently many positive linear forms on L to distin-
guish points; we shall say that L is regularly ordered (or that the order of L is
regular) if L is Archimedean ordered and L* distinguishes points in L (cf.
(4.1) below).

As above, the canonical ordering of a subspace M < L* is understood to be
the ordering defined by M n C* whenever M n C* is a proper cone in M.

Let us note some simple consequences of (LO),, L being an ordered vector
space. The equality

z + sup(x, y) =sup(z + x, z + ») €))

is valid for given x, y e L and all z e L whenever sup(z, + X, Zo + ») exists
for some z, € L. If A, B are subsets # & of L such that sup 4 and sup B
exist, then sup(4 + B) exists and

sup(4 + B) =sup 4 + sup B. _ 19
Also from (LO), it follows that
sup(x, y) = —inf(—x, —y) 2
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whenever either sup(x, y) or inf(—x, —y) exists; more generally,
sup A = —inf(— A) 2"

whenever either sup A or inf(— A) exists.

A vector lattice is defined to be an ordered vector space E over R such that
for each pair (x, y) € E x E, sup(x, y) and inf(x, y) exist. This implies, in
particular, that E is directed under the order relation =< (equivalently, that
the positive cone C of E is generating). For each x € E, we define the absolute
|x| by |x| =sup(x, —x); two elements x, y of a vector lattice E are disjoint
if inf(|x|, |y]) =0; two subsets 4 = F and B < E are lattice disjoint (or
simply disjoint if no confusion is likely to result) if x € 4, y € B implies
inf(|x|, |¥|) = 0. The fact that x, y are disjoint is denoted by x L y, and if 4
is a subset of E, A* denotes the set of all y € E such that y is disjoint from each
element of 4. We record the following simple but important facts on vector
lattices.

1.1
Let E be a vector lattice. Then
x +y = sup(x, y) + inf(x, y) (3)

is an identity on E x E. Defining x* and x™ by x* = sup(x, 0) and x~ = sup
(=x,0) forall xe E, we have x =x* — x™ and |x| =x* + x"; x =x* — x~
is the unique representation of x as a difference of disjoint elements = 0. More-
over, we have

[Ax] =] |x| 4
Ix + y| < |x| + |y] Q)
Ix* = y* S |x -y (6

forall x,y € E and 1 € R. Finally, we have
(0, x] + [0, y] = [0, x + y] (D)
forallx 2 0and y = 0.
Proof. To prove (3), consider the more general identity
a—inf(x,y)+ b =supla—x+b,a—y+b), (3)

where a, b, x, y are arbitrary elements of E. By (2) we have —inf(x, y)
= sup(—x, —y), whence (3’) follows from (1); from (3") we obtain (3) by the
substitution a = x, b = y. Letting y =0 in (3), we obtain x =x* — x~, and
since inf(x*, x7) =x~ + inf(x,0) = x~ —sup(—x,0) =0, x* and x~ are
disjoint elements; we now obtain via (1), x* + x~ = x + sup(—2x, 0)
= sup(—x, x) = |x|. Let x = y — z, where y = 0, z = 0 are disjoint; we show
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that y = x*, z = x~, Note first that x = y — z implies y = x hence y = x*
and, therefore, z = x~; it follows that (y — x*) L (z — x~) which, in view of
y—x*t =z—x",implies y = x*, z = x~, since clearly 0 is the only element
of E disjoint from itself.

If 220, then from (LO), we obtain (Ax)* = Ax™ and (Ax)” = Ax~; if
A <0, then (Ax)* =(—A(—x))* =|Ax~ and (Ax)~ = [A|x*; this proves (4).
For (5), note that +x < |x|, +» < |y| implies |x + y| = sup(x + y, —x — »)
< |x| + [y|. To prove (6) we conclude from x =y + (x — y) that x < y*
+ |x — y|; hence, the right-hand side being =0, that x* < y* + |x — y|;
therefore, x* — y* <|x — y| and interchanging x and y yields y* — x*
< |x—y|, hence (6).

Finally, it is clear that [0, x] + [0, y] = [0, x + y] whenever x =0 and
y20. Let ze [0, x + y] and define u, v by u = inf(z, x) and v = z — u; there
remains to show that ve[0, y]. But v =z — inf(z, x) = z + sup(—z, —x)
= sup(0, z — x) < sup(0, x + y — x) =y which completes the proof of (1.1).

COROLLARY 1. In every vector lattice E, the relation x < y is equivalent with
“x* <y*and y~ £ x, and the relation x L y is equivalent with sup(|x|, |y|)
=|x| + |y|. Moreover, if x Ly, then (x + W' =x* + y* and |x + y| =|x|
+ |yl

Proof. In fact,if x* < y*andy” < x ,thenx=x* —x" < y* —y~ =y.
Conversely, x <y implies x* < y* and inf(x, 0) < inf(y, 0); hence —x~
< —y~ or, equivalently, y~ < x~. The second assertion is immediate from
(3) replacing x, y by |x|, |y| respectively. Finally, x +y = (x* +»*) — (x~
+ y7), and inf(|x]|, |y|) =0 expresses that the summands on the right are
disjoint; hence (x + y)* = x* + y* by the unicity of the representation of
x +y as a difference of disjoint elements = 0. The last assertion is now
immediate.

COROLLARY 2. Let E be a vector lattice and let A = E be a subset for which
sup A = x, exists. If B < E is a subset lattice disjoint from A, then B is lattice
disjoint from {x,}.

Proof. We have to show that z € B implies z L x,. Now xg < x~ =< |x| for
all xe A4; hence z L x5 if ze B. It suffices hence to show that z L x§. In
view of Corollary 1, we have sup(|z|, x*) =|z| + x* for all x € 4 by hypo-
thesis, and x§ =sup{x*: x € 4}; (1') implies that sup{|z| + x*: xe 4} =|z]
+ xg. Thus we obtain

sup(|z|, xg') = sup sup(|z|, x*) = sup(|z| + x¥) =|z| + x5,
xed xeAd
which shows that |z] L xg (Corollary 1).

The following observation sometimes simplifies the proof that a given
ordered vector space is a vector lattice.
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Let E be an ordered vector space over R whose positive cone C is generating ;
if for each pair (x, y) € C x C either sup(x, y) or inf(x, y) exists, then Eis
a vector lattice.

The detailed verification is left to the reader; one shows that if sup(x, y)
exists (x, y € C), then z = x + y — sup(x, y) proves to be inf(x, y), and con-
versely. If x, y are any elements of E, there exists z € C such that x +ze C
and y + z e C, and the existence of sup(x, y) and inf(x, y) is shown via (1).

If {E,: « € A} is a family of vector lattices, it is quickly verified that [ [,E,
and @,E, are vector lattices under their canonical orderings. A vector
sublattice M of a vector lattice E is a vector subspace of E such that x € M,
y € M implies that sup(x, y) € M where the supremum is formed in E; it
follows that M is a vector lattice under its canonical ordering. However, it
can happen that a subspace M of E is a vector lattice under its canonical
order but not a sublattice of E (Exercise 14).

A subset 4 of a vector lattice E is called solid if x € 4 and |y| < |x|, y€E,
imply that y € A. It is easy to see that a solid subspace of E is necessarily a
sublattice of E; for example, the algebraic direct sum @,E, of a family
{E,: « € A} of vector lattices is a solid subspace of [[,E, (for the canonical
ordering of the product). Also it is easy to see that if M is a solid subspace
of E, then E/M is a vector lattice under its canonical order (cf. the exam-
ples below).

A subset 4 of a vector lattice E is called order complete if for each non-
empty subset B < A such that B is order bounded in 4, sup B and inf B
exist and are elements of 4; E is order complete if it is order complete as a
subset of itself. If E is an order complete vector lattice, a subspace M of E
which is solid and such that 4 = M, sup 4 = xe E implies xe M, is called a
band in E. E itself is a band, and clearly the intersection of an arbitrary family
of bands in E is a band; hence every subset 4 of E is contained in a smallest
band B, called the band generated by A (in E).

Examples

1. Let T be any set and consider the vector space R} of all real-
valued functions on T under its canonical order, where R, is ordered
as usual. Obviously R is an order complete vector lattice. If 4 is any
subset of R}, denote by T, the subset {¢: there exists f€ A such that
f(#) #0} of T. Then the band generated by A4 is the subspace B, =
{f:f(®) = 0 whenever ¢ ¢ T.}; the quotient R}/B,, under its canonical
order, is a vector lattice which is isomorphic with R} ~74. The canonical
ordering of R is regular (in particular, Archimedean); in fact, the order
dual and the order bound dual coincide with the (ordered) direct
sum of card T copies of R, (Chapter 1V, Section 1, Example 4).

2. Let B be any ordinal number > O and let RS denote the vector
space of all real valued functions defined on the set of all ordinals
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o < B, and consider the subset H of Rf defined by the property ““if
there exists a smallest ordinal o < B such that f(x) # 0 then f(o) > 0.
We verify without difficulty that H is a proper cone in RS; the order de-
termined by H is called the lexicographical order of R3. The lexicograph-
ical order of R% is not Archimedean (hence not regular) if § > 1; in fact,
the set of all functions f such that /(0) = 0 is majorized by each function
S for which f(0) > 0. It is worth noting that the lexicographical order of
R? is a total ordering, since RS = H U — H; thus R is a vector lattice
under this order which is, however, not order complete if f > 1. More-
over, (up to a positive scalar factor) f— f(0) is the only non-trivial
positive linear form, hence the order dual and the order bound dual
(cf. (1.4) below) are of dimension 1.

3. Let (X, X, 1) be a measure space (Chapter II, Section 2, Example 2).
Under the ordering induced by the canonical ordering of R¥ (Example 1
above), the spaces Z?(u) (1 £ p < + ) are vector lattices (take the
scalar field K = R) which are countably order complete (each majorized
countable family has a supremum) but, in general, not order complete
(Exercise 13). The subspace A", of u-null functions is a solid subspace
but, in general, not a band in £?(u); the quotient spaces LP(u) =
ZLP(w)/ A", are order complete vector lattices under their respective
canonical orderings (1 £ p < + 0).

If E is any order complete vector lattice and 4 a subset of E, the set 4+ is

a band in E; this is clear in view of Corollary 2 of (1.1). Concerning the
bands B, and 4%, we have the following important theorem (F. Riesz [1]).

1.3

Theorem. Let E be an order complete vector lattice. For any subset
A c E, E is the ordered direct sum of the band B, generated by A and of the
band A* of all elements disjoint from A.

Proof. Since A** is a band containing 4, it follows that B, = 4** and
hence that B, n A* = {0}. Let x € E, x = 0, be given; we show that x = x;
+ x,, where x; € By, x, € A*, and x; 20, x, = 0. Define x; by x; =sup
[0, x] n B, and x, by x, = x — x;; it is clear that x;, x, are positive and
that x, € B, since B, is a band in E. Let us show that x, € B;. For any
y€ B, let z =inf(x,, |y|); then 0 < ze B,, since B, is solid and z + x,
< x, + x; = x. This implies, by the definition of x; and by virtue of z + x;
€ B,, that z + x; < x; and hence that z =0. Thus x, € By and a fortiori
x, € A*. Since the positive cone of E is generating, it follows that £ = B,
+ A* is the ordered direct sum of the subspaces B, and A*. For, the relations
x=0and x = x, + X,, X; € By, x, € A* imply x; 20, x, 2 0.

COROLLARY 1. If A is any subset of E, the band B 4 generated by A is the band
At

Proof. Applying (1.3) to the subset 4% of E, we obtain the direct sum
E = A** + 4*; since E = B, + A* and B, c 4**, it follows that B, = A4**.
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COROLLARY 2. If x, y are disjoint elements of E and B,, B, are the bands
generated by {x}, {y} respectively, then B, is disjoint from B,.

In fact, we have y e {x}* and x e {y}*.

A general example of an order complete vector lattice is furnished by the
order dual E* of any vector lattice E; however, E™ can be finite dimensional
(Example 2 above) or reduced to {0} (Exercise 14), even if E is of infinite
dimension. We prove the result in the following more general form which
shows it to depend essentially on property (D) of (1.1). (Cf. Exercise 16.)

1.4

Let E be an ordered vector space over R whose positive cone C is generating
and has property (D) of (1.1). Then the order bound dual E® of E is an order
complete vector lattice under its canonical ordering, in particular, E* = E*.

Proof. We show first that for each fe E?, sup(f, 0) exists; it follows then
from (1) that sup(f; g) =g + sup(f — g, 0) exists for any pair (f, g) € E® x E?;
hence E? is a vector lattice by (1.2). This implies clearly that E®* = E™,

Let f€ E® be given; we define a mapping r of C into the real numbers = 0
by

r(x) =sup{f(»):yel0,x]} (xeO).
Since f(0) =0 it follows that r(x) =0, and clearly r(Ax) = Ar(x) for all
A 2 0. Also, by virtue of (1’) and (D),
r(x +y) =sup{f(2): z€ [0, x] + [0, yI} = r(x) + r(y).

Hence r is positive homogeneous and additive on C. By hypothesis, each
z € E is of the form z = x — y for suitable elements x, y € C, and it is readily
seen that the number r(x) — r(y) is independent of the particular decomposi-
tion z=x —y of z. A short computation now shows that z — w(z) = r(x)
— r(y) is a linear form w on E, evidently contained in EP. (We have, in fact,
w(x) =r(x) for xe C.) We show that w =sup(f, 0); indeed, w(x)= sup
(f(x),0) for all xe C, and if 4 =0 is a linear form on E such that xe C
implies A(x) = f(x), then A(x) = h(y) = f(y) for all y € [0, x], which shows
that A(x) = r(x) = w(x) whenever x € C.

It remains to prove that E® = E* is order complete; for this it suffices to
show that each non-empty, majorized set A of positive linear forms on E
has a supremum. Without restriction of generality, we can assume that A4 is
directed under *“ < ”. (This can be arranged, if necessary, by considering the
set of suprema of arbitrary, non-empty finite subsets of 4.) We define a map-
ping s of C into the real numbers by

8(x) = sup{f(x): fe A} (xeC).
The supremum is finite for all x € C, since A is majorized. It is clear that
s(Ax) = As(x) for all A = 0 and, since 4 is directed, that s(x + y) = s(x) + s(»).
Hence, as before, s defines a linear form f;, on E by means of fy(z) = s(x)
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— 5(y), where z = x — y and x, y € C. It is evident that f; € E® (since f, = 0)
and that f, = sup 4.

COROLLARY. The order dual of every vector lattice is an order complete
vector lattice under its canonical ordering.

From the construction of f* = sup(f; 0) in the proof of (1.4), we obtain
the following useful relations; the proof of these is purely computational and
will be omitted.

1.5

Let E be a vector lattice and let f, g be order bounded linear forms on E. For
each x € E, we have

sup(f, g)(|x]) = sup{f(») + 9(2): y 20,220,y + z = |x[}
inf(f, g)(|x]) = inf{f(») + 9(2): y 20,220, y + z = |x[}
[£1(x]) =sup{f(y —2): 20,220,y + z = x|}
| £l Z 1710 %D).

In particular, two linear forms f =0, g = 0 are disjoint if and only if for each
x = 0 and each real number & > 0, there exists a decomposition x = x; + x,
with x, 2 0, x, = 0, and such that f(x;) + g(x,) < e.

COROLLARY. Let E be a vector lattice, and let {E, G) be a duality such that G
is a sublattice of E*. Then the polar A° = G of each solid subset A < E is solid.

Proof. In fact, if xed, y20,z20, and y+z=|x|, then y —z€ 4,
since —|x| <y —z < |x|; hence, if fe A° and |g| < |f], then from (8) it
follows that

M

®

lgGol = lgl(x) = 1710 = 1,

which shows that g € 4°.

If E is an ordered vector space over R such that the order dual E* is an
ordered vector space (equivalently, if C* is a proper cone in E* where C is the
positive cone of E), then the space (E*)* is called the order bidual of E and
denoted by E**. Under the assumptions of (1.4) (in particular, if E is a
vector lattice), E** is a vector lattice, and the evaluation (or canonical) map
of E into E**, defined by x — % where %(f) = f(x) (fe E™), is clearly order
preserving. Assuming that E is a vector lattice, let us show that x — % is an
isomorphism onto a sublattice of E* * if E is regularly ordered (equivalently,
if x - % is one-to-one). For later use, we prove this result in a somewhat
more general form.

1.6

Let E be a vector lattice and let G be a solid subspace of E* that separates
points in E; the evaluation map x — %, defined by %(f) =f(x) (f€G), is an
isomorphism of E onto a sublattice of G*.
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Proof. We must show that for each x € E, the element %* (= sup(0, %)
taken in G*) is the canonical image of x* e E. Denote by P the subset
U{pl0, x*1: p = 0} of E and define, for each /= 0 in G, a mapping ¢, of the
positive cone C of E into R by

t,(y) = sup{f(2):z€ [0, y] n P} (yeO).
As in the proof of (1.4) it follows that ¢, is additive and positive homo-
geneous, and hence defines a unique linear form g, e C*; it is clear that
g, =/, hence g, € G, since G is solid, and that g (x~) = 0 because of [0, x~]
N P ={0}. Henceg (x) = g (x*),and we obtain X" (f) = sup{g(x):0 < g < f}
2g,/x) =g/ x*)=f(x*) for all fe C* n G. This implies X* = (x*)";
since it is clear that (x*)~ = %* in G, the assertion follows.

We point out that the canonical image of E in G* is, in general, not an
order complete sublattice of G* even if E is order complete (see the example
following (7.4)). In particular (taking G = E*), a regularly ordered, order
complete vector lattice E need not be mapped onto a band in E** under
evaluation. If F is an order complete, regularly ordered vector lattice whose
canonical image in E** is order complete, E will be called minimal (or of
minimal type).

If E, F are vector lattices, a linear map u of E onto F is called a lattice
homomorphism provided that u preserves the lattice operations; in view of the
linearity of u, the translation-invariance of the order and the identity (3), this
condition on u is equivalent to each of the following: (i) u(sup(x, y))
= sup(u(x), u(y)) (x,y € E). (i) u(inf(x, y)) = inf(u(x), u(y)) (x,y € E). (iii)
u(|x|) = sup(u(x*), u(x7)) (x € E). (iv) infu(x*), u(x™)) =0 (xe E). If, in
addition, u is biunivocal, then u is called a lattice isomorphism of E onto F.
It is not difficult to show that a linear map u of E onto F is a lattice homo-
morphism if and only if #7*(0) is a solid sublattice of E and u(C,) = C,,
where C;, C, denote the respective positive cones of E, F. In particular, if N
is a solid vector sublattice of E, then E/N is a vector lattice under its canonical
order and the canonical map ¢ is a lattice homomorphism of E onto E/N
(Exercise 12).

The linear forms on a vector lattice E that are lattice homomorphisms onto
R have an interesting geometric characterization; let us recall (Chapter II,
Exercise 30) that {Ax: 1 = 0}, 0 # x € Cis called an extreme ray of the cone C
ifx—yeC,yeCimply y = px for some p, 0 < p <1,

1.7

Let E be a vector lattice, f # 0 a linear form on E. The following assertions are
equivalent :

(a) fis a lattice homomorphism of E onto R.

(b) inf(f(x*),f(x7)) =0forall x € E.

(c) fgenerates an extreme ray of the cone C* in E*,
(d) f=0andf~%(0) is a solid hyperplane in E.
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Proof. (a)<>(b) is clear from the preceding remarks. (b)=-(d): Since
inf(f(x%),f(x7)) =0 for each xe€E, it follows that f =0, and f(x) =0
implies £(]x|) = 0; hence [y] < || and /(x) = 0 imply |7 ()] /(¥ < f(Ix])
= 0. (d)=(c): Suppose g € C* is such that f— g € C* or, equivalently, that
0 < g < f. Then since £ ~*(0) is solid, f(x) = 0 implies |g(x)| < g(|x|) £ f(|x])
=0 and hence f~!(0) = g~!(0). Thus (since f~*(0) is a hyperplane) either
g =0orf}0) =g~ !(0); in any case, g = pffor some p,0 < p £ 1. (c)=(b):
Let f generate an extreme ray of C*, let x € E be given, and suppose that
f(x*)>0. Let P={p[0,x*]: p = 0}, and define 4 e E* by putting, for
y 20, h(y) =sup{f(2): z€ [0, y] n P} (see proof of (1.6)). It follows that
0 < h <f and hence h = pf by the assumption made on f, and since A(x™)
=f(x*) > 0 we must have p = 1. Thus & = f; and since clearly A(x~) =0, it
follows that f(x~) =0, which completes the proof.

2. ORDERED VECTOR SPACES OVER THE COMPLEX FIELD

It is often useful to have the concept of an ordered vector space over the
complex field C. Such is the case, for instance, in spectral theory and in
measure theory. It is the purpose of this section to agree on a definite ter-
minology. We define a vector space L over C to be ordered if its underlying
real space L, (Chapter 1, Section 7) is an ordered vector space over R; thus
by definition, order properties of L are order properties of L,. The usefulness
of this (otherwise trivial) definition lies in the fact that the transition to L,
does not have to be mentioned continually.

The canonical orderings of products, subspaces, direct sums, quotients,
function spaces, and spaces of linear maps are then defined with reference to
the respective underlying real spaces; only the term * positive linear form”
on L has to be additionally specified when L is an ordered vector space over
C. We define fe L* to be positive if Re f(x) = 0 whenever x = 0 in L; this
definition guarantees that whenever the canonical ordering of (L,)* is defined,
then L* is ordered, and the canonical isomorphism of (I, 7.2) is an order
isomorphism (a corresponding statement holding for subspaces of L*).
The order bound dual L’ of an ordered vector space L over C is then defined
as the subspace of L* containing exactly the linear forms bounded on each
order interval in L; the order dual L™ is the (complex) subspace of L* which is
the linear hull of the cone C* of positive linear forms. In accordance with the
definition given above, the order of L is called regular if L, is regularly
ordered; we point out that this is not implied by the fact that C* separates
points in L, and that in general (L*), cannot be identified with (L,)* by virtue
of (I, 7.2) (Exercise 4).

The term vector lattice will not be extended to complex spaces; we shall,
however, say that an ordered vector space L over C with positive cone C
is lattice ordered if the real subspace C — C of L is a vector lattice. For example,
the complexification (Chapter I, Section 7) of a vector lattice L is a lattice
ordered vector space L, over C.
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3. DUALITY OF CONVEX CONES

Let L be a vector space (over R or C); by a cone in L we shall henceforth
understand a convex cone C of vertex 0 and such that 0 € C. Let C be a fixed
cone in L; for any pair (x,y)eL x L, we shall write [x,y] =(x+ C)n
(y — C). This notation is consistent with the notation introduced for order
intervals in Section 1; if C is the positive cone of an ordering of L, then
(x+C)n(y—C) is the order interval {z:x <z < y}. For any subset
A < L, define

[A]=A4+O)n(4-C)=U{[x,y]: xe 4,y A}.

A subset B < L is called C-saturated if B = [B]; it is immediate that for any
A = L, [A] is the intersection of all C-saturated subsets containing A, and
hence called the C-saturated hull of A. It is also quickly verified that 4 — [4]
is monotone: 4 = B implies [4] = [B], that [4] is convex if 4 is convex, and
that [A4] is circled with respect to R if A is circled with respect to R. Finally
we note that if § is a filter (more generally, a filter base) in L, then the family
{[F): Fe &} is a filter base in L; the corresponding filter will be denoted by
[3].

Assume now that L is a t.v.s. A cone C in L is said to be normal if U = [U]
where U is the neighborhood filter of 0. Hence C is a normal cone in the
t.v.s. L if and only if there exists a base of C-saturated neighborhoods of 0
(equivalently, if and only if the family of all C-saturated 0-neighborhoods is
a base at 0). It will be useful to have a number of alternative characteriza-
tions of normal cones.

31

Let L be a t.v.s. over K and let C be a cone in L. The following propositions are
equivalent :

(a) Cis anormal cone.

(b) For every filter § in L, lim § = 0 implies lim[§F] = 0.

(c) There exists a 0-neighborhood base B in L such that Ve B implies
[VacCleV.

If K = R and the topology of L is locally convex, then () is equivalent to each
of the following :

(d) There exists a 0-neighborhood base consisting of convex, circled, and C-
saturated sets.

(e) There exists a generating family P of semi-norms on L such that p(x)
< p(x + y) whenever xe C, ye C and pe 2.

Proof. Denote by U the neighborhood filter of 0 in L. (a)=>(b): If & is a
filter on L which is finer than 2, then [J] is finer than [U]; hence the assertion
follows from U = [U]. (b)=>(c): (b) implies that [U] is the neighborhood
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filter of 0 in L; hence B = {[U]: U e U} is a neighborhood base of 0 such
that Ve B implies [V C] = [V] = V. (c)=(a): Given U e 1, it suffices to
show there exists W e U such that [W] < U. Let B be a 0-neighborhood base
as described in (c); select V'€ B such that V' + V' <= U and a circled Wel
such that W+ W < V. We obtain

vl = UW[x,y]= UW(x+[0,y—x])CW+[(W+ W) n C]
x,y€e X, Y€
cV+[VnClecV+Vcl,

which proves the implication (c)=> (a).

Assume now that K = R and the topology of L is locally convex. (a) = (d):
If A, is the family of all convex, circled 0-neighborhoods in L, then I8
= {[U]: Ue U,} is a base at 0 consisting of convex, circled, and C-saturated
sets. (d) = (e): If W is a 0-neighborhood base as in (d) and py, is the gauge
function of W e I, the family {py: W e W} is of the desired type. (e) = (c):
If 2 is as in (e) then the family of all finite intersections of the sets V,,,
={xeL:p(x) < ¢} (pe P, ¢>0)is a neighborhood base B of 0 having the
property stated in (c). This completes the proof.

COROLLARY 1. If L is a Hausdorff t.v.s., every normal cone C in L is a proper
cone.

Proof. In fact, if xe C n — C, then x € [{0}] = [U] for each 0-neighbor-
hood U, and it follows that x =0.

COROLLARY 2. If C is a normal cone in L and B = L is bounded, then [B] is
bounded; in particular, each set [x, y] is bounded.

Proof. If B is bounded and U is a 0-neighborhood in L, there exists 4 > 0
such that B = AU; it follows that [B] = [AU] = A[U].

COROLLARY 3. If the topology of L is locally convex, the closure C of a normal
cone is a normal cone.

Proof. It is immediate that C is a cone in L, and C is also the closure of C
in the real space L, ; the assertion follows now from proposition (e) of (3.1).

It will become evident from the results in this chapter and the Appendix
that the concept of a normal cone is an important (and perhaps the most
important) notion in the theory of ordered topological vector spaces; for
cones in normed spaces over R it goes back to M.G. Krein [2]. The original
definition of Krein postulates the existence of a constant y(= 1) such that
IIxIl = yllx + p|l for all x,ye C; it follows at once that this definition is
equivalent, for normed spaces (L, || ||) over R, with the one given above, and
(3.1) (e) implies that there exists an equivalent norm on L for which one can
suppose y = 1.

If M is a subspace of the t.v.s. L and C is a normal cone in L, it is clear that
M n Cis a normal cone in M; it is also easy to verify that if {L,;a € A} isa
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family of t.v.s., C, a cone in L,, and L = [[,L,, then C =[[,C, is a normal
cone in L if and only if C, is normal in L, (e € A). Let us record the following
result on locally convex direct sums.

32

If {L,: a € A} is a family of l.c.s., C, a cone in L(x € A), and L = ®,L, the
locally convex direct sum of this family, then C = @,C, is a normal cone in L
if and only if C,isnormalinL, (x € A).

Proof. The necessity of the condition is immediate, since each L, can be
identified with a subspace of L such that C, is identified with L, n C (x € A).
To prove that the condition is sufficient assume that X = R (which can be
arranged, if necessary, by transition to the underlying real space L, of L).
Let B, be a neighborhood base of 0 in L, (x € A) satisfying (3.1) (d); the
family of all sets V =, V, (V, € B,, « € A) is a neighborhood base of 0in L
(Chapter II, Section 6). Now it is clear that [V n C] is the convex hull of
UalV, 0 C,]; since [V, C,]J <V, for all V,e B, (xe A), it follows that
[V n C] = V, which proves the assertion in view of (3.1) (c).

It can be shown in a similar fashion that a corresponding result holds for
the direct sum topology introduced in Exercise 1, Chapter I (in this case, the
spaces L, need not be supposed to be locally convex). On the other hand, if
C is a normal cone in L and M is a subspace of L, then the canonical image
C of Cin L/M is, in general, not a proper cone, let alone normal. (For a
condition under which € is normal, see Exercise 3.)

Intuitively speaking, normality of a cone Cin a t.v.s. L restricts the *“ width”’
of C and hence, in a certain sense, is a gauge of the pointedness of C. For ex-
ample, a normal cone in a Hausdorff space cannot contain a straight line
((3.1), Corollary 1); a cone C in a finite-dimensional Hausdorff space L is
normal if its closure C is proper (cf. (4.1) below). In dealing with dual
pairs of cones, one also needs a tool working in the opposite direction and
gauging, in an analogous sense, the bluntness of C. The requirement that
L = C — C goes in this direction; in fact, it indicates that every finite subset
S of L can be recovered from C in the sense that S = S, — S, for a suitable
finite subset S, = C. The precise definition of the property we have in mind
is as follows. :

Let L be a t.v.s., let C be a cone in L, and let S be a family of bounded
subsets of L (Chapter III, Section 3); for each S € S, define S to be the sub-
set S N C — S n Cof L. We say that C is an S-cone if the family {S¢: S € &}
is a fundamental subfamily of &; C is called a strict S-cone if {S.: Se€ S} is
fundamental for &. If L is a l.c.s. over R and & is a saturated family, in
place of S. we can use the convex, circled hull of S n C in the preceding
definitions. A case of particular importance is the case where & = B is the
family of all bounded subsets of L: C is a B-cone in L. The notion of a
$B-cone in a normed space (L, || ||) appears to have been first used by Bonsall
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[2]; Bonsall defines L to have the decomposition property if each z, |z|| < 1,
can be approximated with given accuracy by differences x — y, where x € C,
ye C and |x|| £k, |lyll £ k for a fixed constant k > 0.

The property of being an S-cone satisfies certain relations of permanence
(Exercise 5); since these are consequences of (3.3), below, the permanence
properties of normal cones, and the duality theorems (IV, 4.1) and (IV, 4.3),
they will be omitted here. Let us point out that, as the concept of a normal
cone, the concept of an S-cone is independent of the scalar field (R or C)
over which L is defined.

Examples

1. The set of real-valued, non-negative functions determines a
normal cone in each of the Banach spaces enumerated in Chapter II,
Examples 1-3. If E is any one of these spaces and C the corresponding
cone, then E = C — C if K = R; this implies that C is a strict B-cone in
E (see (3.5) below). If the functions (or classes of functions) that con-
stitute E are complex valued, then C and C + iC are normal cones and
C + iC is a strict B-cone.

2. Let C denote the set of all non-negative functions in the space
2 of L. Schwartz (Chapter 11, Section 6, Example 2). C is not a normal
cone in 2, but C + iC is a strict B-cone. The cone C, of all distributions
T such that (Tf) = 0 for f e C (which can be identified with the set of
all positive Radon measures on R" (cf. L. Schwartz [1])) is a normal
cone in 2', but C; + iC, is not a B-cone (Exercise 6).

3. Let E be the space of complex-valued, continuous functions with
compact support on a locally compact space X with its usual topology
(Chapter II, Section 6, Example 3), and let C be the cone of non-
negative functions in E. C is a normal cone in E, C + iC is normal and
a strict B-cone. If C, denotes the set of all positive Radon measures
on X, C; + iC, is normal and a strict B-cone in the strong dual E’.

The proofs for these assertions will become clear from the following
results and are therefore omitted.

If C is a cone in the t.v.s. E, the dual cone C’ of C is defined to be the set
{feE"Ref(x) 20 if xe C}; hence C’ is the polar of — C with respect to
{E, E’. In the following proofs it will often be assumed that the scalar field
K of E is R; whenever this is done, implicit reference is made to (I, 7.2) (cf.
also Section 2). Before proving the principal result of this section, we estab-
lish this lemma which is due to M. G. Krein [2].

LeMMA 1. If C is a normal cone in the normed space E, then E' =C' — C'.

Proof. We can assume that K = R. Let f'€ E’ and define the real function
p 20 on C by p(x) = sup{f(z): z € [0, x]}. Then it is clear that p(ix) = Ap(xn
if A =2 0 and that p(x + y) = p(x) + p(»), since [0, x] + [0, y] = [0, x + y] for)
all x, y e C. It follows that the set

V={@tx):0=1t=px)}
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is a cone in the product space R, x E. Let {x,: n € N} be a null sequence in
E and suppose that {t,, ne N} is a sequence of real numbers such that
(t,, x,) € V (ne N). Since C is a normal cone and f is continuous, it follows
that p(x,) - 0 and hence that #, — 0; this implies that (1, 0) is not in the
closure V of V in the normable space R, x E. By (II, 9.2) there exists a
closed hyperplane H strictly separating {(1,0)} and V; it can be arranged
that H = {(¢, x): h(t, x) = —1}, where A(1,0) = —1 and A is =0 on V. By
1V, 4.3) h is of the form (¢, x) » —t + g(x); since g € E’ and (0, x) € V for
each x € C, it follows that g € C'. Now (p(x), x) € V for all x € C; hence we
have —p(x) +g(x) =0 if xeC. Since f(x) S p(x) <g(x) for xe C, we
obtain f=g — (g — f), where g € C’, g — fe C’, and the lemma is proved.

33

Theorem. Let E be a l.c.s., let C be a cone in E with dual cone C' c FE’,
and let S be a saturated family of weakly bounded subsets of E'. If C' is an S-cone,
then C is normal for the S-topology on E; conversely, if C is normal for an
S-topology consistent with {E, E"), then C' is a strict S-cone in E'.

Proof. We can assume that K = R. If C’' is an ©-cone in E’, then the
saturated hull of the family {['(S n C’): Se &} equals &; hence the S-
topology is generated by the semi-norms

x = ps(x) =sup{|<x, xD|: ' €SN C} (Sed)
which are readily seen to satisfy proposition (e) of (3.1).

Suppose now that T is an S-topology on E consistent with (E, E’) and
that C is normal with respect to T. By (3.1) (d) there exists a 0-neighborhood
base U in (E, ¥) consisting of convex, circled, and C-saturated sets. Since
{U°: UeU} is a fundamental subfamily of &, it suffices to show that there
exists, for each U € U, an integer n, such that U° < no(U° n C' = U° n C).
Let U e U be fixed.

Now the dual of the normed space Ey (for notation, see Chapter III,
Section 7) can be identified with Ej. and the cone C’ n Ej. can be identified
with the dual cone of Cy = ¢y(C) where, as usual, ¢ is the canonical map
E — E. Using the fact that U is C-saturated, it is readily seen that Cy, is a
normal cone in Ey; hence if we define the set M c E'by M=U°nC’
— U° n C’, Lemma | implies that Ej. = |J nM. Now Mis o(E’, E)-compact

neN
by (I, 1.1) (iv), hence o(E’, E)-closed and a fortiori closed in the Banach space

E{.; since the latter is a Baire space, it follows that M has an interior point
and hence (being convex and circled) is a neighborhood of 0in Ey.; it follows
that U° < noM for a suitable n, € N and the proof is complete.

COROLLARY 1. Let C be a cone in the l.c.s. E. The following assertions are
equivalent.:

(a) Cis a normal cone in E.



220 ORDER STRUCTURES [Ch. V

(b) For any equicontinuous set A = E’', there exists an equicontinuous set
B < C’ such that A= B — B.

(c) The topology of E is the topology of uniform convergence on the equi-
continuous subsets of C'.

COROLLARY 2. If © is a saturated family, covering E', of o(E’, E)-relatively
compact sets and if H is an S-cone in E', then the o(E’, E)-closure H of H is a
strict S-cone.

Proof. In fact, the cone C = — H° is normal for the S-topology which is
consistent with {(E, E"), (IV, 3.2), and C’ = H by (IV, 1.5).

COROLLARY 3. IfCisaconeinthel.c.s. E,then E' = C' — C'ifand only if Cis
weakly normal; in particular, every normal cone in E is weakly normal.

We obtain this corollary by taking € to be the saturated hull of the family
of all finite subsets of E’. Let us point out that if C is a cone in a l.c.s. E over
C, it is sometimes of interest to consider the cone H < E’ of linear forms whose
real and imaginary parts are =0 on C; we have H =C’' n (—iC)’, and it
follows from Corollary 3 above and (IV, 1.5), Corollary 2, that E' = H — H
if and only if C + iC (equivalently, C — iC) is weakly normal in E (for,
H = (C - iC)").

REMARK. In normed spaces, weak normality and normality of cones
are equivalent (see (3.5) below).

The following is an application of (3.3) to the case where & is the family of
all strongly bounded subsets of the dual of an infrabarreled space E; recall
that this class comprises all barreled and all bornological (hence all metriz-
able l.c.) spaces.

34

Let E be an infrabarreled l.c.s., C a cone in E, B the family of all strongly
bounded subsets of E'. The following assertions are equivalent:

(a) Cis a normal cone in E.

(b) The topology of E is the topology of uniform convergence on strongly
bounded subsets of C'.

(c) C'isaB-coneinE'.

(d) C'isa strict B-cone in E'.

The proof is clear from the preceding in view of the fact that B is the
family of all equicontinuous subsets of E’ (Chapter IV, Section 5).

COROLLARY. If E is a reflexive space, normal cones and B-cones correspond
dually to each other (with respect to {E, E")).

It is an interesting fact that the complete symmetry between normal and
B-cones under the duality {E, E’> remains in force, without reflexivity
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assumptions, when E is a Banach space (cf. Ando [2]). From the proof of
this result we isolate the following lemma, which will be needed later, and is
of some interest in itself.

LemMA 2. Let (E, T) be a metrizable t.v.s. over R, let C be a cone in E which
is complete, and let {U,: n € N} be a neighborhood base of 0 consisting of closed,
circled sets such that U,,, + U,,, = U, (ne€ N). Then the sets

V,=U,nC-U,nC (neN)

Jform a 0-neighborhood base for a topology T, on E; = C — C such that (E,, ¥,)
is a complete (metrizable) t.v.s. over R.

Proof. 1t is clear that each set V, is radial and circled in E,, and obviously
Vos1 + Vaer < V, for all ne N. It follows from (I, 1.2) that {V,:ne N} is a
0-neighborhood base for a (unique translation invariant) topology ¥, on E;
under which FE; is a t.v.s. Of course (E;, ¥,) is metrizable, and there remains
to prove that (E;, ¥,) is complete. In fact, given a Cauchy sequence in (E;, I,),
there exists a subsequence {z,} such that z,,, — z, € V,(n e N); we have,
consequently, z,,, — z, = x, — ¥,, Where x, and y,, are elements of U,n C,

and it is evidently sufficient to show that the series Z x, and Z ¥, converge

n=1n

in (E;, T,). Let us show this for Z x,. Letting u, = z x, (n € N), we obtain

Uptp — unG(Un+1 + ot Un+p) NnCc (Un N C) < Vn

for allp e N and n € N. Since C is complete in (E, ), {u,} converges for I to
some u € C and we have u —u,,., € U, n C < V,, since U, n C is closed in
(E, T). Now the last relation shows that u, = u in (E;, I,), and the proof is
complete.

3.5

Theorem. Let E be a Banach space and let C be a closed cone in E. Then
C is normal (respectively, a strict B-cone) if and only if C' is a strict B-cone
(respectively, normal) in Ej.

Proof. The assertion concerning normal cones C < E is a special case of
(3.4), and if C is a B-cone, then C’ is normal in Ej by (3.3). Hence suppose
that C’ is normal in E; and denote by U the unit ball of E. The bipolar of
U n C (with respect to (E’, E"Y) is U°° n C" and by (3.3) C" is a strict
B-cone in the strong bidual E”; hence U°° n C" — U°° n C” is a O-neighbor-
hood in E”. It follows that ¥ = U n C — U n C is dense in a 0-neighborhood
Vi in E; if E; = C — C and I, is the topology on E, defined in Lemma 2,
this means precisely that the imbedding ¥ of (E;, ) into E is nearly open
and continuous, with dense range. Consequently, Banach’s homomorphism
theorem (III, 2.1) implies that ¥ is a topological isomorphism of (E,, Ltl
onto E, and hence C is a strict B-cone in E.
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COROLLARY. Let E be a Banach space and let C be a cone in E with closure C.
The following assertions are equivalent:

(a) CisaB-coneinE.
(b) E=C-C.
(¢) Cisa strict B-cone in E.

Proof. (a)=>(c) is clear from the preceding since C’ is normal in £’ when-
ever C is a B-cone, by (3.3). (c) = (b) is trivial. (b) = (a): Let M denote the
closure of U n C — U n C, where U is the unit ball of E. Then M is convex,

circled (over R), and such that E = |J nM; since E is a Baire space, it fol-
1

lows that M is a 0-neighborhood in E and hence C is a B-cone.

4. ORDERED TOPOLOGICAL VECTOR SPACES

Let L be a t.v.s. (over R or C) and an ordered vector space; we say that L is
an ordered topological vector space if the following axiom is satisfied:

(LTO) The positive cone C = {x: x = 0} is closed in L.

Recall that an Archimedean ordered vector space is called regularly
ordered if the real bilinear form (x, x*) — Re {x, x*) places L, and L in
duality, where L, is the real underlying space of L (Chapter I, Section 7). In
order to prove some alternative characterizations, we need the following
lemma which is of interest in itself. (Cf. Exercise 21.)

LEMMA. Let E be an ordered vector space of finite dimension over R. The order
of E is Archimedean if and only if the positive cone C is closed for the unique
topology under which E is a Hausdorff t.v.s.

Proof. If Cis closed, then clearly the order of E is Archimedean. Conversely,
suppose that E is Archimedean ordered; without restriction of generality we
can assume that £ = C — C. If the dimension of E is n (= 1), then C con-
tains # linearly independent elements X, ..., x, and hence the n-dimensional
simplex with vertices 0, x,, ..., x,; since the latter has non-empty interior, so
does C. Now let x e C and let y be interior to C; by (II, 1.1) n™ 1y + x is
interior to C (n e N), and hence we have —x < n~ !y for all n. This implies
—x £ 0 or, equivalently, x € C.

4.1

If L is an ordered vector space over R with positive cone C, the following pro-
positions are equivalent:

(@) The order of L is regular.
(b) C is sequentially closed for some Hausdorff l.c. topology on L, and L*
distinguishes points in L.
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(c) The order of L is Archimedean, and C is normal for some Hausdorff I.c.
topology on L.

Proof. (a) = (b): It suffices to show that the intersection of C with every
finite dimensional subspace M is closed (Chapter II, Exercise 7), and this is
immediate from the preceding lemma, since the order of L is Archimedean,
and hence the canonical order of each subspace M < L is Archimedean.
(b)=(c): If T is a Hausdorff l.c. topology under which C is sequentially
closed, then, clearly, L is Archimedean ordered. Moreover, since L* separates
points in L, the canonical bilinear form on L x L* placesLand L* = C* — C*
in duality, and by (3.3) C is normal for the Hausdorff 1.c. topology o(L, L™).
(c) = (a): It suffices to show that L* separates points in L. If T is a Haus-
dorff l.c. topology for which C is normal, then (L, T)' = C' — C’ by (3.3);
hence C’— C’, and a fortiori L* = C* — C* separates points in L. This
completes the proof.

COROLLARY 1. The canonical orderings of subspaces, products, and direct
sums of regularly ordered vector spaces are regular.

COROLLARY 2. Every ordered locally convex space is regularly ordered.

Proof. If (E, ¥) is an ordered l.c.s., then C is closed by definition, and the
bipolar theorem (IV, 1.5) shows —C to be the polar of C’ with respect to
(E,E". Since Cn —C = {0}, it follows that C' — C’ is weakly dense in
(E, X), hence L™ = C* — C* separates points in L.

If 4 is an ordered set and S = A is a subset (# &) directed for <, recall
that the section filter §(S) is the filter on A determined by the base {S,: x € S},
where S, = {y € S: y = x}, and S, is called a section of S. In particular, if S

is a monotone sequence in 4, then F(S) is the filter usually associated with S.

42

Let Lbe an ordered t.v.s. and let S be a subset of L directed for <. If the section
filter F(S) converges to x, € L, then xo =sup S.

Proof. Let xe S and let z be any element of L majorizing S; we have
x Sy<zfor all yeS,, and from x, € S, it follows that x < x, < z, since
the positive cone is closed in L. This proves that x, = sup S.

A deeper result is the following monotone convergence theorem, which
can be viewed as an abstract version of a classical theorem of Dini. Although
it can be derived from Dini’s theorem, using (4.4) below (Exercise 9), we give
a direct proof based on the Hahn-Banach theorem.

4.3

Theorem. Let E be an ordered l.c.s. whose positive cone C is normal, and
suppose that S is a subset of L directed for <. If the section filter F(S) converges
Jor o(E, E'), then it converges in E.
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Proof. Without loss in generality we can suppose that S is directed for =,
and that lim §(S) =0 for o(E, E’); it follows now from (4.2) that S< C.
Assume that the assertion is false; then there exists a 0-neighborhood U in E
that contains no section of S, and since C is normal we can suppose that U is
convex and C-saturated. Since x e S n U implies S, = U, it follows that
S n U = @; moreover, (S + C) n U =, since U is C-saturated, and S + C
is convex, since it is the union of the family {x + C: x € S} of convex sets
which is directed under inclusion. Hence by (II, 9.2) U and S can be separated
by a closed real hyperplane in E, and this contradicts the weak convergence
of §(S) to 0.

COROLLARY 1. Let S be a directed (<) subset of E such that x, = sup S, where
E is an ordered l.c.s. with normal positive cone. If for every real linear form f
which is positive and continuous on E one has f(x,) = sup{f(x): x € S}, then
lim g(x) = g(x,) (g € E’) uniformly on each equicontinuous subset of E’.
xeS

Proof. In fact, in view of (3.3), Corollary 3, the weak convergence of F(S)
to x, is equivalent to the relation f(x,) = sup{ f(x): x € S} for every real linear
form f on E which is positive and continuous (cf. (I, 7.2)).

The reader will note that the preceding corollary is equivalent with (4.3).
The following result can be viewed as a partial converse of (4.2).

COROLLARY 2. Let E be a semi-reflexive, ordered l.c.s. whose positive cone is
normal. If S is a directed (X) subset of E which is majorized or (topologically)
bounded, then x, = sup S exists and F(S) converges to x,.

Proof. Let S, be any fixed section of S; it suffices to show that sup S,
exists in E. If S is majorized by some z € E, then S, < [x, z] and hence S, is
bounded in E by (3.1), Corollary 2; hence assume that S, is bounded in E.
The weak normality of C implies that E' = C’' — C’, and hence that the
section filter {F(S,) is a weak Cauchy filter in E which is bounded. It follows
from (IV, 5.5) that §(S,) converges to some x, € E, and (4.2) implies that
Xo = sup S,, since C is closed and hence (being convex) weakly closed in E.

The following result is an imbedding (or representation) theorem for
ordered l.c.s. over R; let us denote by X a (separated) locally compact space,
and by R(X) the space of all real-valued continuous functions on X under the
topology of compact convergence and endowed with its canonical order
(Section 1).

44

Let E be an ordered l.c.s. over R. If (and only if) the positive cone C of E is
normal, there exists a locally compact space X such that E is isomorphic (as
an ordered t.v.s.) with a subspace of R(X).

Proof. The condition is clearly necessary, for the positive cone of R(X)
(and hence of every subspace of R(X)) is normal. To show that the condition
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is sufficient, we note first from (3.3), Corollary 1, that the topology of E is
the topology of uniform convergence on the equicontinuous subsets of the
dual cone C' < E’. Let {B,:a€ A} be a fundamental family of ¢(E’, E)-
closed equicontinuous subsets of C’; under the topology induced by ¢(E’, E),
each B, is a compact space. We define X as follows: Endow A with the discrete
topology, C’ with the topology induced by (E’, E), and let X, be the subspace
{a} x B, of the topological product A x C’; then X is defined to be the sub-
space |J, X, of A x C’. The space X is the topological sum of the family
{B,: a € A}; clearly, X is a locally compact space in which every X, is open
and compact, and hence every compact subset of X is contained in the union
of finitely many sets X,. For each x € E, we define an element f, € R(X) by
putting f(#) = {x, x") for every ¢ = (a, x') € X; it is clear that x — f, is an
algebraic and order isomorphism of E into R(X). Finally, since a closed

subset of X is compact if and only if it is contained in a finite union {J X,,
aeH

it is also evident that x — £, is a homeomorphism.

REMARKS. It is easy to see that R(X) is complete; hence the image of
E under x — f, is closed in R(X) if and only if E is complete. Moreover,
if E is metrizable, then the family {B,: « € A} can be assumed to be
countable, and hence X countable at infinity; if E is normable, one can
take X' = U° n C’' (under o(E’, E)), where U is any bounded neighbor-
hood of 0 in E (in particular, the unit ball if E is normed). If E is a sep-
arable normed space, U° N C’ is a compact metrizable space for
a(E’, E) by (IV, 1.7) and hence a continuous image of the Cantor set
(middle third set) in [0, 1] = R; in this case X can be taken to be the
Cantor set itself, or [0, 1] (for details, see Banach [1], chap. XI,
§ 8, theor. 9).

Finally, proposition (4.4) can be specialized to the case C = {0} ; we obtain
thus a representation of an arbitrary l.c.s. E over R as a subspace of a suitable
space R(X); it is immediate that in this particular case, the restriction to the
scalar field R can be dropped.

5. POSITIVE LINEAR FORMS AND MAPPINGS

The present section is concerned with special properties of linear maps
u € L(E, F) which map the positive cone C of E into the positive cone D of F,
where E, F are ordered vector spaces (respectively, ordered t.v.s.); these
mappings are called positive. It is clear that the set H of all positive maps is a
cone in L(E, F); whenever M is a subspace of L(E, F) such that Hn M is a
proper cone, H n M defines the canonical ordering of M (Section 1). Recall
also (Section 2) that a linear form f on an ordered vector space E is called
positive if Re f(x) = 0 for each x in the positive cone C of E.

We begin our investigation with some simple but useful observations
concerning the properties of the cone # < % (E, F) of continuous positive
maps, where E, F are supposed to be ordered t.v.s. over K. We point out that
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in view of the agreements made in Section 2, it suffices in general to consider
the case K = R.

51

Let E, F be ordered t.v.s. and let S be a family of bounded subsets of E that
covers E. Then the positive cone # < & (E, F) is closed for the S-topology.
For 3 to be a proper cone, it is sufficient (and, if E is a l.c.s. and F # {0}, neces-
sary) that the positive cone C of E be total in E.

Proof. In fact, by definition of the S-topology (Chapter III, Section 3) the
bilinear map (u, x) — u(x) is separately continuous on Z(E, F) x E into F;
hence the partial map f,: u — u(x) is continuous for each x € E. Since #
=N {f<(D): x e C} and the positive cone D of F is closed, 5 is closed in
Z<(E, F). Further, since D is proper, u € # n — 3 implies that u(x) =0 for
x € C; hence u =0 if C is total in E. Finally, if E is a l.c.s. and C is not total
in E, there exists an fe E’ such that f# 0 but f(C) = {0}, by virtue of the
Hahn-Banach theorem; if y is any element # O of F, the mapping u =f® y
(defined by x — f(x)y) satisfies ue # N —H#.

COROLLARY. If C is total in E and if F is a l.c.s., the (canonical) ordering of
Z(E, F) defined by 3 is regular.

Proof. In fact, # is a closed proper cone for the topology of simple con-
vergence which is a Hausdorff l.c. topology by (III, 3.1), Corollary; the
assertion follows from (4.1), Corollary 2.

52

Let E, F be ordered l.c.s. with respective positive cones C, D and let S be a
family of bounded subsets of E. If C is an S-cone in E and D is normal in F, the
positive cone # < ¥ (E, F) is normal for the S-topology.

Proof. Since D is normal in F, there exists, by (3.1), a family {g,: « € A} of
real semi-norms on F that generate the topology of F, and which are mono-
tone (for the order of F) on D. Since C is an S-cone in E, it follows that the
real semi-norms

u = p, s(u) = sup{q,(ux): xe S n C} (xeA, Se )

generate the S-topology on Z(E, F). Now, evidently, each p, s is monotone
on s (for the canonical order of Z(E, F)); hence s is a normal cone in
ZL(E, F), as asserted.

On the other hand, there are apparently no simple conditions guaranteeing
that # is a T-cone in Z(E, F), even for the most frequent types of families
T of bounded subsets of Z<(E, F), except in every special cases (cf. Exercise
7). At any rate, the following result holds where E, F are ordered l.c.s. with
respective positive cones C, D, and Z(E, F) denotes #(E, F) under the
topology of simple convergence.
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5.3

If C is weakly normal in E and if F= D — D, then 5 — 5 is dense in
ZL(E, F).

Proof. Since the weak normality of C is equivalent with E' = C' — C’ by
(3.3), Corollary 3, the assumptions imply that # — # contains the sub-
space E'® F of Z(FE, F). On the other hand, the dual of #Z(E, F) can be
identified with E® F’ by (IV, 4.3), Corollary 4, and it is known that (under
the duality between L (E, F) and EQ® F') E' ® F separates points in E® F’
(Chapter IV, Section 1, Example 3); it follows from (IV, 1.3) that E' ® F is
weakly dense in Z(E, F) and hence (being convex) dense in Z(E, F).

We turn to the question of extending a continuous positive linear form,
defined on a subspace of an ordered t.v.s. E, to the entire space E. The fol-
lowing extension theorem is due to H. Bauer [1], [2] and, independently, to
Namioka [1].

5.4

Theorem. Let E be an ordered t.v.s. with positive cone C and let M be a
subspace of E. For a linear form f, on M to have an extension f to E which is a
continuous positive linear form, it is necessary and sufficient that Re f,, be bounded
above on M n (U — C), where U is a suitable convex 0-neighborhood in E.

Proof. 1t suffices to consider the case K = R. If f is a linear extension of f,
to E which is positive and continuous and if U = {x: f(x)} < 1}, it is clear
that fo(x) < 1 whenever x e M n (U — C); hence the condition is necessary.
Conversely, suppose that U is an open convex 0-neighborhood such that
xeM n (U - C) implies fy(x) <y for some ye R. Then >0 and N
={x € M. fo(x) =y} is a linear manifold in E not intersecting the open
convex set U — C. By the Hahn-Banach theorem (II, 3.1) there exists a closed
hyperplane H containing N and not intersecting U — C, which, consequently,
can be assumed to be of the form H = {x: f(x) = y}; clearly, f is a con-
tinuous extension of f,. Furthermore, since 0 € U — C it follows that f(x) < y
when x € U — C and hence when x € — C; thus x e C implies f(x) = 0.

COROLLARY 1. Let f,, be a linear form defined on the subspace M of an ordered
vector space L. fo can be extended to a positive linear form f on L if and only if
Re fo is bounded above on M n (W — C), where W is a suitable convex radial
subset of L.

In fact, it suffices to endow L with its finest locally convex topology for
which W is a neighborhood of 0, and to apply (5.4). The same specialization
can be made in the following result which is due to Krein-Rutman [1].

COROLLARY 2. Let E be an ordered t.v.s. with positive cone C, and suppose that
M is a subspace of E such that C n M contains an interior point of C. Then every

continuous, positive linear form on M can be extended to E under preservation of
these properties.
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Proof. If f, is the linear form in question and x, € M is an interior point of
C, choose a convex 0-neighborhood U in E such that xy, + U = 2x, — C.
Then Re f, is bounded above on M n (U — C), for we have M n (U — C)
c(xg—C)n M.

REMARK. The condition of Corollary 2 can, in general, not be replaced
by the assumption that C n M possesses an interior point (Exercise 14).
For another condition guaranteeing that every linear form f,, defined
and positive on a subspace M of an ordered vector space L, can be ex-
tended to a positive linear form f on L see Exercise 11.

There is a comparatively large class of ordered t.v.s. on which every posi-
tive linear form is necessarily continuous; we shall see (Section 7 below) that
this class includes all topological vector lattices that are at least sequentially
complete (semi-complete). It is plausible that in spaces with this property, the
positive cone must be sufficiently “ wide ” (cf. the discussion following (3.2)).
More precisely, one has the following result (condition (ii) is due to Klee
[2], condition (iii) to the author [2]).

5.5

Theorem. Let E be an ordered t.v.s. with positive cone C. Each of the
following conditions is sufficient to ensure the continuity of every positive linear
form on E:

(i) C has non-empty interior.
(ii) E is metrizable and complete, and E = C — C.
(iii) E is bornological, and C is a semi-complete strict B-cone.

Proof. 1t is again sufficient to consider real linear forms on E. The suffi-
ciency of condition (i) is nearly trivial, for if f is positive, then £ ~1(0) is a
hyperplane in E lying on one side of the convex body C, and hence closed
which is equivalent with the continuity of f by (I, 4.2). Concerning condition
(ii), we use Lemma 2 of Section 3: The topology T, on E, determined by the
neighborhood base of 0, {V,.ne N}, where V,=U,nC—-U,nC, is
evidently finer than the given topology ¥ of E, and hence we have T =TI,
by Banach’s theorem (I1I, 2.1), Corollary 2. Now if f'is a positive, real linear
form on E which is not continuous, then fis unbounded on each set U, n C
hence there exists x, e U, n C such that f(x,) > 1 (ne N). On the other
hand, since U, ., + U,+, = U, for all n, the sequence {x,} is summable in E

)4
with sum ) x,=zeC (C being closed), and from z > Y. x, we obtain
neN n=1

f(2) > p for each pe N, which is contradictory. Finally, concerning con-
dition (iii) we observe that since E is bornological and C is a strict B-cone, a
linear form on E which is bounded on the bounded subsets of C is necessarily
continuous by (I, 8.3); now if fis a positive, real linear form on E which is
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not continuous, there exists a bounded sequence {x,} in C such that f(x,) > n
(ne N). Since E is locally convex by definition, we conclude that {n~%x,:
ne N} is a summable sequence in C with sum z € C, say, and it follows that

f(@= in'zf(x,,)> in"‘ for all p,
n=1 n=1

which is impossible. The proof is complete.

COROLLARY. Let E be an ordered l.c.s. which is the inductive limit of a family
{E,: a € A} of ordered (F)-spaces with respect to a family of positive linear maps,
and suppose that E, = C, — C, (« € A). Then each positive linear form on E is
continuous.

This is immediate in view of (II, 6.1). For locally convex spaces, an im-
portant consequence of (5.5) is the automatic continuity of rather extensive
classes of positive linear maps.

5.6

Let E, F be ordered l.c.s. with respective positive cones C, D. Suppose that E
is a Mackey space on which every positive linear form is continuous, and assume
that D is a weakly normal cone in F. Then every positive linear map of E into F is
continuous.

Proof. Let u be a linear map of E into F such that ¥(C) = D, and consider
the algebraic adjoint u* of u (Chapter IV, Section 2). For each y' e D,
x —<{x, u*y") is a positive linear form on E, hence continuous by assump-
tion; since F' = D’ — D’ by (3.3), Corollary 3, it follows that u*(F') < E’;
hence u is weakly continuous by (IV, 2.1). Thus u € £(E, F) by (IV, 7.4).

We conclude this section with an application of several of the preceding
results to the convergence of directed families of continuous linear maps.

57

Let E be an ordered barreled space such that E = C — C, and let F be an
ordered semi-reflexive space whose positive cone D is normal. Suppose that % is a
subset of & (E, F) which is directed upward for the canonical order of & (E, F),
and either majorized or simply bounded. Then uy, = sup % exists, and the
section filter (W) converges to uy uniformly on every precompact subset of E.

Proof. In fact, (5.1) and (5.2) show that ## is a closed normal cone in
Z(E, F) and hence is the positive cone for the canonical order of .Z(E, F).
For each x e C, the family {u(x): ue %} satisfies the hypotheses of (4.3),
Corollary 2, and hence of (4.3), so §(%) converges simply to a linear map
uy € Z(E, F). By (111, 4.6) u, is continuous, and the convergence of F(%) is
uniform on every precompact subset of E. Since S is closed in Z(E, F),
(4.2) implies that u, = sup %.
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6. THE ORDER TOPOLOGY

If S is an ordered set, the order of .S gives rise to various topologies on S
(cf. Birkhoff [1]); however, in general, the topologies so defined do not satisfy
axioms (LT); and (LT), (Chapter I, Section 1) if S is a vector space, even if
(LTO) holds (cf. Exercise 17). On the other hand, if L is an ordered vector
space over R, there is a natural locally convex topology which, as will be seen
below, is the topology of many (if not all) ordered vector spaces occuring in
analysis. The present section is devoted to a study of the principal properties
of this topology. (See also Gordon [2].)

Let L be an ordered vector space over R; we define the order topology T,
of L to be the finest locally convex topology on L for which every order inter-
val is bounded. The family of locally convex topologies on L having this
property is not empty, since it contains the coarsest topology on L, and I,
is the upper bound of this family (Chapter II, Section 5); a subset W = Lis a
0-neighborhood for I, if and only if W is convex and absorbs every order
interval [x, y] = L. (W is necessarily radial, since {x} = [x, x] for each x € L.)
Although T, is a priori defined for ordered vector spaces over R only, it can
happen (cf. the corollaries of (6.2) and (6.4) below) that (L, ) is an ordered
vector space over C such that (L,, ) = (L, Tp), where L, is the underlying
real space of L. We begin with the following simple result.

6.1

The dual of (L, T,) is the order bound dual L of L. If L® separates points in L
(in particular, if the order of L is regular), (L, T,) is a bornological l.c.s. If
L, M are ordered vector spaces, each positive linear map of L into M is continuous
Jor the respective order topologies.

Proof.1t isclear from the definition of T, that each order interval is bounded
for ¥,; hence if fe(L,3I,) then feL’. Conversely, if feL®, then
fX[—1, 1)) is convex and absorbs each order interval, and hence is a 0-neigh-
borhood for T,,. T, is a Hausdorff topology if and only if L® distinguishes points
" in L. Let W be a convex subset of L that absorbs each bounded subset of
(L, Tp); since W a fortiori absorbs all order intervals in L, W is a T,-neigh-
borhood of 0. Hence (L, T,) is bornological if (and only if) T, is a Hausdorff
topology. Finally, if u is a positive linear map of L into M, then u([x, y])
< [u(x), u(y)] for each order interval in L; hence if ¥ is convex and absorbs
order intervals in M, u~}(¥) has the same properties in L and thus « is con-
tinuous for the order topologies. (Cf. Exercise 12.)

COROLLARY. Let L; (i =1, ..., n) be a finite family of ordered vector spaces,
and endow L = [ [;L; with its canonical order. Then the order topology of L is the
product of the respective order topologies of the L;.

Proof. We show that the projection p; of (L, Tp) onto(L;, Tp) (i =1, ..., n)
is a topological homomorphism. In fact, p; is continuous by (6.1); if I; is an
order interval in L; then I; x {0} is an order interval in L, hence if W is a
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convex O-neighborhood in (L, T,) then p(W) is convex and absorbs I;
which proves the assertion.

The order topology is most easily analyzed when L is an Archimedean
ordered vector space with an order unit e. For convenience of expression, let
us introduce the following terminology: A sequence {x,: n € N} of elements
= 0 of an ordered vector space L is order summable if sup, u, exists in L,

where u, = Z x,. We shall say that a positive sequence {x,: n € N} is of type

11 if there ex1sts ana = 0in L and a sequence (4,) € /! such that (0 £)x, < 4,a
(neN).

6.2

Let L be an Archimedean ordered vector space over R, possessing an order unit
e. Then (L, I,) is an ordered t.v.s. which is normable, I, is the finest locally
convex topology on L for which the positive cone C is normal, and the following
assertions are equivalent

(@) (L, Tp) is complete.

(b) Each positive sequence of type I* in L is order summable.

Proof. The order interval [—e, €] is convex, circled, and (by the definition
of order unit) radial in L; since L is Archimedean ordered, the gauge p, of
[—e, e] is a norm on L. The topology generated by p, is finer than I, since
[—e, e] is Tp-bounded, and it is coarser than I, since it is locally convex
and [—e, e] absorbs order intervals; hence p, generates I,. To see that C is
closed in (L, ), note that e is an interior point of C; the fact that C is closed
follows then, as in the proof of the lemma preceding (4.1), from the hypothesis
that L is Archimedean ordered. Moreover, since by (3.1), Corollary 2, I, is
finer than any l.c. topology on L for which C is normal, the second assertion
follows from the fact that the family {e[—e, e]: ¢ > 0} is a 0-neighborhood
base for I, that consists of C-saturated sets.

Further, it is clear that (a) =>(b), since every positive sequence of type /*
in L is of type I* with respect to a = e, and hence even absolutely summable
in (L, Tp); the assertion follows from (4.2). (b) = (a): We have to show that
(L, Tp) is complete. Given a Cauchy sequence in (L, I,), there exists a sub-
sequence {x,: ne€ N} such that for all n, p,(x,+, — x,) < 4,, where (4,) € l*;
hence x,,; — x, € 4,[—e, e] and we have x,,;, — x, = u, — v,, where u, = 1,e
+ (x,+1 — X,) and v, = A, (n € N). To show that {x,} converges, it suffices to
show that ) u, converges. Now 0 < u, < 2A,e; hence {u,} is of type /' and

n=1

sup, Z u, = u e C exists by hypothesis. Since for all n
p=
n+k
0<u—2u -—supk Z o (Z lp)e,
p=n+1

it follows that Z u, =u for I, and hence (L, T,) is complete.

n=1
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COROLLARY 1. If L is Archimedean ordered and has an order unit, the order of
L is regular and we have L® = L*.
This is immediate in view of (6.1) and (3.3).

COROLLARY 2. Let (E, ) be an ordered Banach space possessing an order unit.
Then T =X, if and only if the positive cone C of E is normal in (E, T).

Proof. In fact, the order of E is Archimedean, since C is closed in (E, I);
if T =T, then C is normal by (6.2). Conversely, if C is normal, then ¥ is
coarser than T,; since [—e, e] is a barrel in (E, T) (we can suppose that
K = R), it follows that T = I,.

Examples to which the preceding corollary applies are furnished by the
spaces €(X) (X compact) and L®(u) (Chapter II, Section 2, Examples 1 and 2)
and, more generally, by every ordered Banach space whose positive cone is
normal and has non-empty interior. It is readily verified that each interior
point of the positive cone C of an ordered t.v.s. L is an order unit, and each
order unit is interior to C for I,.

However, most of the ordered vector spaces occurring in analysis do not
have order units, so that the description of ¥, given in (6.2) does not apply.
Let L be an Archimedean ordered vector space over R and denote, for each

a =0, by L, the ordered subspace L, = (J n[—a, a] endowed with its order
n=1

topology; L, is a normable space. The family {L,: a = 0} is evidently directed
under inclusion <, and if L, = L, the imbedding map 4, , of L, into L, is
continuous.

6.3

Let L be a regularly ordered vector space over R, and denote by H any subset
of the positive cone C of L which is cofinal with C for <. Then (L, ;) is the
inductive limit lim h, L, (a, b € H).

—

Proof. By (6.1), the assumption on L implies that T, is Hausdorff. In view
of the preceding remarks and the definition of inductive limit (Chapter II,
Section 6), it suffices to show that T, is the finest l.c. topology on L for which
each of the imbedding maps f,: L,— L (a€ H) is continuous. Since H is
cofinal with C, each order interval [x, y] = Liscontained inatranslate of some
[—a, a] where a € H, and hence [x, y] is bounded for the topology ¥ of the
inductive limit; hence I, is finer than . On the other hand, if W is a convex
0-neighborhood in (L, ¥,), then W absorbs all order intervals in L, which
implies that £ *(W) is a 0-neighborhood in L, (a € H), and hence ¥ is finer
than T,

COROLLARY 1. If the order of L is regular and each positive sequence of type I*
in L is order summable, (L, X,) is barreled.
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Proof. In fact, the assumption implies by (6.2) that each of the spaces L,
(a € H) is normable and complete and hence barreled; the result follows from
11, 7.2).

COROLLARY 2. If the order of L is regular and the positive cone C satisfies
condition (D) of (1.1), then C is normal for T, (hence the dual of (L, T,) isL™").

Proof. By definition of the topology of inductive limit, a 0-neighborhood
base for T, is given by the family of all convex radial subsets U of L such that
V=Un(C-C)is of the form ¥V =["{p,[—a, al: ae H} where a— p, is
any mapping of H into the set of real numbers > 0. We prove the normality
of C via (3.1) (c) by showing that xe U and y € [0, x] imply ye U. If xe U

and x = 0, then x is of the form x = ) A;z;, where ) |4;] <1 (4;eR) and
i=1 i=1
z;€ pol—ai,a] (=1, ...,n). If ye [0, x] it follows that y < 3" |A;|p,a;; by
i1

repeated application of (D), we obtain y =Y |A;|y;, where y; € p,[0, ;]
i=1
(i=1,...,n). Hence ye ¥V < U as was to be shown.

ReMARK. Since L, = L, (where a, b € C) is equivalent with a £ b
for a suitable scalar A > 0, it suffices in (6.3) to require that the set of all
positive scalar multiples of the elements a € H be cofinal with C (for <);
in particular, if L has an order unit e, it suffices to take H = {e}. Let us
note also that the inductive limit of (6.3) is in general not strict (the
topology induced by L, on L, (b > a) is, in general, not the order topol-
ogy of L,). For example, if L is the space L?(u) and a, b are the respective
equivalence classes of two functions f, g such that0 < f < g, fis bounded
and g p-essentially unbounded, then the topology of L, is strictly finer
than the topology induced on L, by L;. (Cf. Exercise 12.)

We apply the preceding description of T, to the case where L is a vector
lattice; the lattice structure compensates in part for the lack of an order unit
and one obtains a characterization of T, that can be compared with (6.2).

6.4

Let L be a vector lattice whose order is reqular and let T be a locally convex
topology on L. These assertions are equivalent:

(@) T is the order topology ¥,,.
(b) T is the finest l.c. topology on L for which C is normal.
(c) T is the Mackey topoldgy with respect to {L,L*>.

Proof. Let us note first that by (1.4), L* = L* and that since the order of L
is assumed to be regular, <L, L*) is a duality. (a) <> (b): Since the positive
cone of a vector lattice satisfies (D) of (1.1), this follows from the fact that
by (3.1), Corollary 2, ¥, is finer than any l.c. topology for which C is normal,
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in view of (6.3), Corollary 2. (a) <> (c): Since (L, I,) =Lb =L*, I, is
consistent with the duality <L, L*); since (L, ¥,) is bornological, ¥, is neces-
sarily the Mackey topology with respect to <L, L*).

The following corollary is now a substitute for (6.2), Corollary 2.

COROLLARY. Let (E, ) be an ordered (F)-space (over R) which is a vector
lattice. Then T = X, if and only if the positive cone C of E is normal in (E, I).

Proof. If T = T, then Cis normal by (6.4). Conversely, if C is normal, then
E' =C'—C’ by (33),and C'— C’'=E* by (5.5) (for C is closed in (E, T)
and E = C — C); since E is a Mackey space by (IV, 3.4), the assertion follows
from (6.4) (c). '

7. TOPOLOGICAL VECTOR LATTICES

Let L be a t.v.s. over R and a vector lattice, and consider the maps x — | x|,
x—x*, x> x~ of L into itself, and the maps (x, y) = sup(x, y) and (x, »)
—inf(x, y) of L x L into L. By utilizing the identities (1), (2) and (3) of
Section 1, it is not difficult to prove that the continuity of one of these maps
implies the continuity (in fact, the uniform continuity) of all of them; in this
case, we say that ““ the lattice operations are continuous” in L. Recall that a
subset A of L is called solid if x € 4 and |y| < |x| imply that y € 4; we call L
locally solid if the t.v.s. L possesses a 0-neighborhood base of solid sets.
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Let L be a t.v.s. over R and a vector lattice. The following assertions are
equivalent :

(a) L is locally solid.
(b) The positive cone of L is normal, and the lattice operations are continuous.

Proof. (a)=>(b): Let U be a 0-neighborhood base in L consisting of solid
sets; if xe Ue U and 0 £ y < x, then y € U and hence the positive cone C
of L is normal by (3.1) (c). Moreover, if x — x, € U, we conclude from (6)
of (1.1) that x* —xj e U (UeU) and hence the lattice operations are
continuous.

(b)=(a): Suppose that C is normal and the lattice operations are con-
tinuous. Let U be a 0-neighborhood base in L consisting of circled C-saturated
sets (Section 3). For a given Ue U, choose Vell, WelUsothat V+ V< U
and that x € W implies x* € V. Now if xe W, then —x e W, since W is
circled; hence x* and x~ =(—x)* are in V and |x|=x* +x" e U. If
ly| £ |x|, then y € [—|x], |x|]; hence, since U is C-saturated, it follows that
y € U. Therefore, the set {y: there exists x € W such that |y| < |x|} is a O-neigh-
borhood contained in U, and is obviously solid.

It is plausible that for t.v.s. that are vector lattices, just as for more general
types of ordered t.v.s., the axiom (LTO) (closedness of the positive cone) by
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itself is too weak to produce useful results. We define a topological vector
lattice to be a vector lattice and a Hausdorff t.v.s. over R that is locally solid;
it will be seen from (7.2) below that in these circumstances, the positive cone
of L is automatically closed, and hence every topological vector lattice is an
ordered t.v.s. over R. A locally convex vector lattice (abbreviated Lc.v.l.) is
a topological vector lattice whose topology is locally convex. Every solid set
is circled (with respect to R, cf. (4) of (1.1)); hence a topological vector lattice
possesses a base of circled solid 0-neighborhoods. Since the convex hull of a
solid set is solid (hence also circled), a l.c.v.l. possesses a 0-neighborhood base
of convex solid sets. The gauge function p of a radial, convex solid set is
characterized by being a semi-norm such that |y| < |x| implies p(y) £ p(x),
and is called a lattice semi-norm on L. Therefore, the topology of a l.c.v.l.
can be generated by a family of lattice semi-norms (for example, by the family
of all continuous lattice semi-norms). A Fréchet lattice is a 1.c.v.l. which is
an (F)-space; a normed lattice is a normed space (over R) whose unit ball
{x: ||x|| £ 1} is solid. By utilizing (I, 1.5) and the uniform continuity of the
lattice operations, it is easy to see that with respect to the continuous exten-
sion of the lattice operations, the completion of a topological vector lattice
is a topological vector lattice; in particular, the completion of a normed
lattice is a complete normed lattice with respect to the continuous extension
of its norm. A complete normed lattice is called a Banach lattice. Let us
record the following elementary consequences of the definition of a topo-
logical vector lattice.
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In every topological vector lattice L, the positive cone C is closed, normal, and
a strict B-cone; if L is order complete, every band is closed in L.

Proof. C is normal cone by (7.1) and, since C = {x: x~ =0}, C is closed,
since the topology of L is Hausdorff and x — x~ is continuous. To show that
C is a strict B-cone, recall that if B is a circled, bounded set, then B* = B~,
and hence B < B* — B*. It suffices, therefore, to show that B is bounded
if B is bounded. If B is bounded and U is a given solid 0-neighborhood in L,
there exists A > 0 such that B = AU; since AU is evidently solid, it follows
that B* = AU hence B* is bounded. Finally, if A isa band in L, then 4 = A**
by (1.3), Corollary 1. Now each set {a}* = {x e L: inf(|x|, |a|]) = 0} is closed,
since L is Hausdorff and x — inf(|x|, |a|) is continuous, and we have 4 =

N {{a}*:ae A*}.

Examples

1. The Banach spaces (over R) L?(u) (Chapter II, Section 2, Exam-
ple 2) are Banach lattices under their canonical orderings; it will be seen
below that these are order complete for p < o0, and the spaces L'(u) and
L*(u) will be important concrete examples for the discussion in Section
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8. The corresponding spaces over C can be included in the discussion,
as they are complexifications (Chapter I, Section 7) of their real counter-
parts.

2. Let 4 be a subspace of w, such that A = A** (Chapter IV, Section 1,
Example 4); 1 is a perfect space in the sense of K6the [5]). Under the
normal topology (Kothe [S], Peressini [2]) A is a l.c.v.l. when endowed
with its canonical ordering as a subspace of w,. The normal topology is
the topology of uniform convergence on all order intervals of 1*, and
the coarsest topology consistent with {4, A*) such that the lattice
operations are continuous. (Cf. Exercise 20.)

3. Let X be alocally compact (Hausdorff) space and let E be the space
of all real-valued functions with compact support in X, endowed with
its inductive limit topology (Chapter II, Section 6, Example 3). The top-
ology of E is the order topology ¥, (Section 6), so that E is a locally
convex vector lattice (see (7.3)); E is, in general, not order complete.
The dual of (E, T,) is the order dual E* of E (the space of all real Radon
measures on X); under its canonical order, E* is an order complete
vector lattice by (1.4), Corollary, and a l.c.v.l. for its strong topology
B(E™, E) ((7.4) below). Of particular interest are the spaces E = 4(X)
when X is compact (Section 8).

We now supplement the results on the order topology I, obtained in the
previous section.

73

Let E be a regularly ordered vector lattice. Then the order topology I, is
the finest topology X on E such that (E, X) is a l.c.v.l. Moreover, if E is order
complete, then (E, Tp) is barreled, and every band decomposition of E is a
topological direct sum for I,.

Proof. In view of (6.1) (and E* = E®, (1.4)), the regularity of the order of
E is sufficient (and necessary, cf. Exercise 19) for ¥, to be a Hausdorff
topology. By (6.3), (E, To) is the inductive limit of the normed spaces L,
(a = 0) that are normed lattices in the present circumstances; one shows, as
in the proof of (6.3), Corollary 2, that the convex circled hull of any family
{p.[—a, al: a = 0} is solid, and hence that (E, T,) is locally solid. The fact
that I, is the finest topology T such that (E, ) is a l.c.v.l. then follows from
(6.4) (b), since the positive cone is normal for all these topologies, (7.1).
If E is order complete, then clearly every positive sequence of type /* is
order summable; hence (£, I,) is barreled by (6.3), Corollary 1. The last
assertion is clear from the corollary of (6.1), since I, induces on each band
B < E the order topology of B. (Exercise 12.)

COROLLARY 1. If the order of the vector lattice E is regular, then (E, T,) is
al.c.v.l. whose topology is generated by the family of all lattice semi-norms on E.

From the corollary of (6.4), we obtain:
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COROLLARY 2. If E is a vector lattice and an ordered (F)-space in which the
positive cone is normal, the lattice operations are continuous in E.

It is interesting that the strong dual of a l.c.v.l. E reflects the properties of
E in a strengthened form; in addition, Ej is complete when E is barreled. (As
has been pointed out in Chapter IV, Section 6, the strong dual of a barreled
l.c.s. is in general not complete.)
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Theorem. Let E be a l.c.v.l. Then the strong dual E; is an order complete
Lc.v.l. under its canonical order, and a solid subspace of E* ; moreover, if E is
barreled, then E' is a band in E*, and Ej, is a complete l.c.s.

Proof. Since the positive cone C of E is normal in (E, ) by (7.2), it follows
from 3.3)that E'=C'—C' <« C* - C*=E"™,

It follows from the corollary of (1.5) that the polar U° of every solid
0-neighborhood U in E is a solid subset of E*. Since E’ is the union of these
polars, as U runs through a base of solid 0-neighborhoods, E’ is a solid
subspace and therefore a sublattice of E*. In particular, it follows that E’
is an order complete sublattice of E*. To see that E’is a l.c.v.l. for the strong
topology B(E’, E), it suffices to observe that the family of all solid bounded
subsets of E is a fundamental family of bounded sets; by the corollary of
(1.5) the polars B° (with respect to {E, E")) of these sets B form a 0-neighbor-
hood base for B(E’, E) that consists of solid subsets of E’.

If (E, T) is barreled and S is a directed (<) subset of the dual cone C’
such that S is majorized in E*, then each section of S is bounded for 6(E*, E),
hence for o(E’, E) and, consequently, o(E’, E)-relatively compact, (IV, 5.2).
Thus the section filter of S converges weakly to some fe C’, and it is clear
from the definition of the order of E’ that f = sup S (cf. (4.2), which is, how-
ever, not needed for the conclusion). Since we have shown before that E’
is a solid sublattice of E™, it is now clear that E’isa band in E ™.

There remains to show that if (E, ¥) is barreled, then (E’, B(E'E)) is
complete. Let us note first that E*, which is the dual of (E, ¥,) by (6.1) (note
that E* = E? by (1.4)), is complete under B(E*, E) by (IV, 6.1), for it is the
strong dual of a bornological space. Hence by the preceding results and
(7.3), (E*, B(E™, E)) is a L.c.v.l. (7.2) shows that E’, being a band in E*, is
closed in (E*, B(E*, E)) and hence complete for the topology induced by
B(E*, E). On the other hand, this latter topology is coarser than B(E’, E),
since T is coarser than T, ; hence if & is a f(E’, E)-Cauchy filter in E’, & has
a unique B(E*, E)-limit g € E’. Clearly, & converges to g pointwise on E,
and (since & is a Cauchy filter for B(E’, E)), it follows from a simple argument
that lim & =g for B(E’, E). This completes the proof.

COROLLARY 1. FEvery reflexive locally convex vector lattice is order complete,
and a complete l.c.s.
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In fact, the strong dual of E is a l.c.v.l. which is reflexive by (IV, 5.6),
Corollary 1, and hence barreled, and E can be identified (under evaluation)
with the strong dual of E;. More generally, if E is a L.c.v.l. that is semi-
reflexive, then E is order complete and (E, B(E, E')) is complete (cf. Corollary
2 of (7.5) below).

COROLLARY 2. If E is a normed lattice, its strong dual E' is a Banach lattice
with respect to dual norm and canonical order. If, in addition, E is a Banach space
then E' = E*,

Proof. The first assertion is clear, since the unit ball of E’ is solid by the
corollary of (1.5). The second assertion is a consequence of (5.5) and (7.2).
The following result is the topological counterpart of (1.6).

COROLLARY 3. If E is an infrabarreled l.c.v.l., then E can be identified, under
evaluation, with a topological vector sublattice of its strong bidual E" (which is
an order complete l.c.v.l. under its canonical order).

Proof. The assumption that E is infrabarreled (Chapter IV, Section 5)
means- precisely that the evaluation map x — X is a homeomorphism of E
into E”; the remainder follows from (1.6), since E’ is a solid subspace of E*.

It would, however, be a grave error to infer from the foregoing corollary
that for ‘an infinite subset S.c E such that x = sup S exists in E, one has
necessarily X = sup S. Thus even if E is order complete, E can, in general,
not be identified (under evaluation) with an order complete sublattice of E”.
For example, let E = /* be endowed with its usual norm and order; E is an
order complete Banach lattice (in fact, E can be identified with the strong
dual of the Banach lattice /!). Denote by x, (n € N) the vector in E whose 7
first coordinates are 1, the remaining ones being 0; {x,: n € N} is a monotone
sequence in E such that sup, x, = e, where e =(1, 1, 1, ...). Let z = sup, %,
in E” (= E*™ by virtue of (5.5)); we assert that z # &. Inview of E' = C’' — C’,
{x,} is a weak Cauchy sequence in E and z(f) = sup, f(x,) for each fe C’;
if we had z = &, the sequence {x,} would be weakly convergent to e in E,
and hence norm convergent by (4.3). On the other hand, one has [|x,., — x,l|
=1 for all ne N, p € N, which is contradictory, and it follows that z < &.

Our next objective is a characterization of those l.c. vector lattices that
can be identified (under evaluation) with order complete sublattices of their
bidual E”; this will yield, in particular, a characterization of order complete
vector lattices of minimal type (Section 1). A filter & in an order complete
vector lattice is called order convergent if & contains an order bounded set Y
(hence an order interval), and if

supy(inf Y) = inf,(sup Y),

where Y runs through all order bounded sets Y € §. The common value of
the right- and left-hand terms is called the order limit of §. Let us note also
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that if E is a l.c.v.l., then the bidual E” of E is a l.c.v.l. under its natural topo-
logy (the topology of uniform convergence on the equicontinuous subsets
of E’, Chapter IV, Section 5); in fact, the polar of every solid 0-neighborhood
in FE is a solid subset of E’ by the corollary of (1.5), and hence the family of
all solid equicontinuous subsets of E’ is a fundamental family of equicon-
tinuous sets. Hence their respective polars (in E”) form a 0-neighborhood base
for the natural topology, consisting of solid sets.

7.5

Let (E, T) be an order complete l.c.v.l., and let E" be endowed with its natural
topology and canonical order (under which it is an order complete l.c.v.l.). The
Sfollowing assertions are equivalent :

(a) Under evaluation, E is isomorphic with an order complete sublattice of E”.

(b) For every majorized, directed (<) subset S of E, the section filter of S
T-converges to sup S.

(c) Every order convergent filter in E I-converges to its order limit.

REeMARK. The equivalences remain valid when ““to sup S and ““to
its order limit” are dropped in (b) and (c), respectively; if the cor-
responding filters converge for T, they converge automatically to the
limits indicated, by (4.2).

Proof of (1.5). (a)=>(b): Let S be a directed () subset of E such that
X, = sup S; identifying E with its canonical image in E”, we obtain (by
definition of the canonical order of E”) f(x,) = sup{f(x): x € S} for every
continuous, positive linear form on E. It follows that the section filter of S
converges weakly to x,, and hence for T by (4.3), since the positive cone C
is normal in E.

(b)=(c): Let T be an order convergent filter in E with order limit x, and
let ® be the base of & consisting of all order bounded subsets Y e &. Let
a(Y) =inf Y (Y€ ®); the family {a(Y): Y e ®} is directed (<) with least
upper bound x,; hence by hypothesis its section filter converges to x, for I.
Likewise, if #(Y) =sup Y, the family {b(Y): Y e ®} is directed (=) with
greatest lower bound x,, and hence its section filter T-converges to x,. Let U
be any C-saturated 0-neighborhood in E; there exists a set Y, € & such that
a(Y,) € xo + Uand b(Y,) € x, + U, and this implies that Y, = x, + U. Since
(C being normal) the family of all C-saturated 0-neighborhoods is a base at
0, it follows that § converges to x, for T.

(c)=(a): Let S be a directed (<) subset of E such that x, = sup S. It is
clear that the section filter of S is order convergent with order limit x,, and
hence it T-converges to x, by assumption. It follows that f(x,) = sup{f(x):
x € S} for every fe C’; hence from the definition of order in E” it follows
that X, = sup S, where x — % is the evaluation map of E into E”. The proof
is complete.
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COROLLARY 1. Let E be an order complete vector lattice whose order is regular.
The following assertions are equivalent :

(a) Eis of minimal type.

(b) For every majorized, directed (<) subset S of E, the section filter con-
verges to sup S for T,,.

(c) Every order convergent filter in E converges for I,,.

Moreover, if E is minimal, then I, is the finest l.c. topology on E for which every
order convergent filter converges.

Proof. Applying (7.5) to (E, T,) we see that E'= E*, and E" =
(E*,B(E*, E)) is a solid subspace of E** by (7.4). Hence E is minimal (that
is, isomorphic with an order complete sublattice of E** under evaluation) if
and only if E is isomorphic with an order complete sublattice of E”, which
proves the first assertion.

For the second assertion there remains, in view of (c), only to show that
every l.c. topology ¥ on E for which every order convergent filter converges
is coarser than ¥,. Hence let T be such a topology, and let a € C be fixed.
Now {e[—a, a]: ¢ > 0} (e € R) is a filter base in E, and it is immediate that
the corresponding filter is order convergent with order limit O (E is regular,
hence Archimedean ordered); thus if U is a convex 0-neighborhood for ¥,
it follows that there exists ¢ >0 such that e[—a, a] = U. Therefore, U
absorbs arbitrary order intervals in E, which shows that T is coarser than T,.

COROLLARY 2. Let E be a l.c.v.l. which is semi-reflexive; then E is order
complete. If, in addition, every positive linear form on E is continuous, then E is
of minimal type, ©(E, E") = I,, and (E, T,) is reflexive.

Proof. The first assertion follows at once from (4.3), Corollary 2. If every
positive linear form on E is continuous, then E’ = E*, and the equality
1(E, E') = I, follows from (6.4) in view of the fact that the order of E is
regular, (4.1), Corollary 2. Hence E is minimal by Corollary 1, for the section
filter of every majorized, directed (<) subset S of E converges weakly to sup S,
so it converges for I, by (4.3). Finally, (E, ¥,) is reflexive, since it is semi-
reflexive and (by (7.3)) barreled.

Examples

4. Bach of the Banach lattices L?(u), 1 <p < + oo (Chapter II,
Section 2, Example 2; take K = R) is order complete and of minimal
type; in particular, the norm topology is the finest l.c. topology for
which every order convergent filter converges.

5. The Banach lattice L'(u) is order complete and of minimal type.
In fact, if S is a directed (<) subset of the positive cone C and majorized
by h, then for any subset {fj, ..., f,} of S such that f; <--- <f, one

obtains
o =fill =k =fll + 1l fo = fa_ill+- + L2 = f1ll,
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since the norm of L'(y) is additive on C; this shows that the section
filter of S'is a Cauchy filter for the norm topology, and hence convergent.
Since the latter topology is Ty, it follows that L'(y) is of minimal type.
Obviously these conclusions apply to any Banach lattice whose norm is
additive on the positive cone; these lattices are called abstract (L)-spaces
(cf. Kakutani [1] and Section 8 below).

6. Suppose u to be totally o-finite. As strong duals of L'(y), the spaces
L*(u) are order complete Banach lattices by (7.4); in general, these
spaces are not of minimal type as the example preceding (7.5) shows
and hence (in contrast with L'(u)), in general, not bands in their respec-
tive order biduals.

7. Each perfect space (Example 2 above) is order complete and, if
each order interval is 6(4, A*) -compact, of minimal type.

As we have observed earlier, ordered vector spaces possessing an order
unit are comparatively rare; it will be shown in Section 8 below that every
Banach lattice with an order unit is isomorphic (as an ordered t.v.s.) with
% r(X) for a suitable compact space X. A weaker notion that can act as a
substitute was introduced by Freudenthal [1]; an element x = 0 of a vector
lattice L is called a weak order unit if inf(x, |y|) =0 implies y =0 for each
y € L. A corresponding topological notion is the following: If L is an ordered
t.v.s., an element x = 0 is called a quasi-interior point of the positive cone C
of L if the order interval [0, x] is a total subset of L. The remainder of this
section is devoted to some results on weak order units and their relationship
with quasi-interior points of C.

7.6

Let E be an ordered l.c.s. over R which is metrizable and separable, and suppose
that the positive cone C of E is a complete, total subset of E. Then the set Q of
quasi-interior points of C is dense in C.

Proof. Since C is separable, there exists a subset {x,: n € N} which is dense
in C; denote by {p, ne N} an increasing sequence of semi-norms that

generate the topology of E. Since C is complete, x, =Y 27"x,/p,(x,) is an
1

element of C. Now the linear hull of [0, x,] contains each x, (n e N), and
hence is dense in C — C and, therefore, in E; that is, x, € Q. It is obvious
that C, = {0} U Q is a subcone of C, and that Q = C,. Suppose that Q # C.
There exists, by (II, 9.2), a linear form f'e E’ such that f(x) = 0 when x € Q,
and a point y € C such that f(y) = — 1. Consequently, there exists 4 > 0 such
that f(x, + Ay) <0, which conflicts with x, + Ay € Q.

COROLLARY. Let E be a Fréchet lattice which is separable. Then the set of weak
order units is dense in the positive cone of E.

Proof. 1t suffices to show that each quasi-interior point of C is a weak order
unit. But if x is quasi-interior to C, then y L x implies that y is disjoint from
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the linear hull of [0, x] which is dense in E; hence y =0 since the lattice
operations are continuous.

ReMARK. The assumptions that E be metrizable and separable are not
dispensable in (7.6); if E is, for example, either the l.c. direct sum of
infinitely many copies of R, or the Hilbert direct sum of uncountably
many copies of /2 (under their respective canonical orderings), then the
set of quasi-interior points of C (equivalently, by (7.7), the set of weak
order units) is empty.

77

Let E be an order complete vector lattice of minimal type. For each x > 0,
the following assertions are equivalent:

(a) x is weak order unit.

(b) For each positive linear form f# 0 on E, f(x) > 0.

(c) For each topology T on E such that (E, T) is al.c.v.l., x is a quasi-interior
point of the positive cone.

Proof. If B, denotes the band in E generated by {x}, then x is a weak order
unit if and only if B, = E, by virtue of (1.3). Now if fis a positive linear form
on E, then, since E is minimal, f(x) =0 is equivalent with f(B,) = {0}; this
shows that (a) <> (b). Moreover, E being minimal, B, = E is equivalent with
the assertion that the linear hull of [0, x] is dense in (E, T,) (for the closure
of each solid subspace G in (E, I,) contains the band generated by G);
hence (a) = (c), since the topologies mentioned in (c) are necessarily coarser
than T, by (7.3). (c)=(a) is clear in view of the continuity of the lattice
operations in (E, T) (cf. proof of (7.6), Corollary).

For example, in the spaces L?(u) (1 < p < + o) the weak order units
(= quasi-interior points of C) are those classes containing a function which
is >0 a.e. (u). By contrast, a point in L*(u) is quasi-interior to C exactly
when it is interior to C; the classes containing a function which is > 0 a.e.
(1) are weak order units, but not necessarily quasi-interior to C. Hence the
minimality assumption is not dispensable in (7.7).

8. CONTINUOUS FUNCTIONS ON A COMPACT SPACE. THEOREMS
OF STONE-WEIERSTRASS AND KAKUTANI

This final section is devoted to several theorems on Banach lattices of
type €(X), where X is a compact space, in particular, the order theoretic and
algebraic versions of the Stone-Weierstrass theorem and representation
theorems for (AM)-spaces with unit and for (AL)-spaces. For a detailed
account of this circle of ideas, which is closely related to the Krein-Milman
theorem, we refer to Day [2]; the present section is mainly intended to serve
as an illustration for the general theory of ordered vector spaces and lattices
developed earlier. Let us point out that with only minor modifications most of
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the following results are applicable to spaces €o(X) (continuous functions on
a locally compact space X that vanish at infinity); for €o(X) can be viewed as
a solid sublattice of codimension 1 in ¥(X), where X denotes the one-point
compactification of X.

With one exception (see (8.3) below) we consider in this section only vector
spaces over the real field R; mutatis mutandis, many of the results can be
generalized without difficulty to the complex case, since €(X) over C is the
complexification (Chapter I, Section 7) of ¥(X) over R; (8.3) is an example
for this type of generalization. To avoid ambiguity we shall denote by #x(X)
the Banach lattice of real-valued continuous functions on X, and by %(X)
the (B)-space of complex-valued continuous functions on X.

Let us recall some elementary facts on the Banach lattice €g(X), where
X # (& is any compact space. €x(X) possesses order units; fe €g(X) is an
order unit if and only if inf {f(#): t € X} > 0. Thus the order units of #(X)
are exactly the functions f that are interior to the positive cone C. Distin-
guished among these is the constantly-one function e; in fact, the norm
= |If 1l = sup{|f(?)|: t € X} is the gauge function p, of [—e, e] and, of course,
the topology of €x(X) is the order topology T, (Section 6). We begin with the
following classical result, the order theoretic form of the Stone-Weierstrass
theorem.

8.1

Theorem. If F is a vector sublattice of €g(X) that contains e and separates
points in X, then F is dense in €g(X).

REMARK. The subsequent proof will show that a subset F < @ x(X)
is dense if it satisfies the following condition: F is a (not necessarily lin-
ear) sublattice of the lattice ¥g(X), and for every ¢ > 0 and quadruple
(s, t;0, B) € X* x R? such that o= f whenever s=1, there exists
f € F satisfying | f(s) — a| <& and | f(¢) — B| <e.

Proof of (8.1). Let s, t be given points of X and «, B given real numbers
such that a = f§ if s = t; the hypothesis implies the existence of fe F such
that f(s) =, f(#) = B. This is clear if s = ¢, since e € F; if s # t, there exists
g € F such that g(s) # g(¢), and a suitable linear combination of e and g will
satisfy the requirement.

Now let & € €x(X) and ¢ > 0 be preassigned and let s be any fixed element
of X. Then for each ¢ € X, there exists an f; € F such that f,(s) = A(s) and
fi{(t) =h(t). The set U, = {re X: f,(r) > h(r) — €} is open and contains ¢,

hence X = |J U,, and the compactness of X implies the existence of a finite
teX

set {t,, ..., t,} such that X = U U,,. Using the lattice property of F, form the

function g, = sup{f,,, ..., ft, }, 1t is clear that g(t) > h(¢) — ¢ for all t€ X,
since each ¢ is contained in at least one U, . Moreover, g(s) = A(s).
Now consider this procedure applied to each s e X; we obtain a family
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{gs: s€ X} in F such that gy (s) = h(s) for all se X, and g,(r) > h(t) — ¢ for
all te X and se€ X. The set V,={re X: g{r) < h(r) + €} is open and con-

tains s; hence X = |J V,, and the compactness of X implies the existence
seX

of a finite set {s;, ..., s,} such that X = U Vs Let g =inf{g,,, ..., gs,.};

then ge F and h(r) — e <g(r) < h(r) + ¢ for all re X; hence ||h —g| <e,
and the proof is complete.

The algebraic form of the Stone-Weierstrass theorem replaces the hypo-
thesis that F be a sublattice of €x(X) by assuming that F be a subalgebra
(that is, a subspace of #¥g(X) invariant under multiplication). Our proof
follows de Branges [1], but does not involve Borel measures. The proof is an
interesting application of the Krein-Milman theorem and provides an oppor-
tunity to apply the concept of Radon measure that has been utilized earlier
(Chapter TV, Sections 9 and 10).

The space . z(X) of (real) Radon measures on X is, by definition, the dual
of @xr(X) (Chapter II, Section 2, Example 3); since E is a Banach lattice,
M g(X) is a Banach lattice under its dual norm and canonical order by (7.4),
Corollary 2. Thus |ju|| = |||p|ll for each p; if u =0, then |jull = sup{u(f):
fe[—e,el} =u(e), and this implies that [ull=p"(e) +p (e) for all
pe Mg(X). If g € €(X) is fixed, then f — gf (pointwise multiplication) is a
continuous linear map u of ¥x(X) into itself; the image of u € .4 g(X) under
the adjoint #’ is a Radon measure denoted by g . u. Obviously |g . u| < |ig ||y
and hence ' leaves each band in . g(X) invariant; in particular, if g =0,
theng.u=g.u* —g.u", where inf(g.pu*, g.pu~) =0. It follows from (1.1)
that (g.u)* =g.u*, (g.0)” =g.p” in this case, and that |g.u| =g.|u|.

The support of fe ¥g(X) is the closure S; of {te X:f(t) # 0} in X; we
define the support S, of y € 4 g(X) to be the complement (in X) of the largest
open set U such that S, = U implies u(f) = 0 (equivalently, such that S, = U
implies |u|(f) = 0). An application of Urysohn’s theorem (cf. Prerequisites)
shows that if = 0 and p = 0, then u(f) = 0 if and only if /() = 0 whenever
te S,. Notice a particular consequence of this: if u is such that S, = {to},
then p is of the form u(f) = u(e) f(¢,) (hence, up to a factor u(e) # 0, evalua-
tion at #o). For S, = {t,} implies that |u(f — f(to)e)| < |u|(Lf — f(to)e]) =0,
which is the assertion. Finally, 4 =0 if and only if S, = . The following
lemma is now the key to the proof of (8.2).

LEMMA. Let F be a subspace of € g(X), and suppose that the Radon measure p
is an extreme point of F° n[—e,el° c Mg X). If g€ C(X) is such that
g.un€ F°, theng is constant on S,,.

Proof. If u =0, there is nothing to prove. Otherwise, it can be arranged
(by adding a suitable scalar multiple of e and subsequent normalization)
that g = 0 and |g/(g) = 1. Suppose, for the moment, that g < e; since u is an
extreme point of F° n [—e, €]°, we have ||u|| = 1 and it follows that |u|(e — g)
= ||u|| = |ul(g) =0, which implies that 1 = e(t) = g(¢) for all 1€ S, in view
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of the remarks preceding the lemma. We complete the proof by showing that
llgll > 1 is impossible. In fact, assume that ||g|| > 1, let B = ||g||”*, and define
the Radon measures y,, 4, by uy =g, .p and u, =g . u, where g, = (e — fg)/
(1 — B). We observe that u, € F°, u, € F° and that |u,| =g.|u|; hence ||u, ||
=g.|p|(e) = 1. Moreover, u{ =g,.u" and puy =g,.p", since g; 20, and
in view of |ju || = uf(e) + ug(e), it follows from a short computation that
[lug || = 1. On the other hand, it is easy to see that 4 = (1 — f)u; + Bu,, which
conflicts with the hypothesis that u be an extreme point of F° n [—e, e]°.
The following is the algebraic form of the Stone-Weierstrass theorem.

8.2

Theorem. If F is a subalgebra of ¥x(X) that contains e and separates
points in X, then F is dense in € g(X).

Proof. The set F° n [—e, e]° is a convex, circled, weakly compact subset of
M g(X); hence by the Krein-Milman theorem (11, 10.4) there exists an extreme
point p of F° n [—e, e]°. Since Fis a subalgebra of ¥x(X), each f € F satisfies
the hypothesis of the lemma with respect to u; hence each f€ Fis constant on
the support S, of u. This is clearly impossible if S, contains at least two points;
since F separates points in X; on the other hand, if S, = {t,}, then u(f)
= u(e)f(,), and it follows that each f'e F vanishes at ¢,, which is impossible
since e € F. Hence S, is empty which implies 4 = 0 and, therefore, F° = {0};
consequently, F is dense in @x(X) by the bipolar theorem (IV, 1.5).

The preceding theorem is essentially a theorem on real algebras €(X); for
instance, if X is the unit disk in the complex plane and F is the algebra of all
complex polynomials (restricted to X)), then F separates points in X and e € F,
but F is not dense in €(X) (for each fe F is holomorphic in the interior of
X). One can, nevertheless, derive results for the complex case from (8.1)
and (8.2) by making appeal to the fact that €-(X) is the complexification of
%r(X); we say that a subset F of the complex algebra #¢(X) is conjugation-
invariant if fe F implies f* € F (where f*(t) =f(¢)*, te X). We consider
%c(X) as ordered by the cone of real functions = 0 (Section 2).

8.3

CoMPLEX STONE-WEIERSTRASS THEOREM. Let F be a vector subspace of the
complex Banach space €¢(X) such that e € F and F separates points in X and is
conjugation-invariant. Then either of the following assumptions implies that F
is dense in €c(X):

(i) Fis lattice ordered (Section 2)
(ii) Fis a subalgebra of €(X).

Proof. If F,; denotes the subset of F whose elements are the real-valued
functions contained in F, then F = F; + iF; by the conjugation-invariance of
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the subspace F; clearly, e € F;, and F, separates points in X, since F does.
Thus if F is lattice ordered, then F; is a vector lattice (Section 2), and (8.1)
shows that F; is dense in ¥x(X); by (8.2) the same conclusion holds if Fis a
subalgebra of €-(X), for then F; is a subalgebra of €x(X). This completes
the proof.

It is customary to call a Banach lattice £ an (AL)-space (abstract L-space)
if the norm of E is additive on the positive cone C. The reason for this termi-
nology is that every L'(u) (over R) possesses this property and that, con-
versely, every (AL)-space is isomorphic (as a Banach lattice) with a suitable
space L'(u) (Kakutani [1]; cf. Exercise 22). A Banach lattice E is called an
(AM)-space (abstract (m)-space) if the norm of E satisfies ||sup(x, y)|| = sup
(Ilx1l, Ily1) for all x, y in the positive cone C; E is called an (AM)-space with
unit « if, in addition, there exists u € C such that [—u, u] is the unit ball of E.
(Clearly, such u is unique and an order unit of E.) It is immediate that every
Banach lattice Fg(X) is an (AM)-space with unit (the unit being the con-
stantly-one function e); we will show that this property characterizes the
spaces €(X) over R among Banach lattices. More generally, every (AM)-space
is isomorphic with a closed vector sublattice of a suitable ¥x(X) (Kakutani
[2]). Let us record first the following elementary facts on (AL)- and (AM)-
spaces; by the strong dual of a Banach lattice F, we understand the dual E’
(= E™) under its natural norm and canonical order.

8.4

The strong dual of an (AM)-space with unit is an (AL)-space, and the strong
dual of an (AL)-space is an (AM)-space with unit. Moreover, if E is an Archi-
medean ordered vector lattice, u an order unit of E, and p, the gauge function of
[—u, ul, then the completion of (E, p,) is an (AM)-space with unit u.

Proof. Let E be an (AM)-space with unit u; the strong dual £’ is a Banach
lattice by (7.4), Corollary 2. If x" € C’ then ||x"|| = sup{|<{x, x'D|: x € [—u, u]}
= {u, x"); hence the norm of E’is additive on the dual cone C’.

If Fis an (AL)-space, the norm of F is an additive, positive homogeneous
real function on C, and hence defines a (unique) linear form f;; on F such that
fo(x) = |Ix|| for all xe C; evidently we have 0 < f, € F’. It follows that
g € F’ satisfies ||g|| < 1 if and only if g € [—f,, fol, and hence the norm of the
strong dual F’ is the gauge function of [—fy, fo]. Now if g =0, h =0 are
elements of F’ such that ||g|| = 4;, ||k]| =4,, then g £ 1./, and h = A, £,
since the order of F’ is Archimedean. Consequently, |sup(g, /)|l < sup(4,, 4,),
and here equality must hold or else both the relations ||g| = 4;, [|h]l =4,
could not be valid. Therefore, under its canonical order, F' is an (AM)-
space with unit f,.

To prove the third assertion, we observe that if E is an Archimedean
ordered vector lattice and u is an order unit of E, then p, is a norm on E,
and even a lattice norm, since [—u, u] is clearly solid. The completion (E, p,)
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of (E, p,) is a Banach lattice (with respect to the continuous extension of the
lattice operations) whose unit ball is the set {x e E: —f(u) < f(x) £ f(w),
fe C’}, and hence the order interval [—u, u] in E. As in the preceding para-
graph, it follows that (E, p,) is an (AM)-space with unit «. This ends the proof.

Let E # {0} be an (AM)-space with unit u; the intersection of the hyper-
plane H = {x": {u, x’) = 1} with the dual cone C’is a convex, 6(E’, E)-closed
subset H,, of the dual unit ball [—u, ¥]°. It follows that H,, which is called the
positive face of [—u, u]°, is 6(£’, E)-compact; hence C’ is a cone with weakly
compact base, and ¢ € H,, is an extreme point of H, if and only if {Az: 1 = 0}
is an extreme ray of C’ (Chapter II, Exercise 30).

Now we can prove the representation theorem of Kakutani [2] for (AM)-
spaces with unit.

8.5

Theorem. Let E # {0} be an (AM)-space with unit and let X be the set of
extreme points of the positive face of the dual unit ball. Then X is non-empty and
o(E’, E)-compact, and the evaluation map x — f (where f(t) =<{x, t), te X)
is an isomorphism of the (AM)-space E onto € g(X).

Proof. Let u be the unit of E. Since the positive face H, of [—u, u]° is convex
and o(E’, E)-compact, the Krein-Milman theorem (II, 10.4) implies that the
set X of extreme points of H, is non-empty. Since H, is a base of C’, it
follows from (1.7) that t € X if and only if ¢ is a lattice homomorphism of E
onto R such that #(u) = 1. It is clear from this that X is closed, hence compact
for o(£’, E). The mapping x — fis clearly a linear map of E into €gx(X) that
preserves the lattice operations, since each ¢ € X is a lattice homomorphism;
to show that x — f'is a norm isomorphism, it suffices (since E and €(X) are
Banach lattices) that | f| = |x|]| when x=0. For x>0 we have |x||
= sup{<x, x'): |x'|| £ 1} = sup{<{x, x'>: x' € Hy}; since H, is the o(E’, E)-
closed convex hull of X and each x € E is linear and o(E’, E)-continuous, it
follows that (x = 0) sup{<x, x">: x" € Hy} =sup{<{x, t>: te X} = ||f||. Thus
x — f is an isomorphism of E onto a vector sublattice F of @x(X) that is
complete and contains e (the image of u); since E separates points in £’ and
a fortiori in X, it follows from (8.1) that F = @x(X), which completes the
proof.

We conclude this section with two applications of the preceding result;
the first of these gives us some more information on the structure of (AL)-
spaces, the second on more general locally convex vector lattices.

From (8.4) we know that the strong dual E’(= E*) of an (AL)-space E is
an (AM)-space with unit; hence by (8.5), E’ can be identified with a space
%r(X), where X is the set of extreme points of the positive face of the unit
ball in E”. By (7.4), the Banach lattice E’ is order complete, which has the
interesting consequence that X is extremally disconnected (that is, the closure
of every open set in X is open). In fact, let G = X be open and denote by S
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the family of all f € ¥x(X) such that f e [0, e] and the support S is contained
in G. S is directed (<) and majorized by e; hence f, = sup S exists. Since G
is open, it follows from Urysohn’s theorem that f,(s) =1 whenever s € G,
and that f,(f) =0 whenever ¢ ¢ G. Thus f; is necessarily the characteristic
function of G since f;, is continuous, and this implies that G is open.

Therefore, if E is an (AL)-space, then E’ can be identified with a space
% r(X), where X is compact and extremally disconnected, and it follows that E
itself can be identified with a closed subspace of the Banach lattice . g(X)
which is the strong bidual of E. For a characterization of E within ./ g(X),
let us consider the subset B « #gx(X) such that u € B if and only if for each
directed (<), majorized subset S = @x(X) it is true that lim u(f) = u(sup S),
the limit being taken along the section filter of S. It is not difficult to verify
that B is a vector sublattice of #g(X); in fact, if S is directed (<) and
fo=sup S, and if f, = 0 (which is no restriction of generality) then there
exists, for given pe B and ¢>0, a decomposition f, =g, + hy(ge =0,
hy = 0) such that u*(hy) < ¢ and u~(go)< ¢ ((1.5), formula (7)). Using that
u € B, we obtain after a short computation that u*(f,) < sup{u*(f): f € S}
+ 3, which proves that ™ € B. Thus B is a sublattice of .#g(X) which is
clearly solid; it is another straightforward matter to prove that B is a band
in M g(X). The only assertion in the following representation theorem that
remains to be proved is the assertion that B = E.

8.6

Theorem. Let E be an (AL)-space. The Banach lattice E' (= E™) can be
identified with €g(X), where X is a compact, extremally disconnected space.
Moreover, under evaluation, E is isomorphic with the band of all (real) Radon
measures yu on X such that

}in; u(f) = u(sup S)

for every majorized, directed (£) subset S of €r(X).

Proof. It is easy to see that (identifying E’ with € x(X) and E with its canoni-
cal image in E” = # x(X)) we have E < B (see the preceding paragraph for
notation). For if S is majorized and directed (<), every section of S is
o(E’, E)-bounded and hence the section filter o(E’, E)-converges to sup S;
the assertion follows since u € E is o(E’, E)-continuous.

To prove the reverse inclusion, let 0 < ve B and let yo =sup [0, v] N E.
Then the section filter of [0, v] n E is a Cauchy filter for the norm topology,
since E is an (AL)-space (Section 7, Example 5), and hence y, € E, since E is
norm complete. Now y; = v — i, is an element of B lattice disjoint from E;
it will be shown that this implies p; =0, and hence B = E by (1.3).

Denote by T, the support of y, ; if T = X ~ Ty, then T'is open and p(f) =0
for each f whose support T is contained in T. The family of all fe [0, e]
such that 7, = T is directed, and its least upper bound f, is necessarily the
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characteristic function of the closure T. Since g, € B, it follows that u,(f,) = 0;
hence T T, = &, which shows that T, is open and closed. If T; = (& the
proof is complete; hence assume that T} is non-empty. Since T} is open, there
exist elements p € E whose support intersects 7; (otherwise £ would not
distinguish points in £’ = ¥x(X)). There exists, consequently, a positive u € E
such that ||z|| =1 and whose support is contained in 7 (it suffices to take a
positive A € E for which A(g,) > 0, where g, = e — f, and to consider g, . 4).
The proof will now be completed by showing that this last statement is false,

Let g, =27"(ne N). By formula (7) of (1.5) there exist (since inf(u, ;) = 0)
decompositions g, = f; + f,/, where f, 2 0, f; 2 0 and such that y,(f,) < €2,
u(f)) < €2, so that u(f,) >1—¢&2 (ne N). Let G, = {t: f,(t) > &,} for all n,
then G, is open and G, is closed and open. If we write u(4) in place of u(x,)
whenever 4 = X is a subset whose characteristic function y, is continuous,
we obtain u,(G,) <e¢,; in fact, u;(G,) =¢, would imply that u,(f) =
&, 44(G,) = €, which is contradictory. Now let H, = ) {G,: n = k + 1}; then
H, is closed and open, and it follows from y; € B that u,(H,) < &, since the
characteristic function of H, is the least upper bound of the characteristic
functions of the sets G,(n = k + 1). Now 'define g, by g, = sup{f,: v = n}
(n € N); then {g,: n € N} is a monotone (=) sequence; let 4 = inf{g,: n € N}.
In the complement of H, one has f,(f) < ¢, whenever v = k + 1, and hence
g.(f) < &, whenever n 2 k + 1; in view of u,(H,) < &, it is clear that u,(h)
< &. This implies y,(4) = 0 and thus & = 0, for the support of 4 is contained
in the support 7; of u;. On the other hand, since ue E < B, we have
lim, u(g,) = u(h) =0, which conflicts with u(f,) > 1 — &2, since 0 £f, < g,
for all n. This completes the proof of (8.6).

COROLLARY 1. In an (AL)-space E each order interval is weakly compact.

Proof. Since E is a band in E"(= E**), E is a solid subspace of E”; thus
if x,ye E, we have [x, ] =(x+ C)n(y = C) =(x+ C") n (y — C") where
C, C" denote the positive cones of E, E” respectively. Since C” is o(E”, E’)-
closed, it follows that [x, y] is o(E”", E’)-closed and hence a(E”, E’)-compact,

COROLLARY 2. Every (AL)-space E is an order complete vector lattice of mini-
mal type; by contrast, its order dual E* is not of minimal type, unless E is of
finite dimension.

Proof. Since E can be identified with a band in E” = E* ™, it is clearly of
minimal type (Section 7). If, on the other hand, E* (which can be identified
with €(X)) is of minimal type, then by (7.5), Corollary 1, the section filter of
each directed (=), majorized set S converges to sup .S pointwise (even uni-
formly) on X, which implies that each open subset of X is closed, and hence
that the topology of X is discrete. Since X is compact, X is finite, and hence
E* and E are finite dimensional.

Our second application of (8.5) is the following result.
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8.7

Let (E, T) be a l.c.v.l. which is bornological and sequentially complete. There
exists a family of compact spaces X (o € A) and a family of vector lattice iso-
morphisms f, of €r(X,) into E (o € A) such that T is the finest l.c. topology on E
for which each f, is continuous.

Proof. In view of (5.5) and (6.4), the assumption that (£, T) be bornological
implies that T is the order topology T,,. Hence by (6.3), (E, T) is the inductive

limit of the subspaces (E,, p,) (x € A) where E, = \J n[—a,, a,], p, is the
n=1

gauge of [ -a,, a,] on E,, and {a,: « € A} is a directed subset of the positive
cone of E such that (J,E, = E. By (6.2) each (p,, E,) is a Banach lattice, and
by (8.4) even an (AM)-space with unit a,. Hence by (8.5), (E,, p,) can be
identified with €g(X,) for a suitable compact space X,, and the assertion
follows from the definition of inductive topologies (Chapter 1I, Section 6).

EXERCISES

1. A reflexive, transitive binary relation “ <’ on a set S is called a
pre-order on S. A pre-order on a vector space L over R is said to be
compatible (with the vector structure of L) if x < y impliesx + z <y + z
and Ax < Ay for all z € L and all scalars 4 > 0.

(a) If (X, X, u) is a measure space (Chapter II, Section 2, Example 2),
the relation ““f(¢) < g(¢) almost everywhere (1)’ defines a compatible
pre-order on the vector space (over R) of all real-valued X-measurable
functions on X.

(b) If““ <’ is a compatible pre-order, the relation “x < yandy < x”’
is an equivalence relation on L, the subset N of elements equivalent to 0
is a subspace of L, and L/N is an ordered vector space under the relation
‘R < y if there exist elements x € &, y € y satisfying x <y ”.

(c) The family of all compatible pre-orders of a vector space L over R
is in one-to-one correspondence with the family of all convex cones in L
that contain their vertex 0.

2. The family of all total vector orderings (total orderings satisfying
(LO), and (LO),, Section 1) of a vector space L is in one-to—one corres-
pondence with the family of all proper cones that are maximal (under
set inclusion). Deduce from this that for each vector ordering R of L,
there exists a total vector ordering of L that is coarser than R. (Use
Zorn’s lemma.) Show that a total vector ordering cannot be Archi-
medean if the real dimension of L is >1.

3. Let L be an ordered vector space with positive cone C. Let N be a
subspace of L, and denote by C the canonical image of C in L/N.

(a) If N is C-saturated, then C defines the canonical order of L/N.

(b) If L is a t.v.s. and if for each 0-neighborhood ¥V in L there exists
a 0-neighborhood U such that [(U+ N)n Cl< V + N, then C is
normal for the quotient topology. (Compare the proof of (3.1).)



